首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the role of alpha-amylase isoform I-1 in the degradation of starch in rice leaf chloroplasts, we generated a series of transgenic rice plants with suppressed expression or overexpression of alpha-amylase I-1. In the lines with suppressed expression of alpha-amylase I-1 at both the mRNA and protein levels, seed germination and seedling growth were markedly delayed in comparison with those in the wild-type plants. However, the growth retardation was overcome by supplementation of sugars. Interestingly, a significant increase of starch accumulation in the young leaf tissues was observed under a sugar-supplemented condition. In contrast, the starch content of leaves was reduced in the plants overexpressing alpha-amylase I-1. In immunocytochemical analysis with specific anti-alpha-amylase I-1 antiserum, immuno-gold particles deposited in the chloroplasts and extracellular space in young leaf cells. We further examined the expression and targeting of alpha-amylase I-1 fused with the green fluorescent protein in re-differentiated green cells, and showed that the fluorescence of the expressed fusion protein co-localized with the chlorophyll autofluorescence in the transgenic cells. In addition, mature protein species of alpha-amylase I-1 bearing an oligosaccharide side chain were detected in the isolated chloroplasts. Based on these results, we concluded that alpha-amylase I-1 targets the chloroplasts through the endoplasmic reticulum-Golgi system and plays a significant role in the starch degradation in rice leaves.  相似文献   

2.
The expression and secretion of Bacillus amyloliquefaciens alpha-amylase was studied in yeast Saccharomyces cerevisiae. The Bacillus promoter was removed by BAL 31 digestion and three forms of the alpha-amylase gene were constructed: the Bacillus signal sequence was either complete (YEp alpha a1), partial (YEp alpha a2) or missing (YEp alpha a3). Secretion of alpha-amylase into the culture medium was obtained with the complete signal sequence only. The secreted alpha-amylase was glycosylated and its signal peptide was apparently processed. The glycosylated alpha-amylase remained active. The enzyme produced by the other constructions was not glycosylated and thus probably remained in the cytoplasm.  相似文献   

3.
4.
5.
6.
Chen MH  Huang LF  Li HM  Chen YR  Yu SM 《Plant physiology》2004,135(3):1367-1377
alpha-Amylases are important enzymes for starch degradation in plants. However, it has been a long-running debate as to whether alpha-amylases are localized in plastids where starch is stored. To study the subcellular localization of alpha-amylases in plant cells, a rice (Oryza sativa) alpha-amylase, alphaAmy3, with or without its own signal peptide (SP) was expressed in transgenic tobacco (Nicotiana tabacum) and analyzed. Loss-of-function analyses revealed that SP was required for targeting of alphaAmy3 to chloroplasts and/or amyloplasts and cell walls and/or extracellular compartments of leaves and suspension cells. SP was also required for in vitro transcribed and/or translated alphaAmy3 to be cotranslationally imported and processed in canine microsomes. alphaAmy3, present in chloroplasts of transgenic tobacco leaves, was processed to a product with Mr similar to alphaAmy3 minus its SP. Amino acid sequence analysis revealed that the SP of chloroplast localized alphaAmy3 was cleaved at a site only one amino acid preceding the predicted cleavage site. Function of the alphaAmy3 SP was further studied by gain-of-function analyses. beta-Glucuronidase (GUS) and green fluorescence protein fused with or without the alphaAmy3 SP was expressed in transgenic tobacco or rice. The alphaAmy3 SP directed translocation of GUS and green fluorescence protein to chloroplasts and/or amyloplasts and cell walls in tobacco leaves and rice suspension cells. The SP of another rice alpha-amylase, alphaAmy8, similarly directed the dual localizations of GUS in transgenic tobacco leaves. This study is the first evidence of SP-dependent dual translocations of proteins to plastids and extracellular compartments, which provides new insights into the role of SP in protein targeting and the pathways of SP-dependent protein translocation in plants.  相似文献   

7.
A nucleotide pyrophosphatase/phosphodiesterase (NPP) activity that catalyzes the hydrolytic breakdown of ADP-glucose (ADPG) has been shown to occur in the plastidial compartment of both mono- and dicotyledonous plants. To learn more about this enzyme, we purified two NPPs from rice (Oryza sativa) and barley (Hordeum vulgare) seedlings. Both enzymes are glycosylated, since they bind to concanavalin A, stain with periodic acid-Schiff reagent, and are digested by Endo-H. A complete rice NPP cDNA, designated as NPP1, was isolated, characterized, and overexpressed in transgenic plants displaying high ADPG hydrolytic activity. Databank searches revealed that NPP1 belongs to a functionally divergent group of plant nucleotide hydrolases. NPP1 contains numerous N-glycosylation sites and a cleavable hydrophobic signal sequence that does not match with the N-terminal part of the mature protein. Both immunocytochemical analyses and confocal fluorescence microscopy of rice cells expressing NPP1 fused with green fluorescent protein (GFP) revealed that NPP1-GFP occurs in the plastidial compartment. Brefeldin A treatment of NPP1-GFP-expressing cells prevented NPP1-GFP accumulation in the chloroplasts. Endo-H digestibility studies revealed that both NPP1 and NPP1-GFP in the chloroplast are glycosylated. Collectively, these data demonstrate the trafficking of glycosylated proteins from the endoplasmic reticulum-Golgi system to the chloroplast in higher plants.  相似文献   

8.
Saccharomyces cerevisiae harboring linear dsDNA plasmids, pGKL1 and pGKL2, secretes a killer toxin consisting of 97, 31 and 28 kilodalton subunits (Nucleic Acids Res., 15, 1031-1046, 1987). We isolated the DNA encoding the N-terminal pre-sequence of the 28K precursor protein and constructed a new secretion vector in S. cerevisiae. Mouse alpha-amylase fused to the 28K signal sequence was secreted into the culture medium with a high efficiency similar to those fused to the mating factor alpha and 97K-31K killer signal sequences. This data clearly indicates that 28K presequence functions as a secretion signal. Glycosylated and nonglycosylated alpha-amylase molecules were detected in the culture medium. The secretion of alpha-amylase was blocked by sec18-1 mutation. The secreted alpha-amylase recovered from the medium was found to migrate faster in SDS-polyacrylamide gel than the precursor form of alpha-amylase synthesized in vitro. These lines of evidence suggest that mouse alpha-amylase fused to 28K killer signal sequence was processed, glycosylated and secreted through the normal secretion pathway of the yeast.  相似文献   

9.
Arabinogalactan proteins (AGPs) are highly glycosylated extracellular glycoproteins playing important roles in plant growth and development. We have previously reported the possibility that AGPs are involved in the induction of alpha-amylase by gibberellin (GA) in barley aleurone layers by using the beta-glucosyl Yariv reagent (beta-GlcY), which has been presumed to specifically bind AGPs. In this present study, we isolated beta-GlcY-reactive proteins from rice bran rich in aleurone cells. The N-terminal sequences of classical AGP and AG peptides were determined from hydrophilic fractions obtained by reversed phase HPLC. Interestingly, a novel non-specific lipid transfer protein-like protein (OsLTPL1) and a novel early nodulin-like protein (OsENODL1) were also identified in the more hydrophobic fractions from HPLC as beta-GlcY-reactive proteins. Expression analysis of the genes coding for these proteins was performed. While classical AGP, AG peptides and OsLTPL1 were expressed in various parts of rice, OsENODL1 showed temporally and spatially specific expression in the aleurone layers. This new beta-GlcY-reactive protein is a promising candidate for the extracellular signaling factors of GA action in cereal seeds. Furthermore, the possibility that proteins with the AG glycomodule might react with beta-GlcY may broaden the definition of AGPs.  相似文献   

10.
We present evidence to show that the alpha-amylase gene family in rice is under two different modes of regulation: 1) hormonal regulation in germinating seeds, and 2) metabolic repression in cultured cells by available carbohydrate nutrients. Expression of alpha-amylase genes in deembryoed rice seeds is known to be induced by exogenous gibberellic acid. On the other hand, expression of alpha-amylase genes in suspension-cultured cells is induced by the deprivation of carbohydrate nutrient. A lag period of 2-4 h is required for the induction of alpha-amylase mRNA in sucrose-depleted medium. The induction of alpha-amylase expression is extraordinarily high and levels of alpha-amylase mRNA can be increased 8-20-folds after 24 h of sucrose starvation. The synthesis and secretion of alpha-amylase is also dependent upon the level of carbon source. The derepression or repression of alpha-amylase synthesis can be readily reversed by the deprivation or replenishment of sucrose in the medium, respectively. Glucose and fructose exert a repression on the alpha-amylase synthesis similar to that of sucrose. A hypothesis that explains the induction of alpha-amylase synthesis by carbohydrate starvation is proposed. Our data have suggested a hitherto undiscovered, potentially important control mechanism of carbohydrate metabolism in higher plants.  相似文献   

11.
12.
Plant alpha-amylase inhibitors show great potential as tools to engineer resistance of crop plants against pests. Their possible use is, however, complicated by the observed variations in specificity of enzyme inhibition, even within closely related families of inhibitors. Better understanding of this specificity depends on modelling studies based on ample structural and biochemical information. A new member of the alpha-amylase inhibitor family of cereal endosperm has been purified from rye using two ionic exchange chromatography steps. It has been characterised by mass spectrometry, inhibition assays and N-terminal protein sequencing. The results show that the inhibitor has a monomer molecular mass of 13,756 Da, is capable of dimerisation and is probably glycosylated. The inhibitor has high homology with the bifunctional alpha-amylase/trypsin inhibitors from barley and wheat, but much poorer homology with other known inhibitors from rye. Despite the homology with bifunctional inhibitors, this inhibitor does not show activity against mammalian or insect trypsin, although activity against porcine pancreatic, human salivary, Acanthoscelides obtectus and Zabrotes subfasciatus alpha-amylases was observed. The inhibitor is more effective against insect alpha-amylases than against mammalian enzymes. It is concluded that rye contains a homologue of the bifunctional alpha-amylase/trypsin inhibitor family without activity against trypsins. The necessity of exercising caution in assigning function based on sequence comparison is emphasised.  相似文献   

13.
Rice seed callus expressed and secreted alpha-amylase at high levels. Twenty percent of the protein secreted by the callus was alphaamylase. The callus secreted about 840 mug alpha-amylase with 10.9 x 10(3) units of activity per gram dry weight callus per day. The alpha-amylase from callus exhibited a more complex isoform pattern than the germinating seed alpha-amylase. In addition, the level of mRNA expression by the five alpha-amylase gene groups was markedly different between callus and the germinating seed. The rice callus culture has features which it attractive as a potential system for expression proteins in plant cell fermentation systems.  相似文献   

14.
Xu X  Fang J  Wang W  Guo J  Chen P  Cheng J  Shen Z 《Transgenic research》2008,17(4):645-650
An alpha-amylase gene from Bacillus stearothermophilus under the control of the promoter of a major rice-seed storage protein was introduced into rice. The transgenic line with the highest alpha-amylase activity reached about 15,000 U/g of seeds (one unit is defined as the amount of enzyme that produces 1 mumol of reducing sugar in 1 min at 70 degrees C). The enzyme produced in the seeds had an optimum pH of 5.0-5.5 and optimum temperature of 60-70 degrees C. Without extraction or purification, the power of transgenic rice seeds was able to liquify 100 times its weight of corn powder in 2 h. Thus, the transgenic rice could be used for industrial starch liquefaction.  相似文献   

15.
T Sato  S Tsunasawa  Y Nakamura  M Emi  F Sakiyama  K Matsubara 《Gene》1986,50(1-3):247-257
Recombinant plasmids were constructed in which the human salivary alpha-amylase gene, with or without the N-terminal signal sequence for secretion, was placed under control of the APase (PHO5) promoter of Saccharomyces cerevisiae. In yeast cells transformed with the alpha-amylase gene having the human signal sequence for secretion, the gene was expressed and the enzyme was secreted into the medium in three different glycosylated forms. The amylase gene without the signal sequence was also expressed in yeast, but the products were neither secreted nor glycosylated. Determination of the N-terminal amino acid (aa) sequence revealed that the 15-aa signal sequence had been cleaved from the secreted enzyme, and that the N-terminal residue, glutamine, had been modified into pyroglutamate, as is commonly observed with the mammalian salivary alpha-amylase. Thus, the human salivary alpha-amylase signal sequence for secretion was correctly recognized and processed by the yeast secretory pathway. The C-terminal residue was identified as leucine, which is predicted from the nucleotide sequence data to be located at position 511 in front of the termination codon. Therefore, there is no post-translational processing in formation of the C terminus.  相似文献   

16.
Plant alpha-amylase inhibitors are proteins found in several plants, and play a key role in natural defenses. In this study, a gene encoding an alpha-amylase inhibitor, named alphaAI-Pc1, was isolated from cotyledons of Phaseolus coccineus. This inhibitor has an enhanced primary structure to P. vulgaris alpha-amylase inhibitors (alpha-AI1 and alpha-AI2). The alphaAI-Pc1 gene, constructed with the PHA-L phytohemaglutinin promoter, was introduced into tobacco plants, with its expression in regenerated (T0) and progeny (T1) transformant plants monitored by PCR amplification, enzyme-linked immunosorbent assay (ELISA) and immunoblot analysis, respectively. Seed protein extracts from selected transformants reacted positively with a polyclonal antibody raised against alphaAI-1, while no reaction was observed with untransformed tobacco plants. Immunological assays showed that the alphaAI-Pc1 gene product represented up to 0.05% of total soluble proteins in T0 plants seeds. Furthermore, recombinant alphaAI-Pc1 expressed in tobacco plants was able to inhibit 65% of digestive H. hampei alpha-amylases. The data herein suggest that the protein encoded by the alphaAI-Pc1 gene has potential to be introduced into coffee plants in order to increase their resistance to the coffee berry borer.  相似文献   

17.
Rice is the most important staple food for more than half of the human population, and blast disease is the most serious disease affecting global rice production. In this work, the isoform OsCPK4 of the rice calcium‐dependent protein kinase family is reported as a regulator of rice immunity to blast fungal infection. It shows that overexpression of OsCPK4 gene in rice plants enhances resistance to blast disease by preventing fungal penetration. The constitutive accumulation of OsCPK4 protein prepares rice plants for a rapid and potentiated defence response, including the production of reactive oxygen species, callose deposition and defence gene expression. OsCPK4 overexpression leads also to constitutive increased content of the glycosylated salicylic acid hormone in leaves without compromising rice yield. Given that OsCPK4 overexpression was known to confer also salt and drought tolerance in rice, the results reported in this article demonstrate that OsCPK4 acts as a convergence component that positively modulates both biotic and abiotic signalling pathways. Altogether, our findings indicate that OsCPK4 is a potential molecular target to improve not only abiotic stress tolerance, but also blast disease resistance of rice crops.  相似文献   

18.
We isolated and identified 10 alpha-amylase isoforms by using beta-cyclodextrin Sepharose affinity column chromatography and two-dimensional polyacrylamide gel electrophoresis from germinating rice (Oryza sativa L.) seeds. Immunoblots with anti-alpha-amylase I-1 and II-4 antibodies indicated that 8 isoforms in 10 are distinguishable from alpha-amylase I-1 and II-4. Peptide mass fingerprinting analysis showed that there exist novel isoforms encoded by RAmy3B and RAmy3C genes. The optimum temperature for enzyme reaction of the RAmy3B and RAmy3C coding isoforms resembled that of alpha-amylase isoform II-4 (RAmy3D). Furthermore, complex protein polymorphism resulted from a single alpha-amylase gene was found to occur not only in RAmy3D, but also in RAmy3B.  相似文献   

19.
Suspension-cultured cells of rice secrete alpha-amylase into the culture medium. It has been shown that the mature form of the alpha-amylase contains xylose-bearing N-linked oligosaccharide: (formula; see text) We demonstrate that suspension-cultured cells of rice secrete alpha-amylase containing oligomannose-type oligosaccharides in the presence of 1-deoxymannojirimycin or tris(hydroxymethyl)aminomethane. On the other hand, alpha-amylase purified from germinated rice seedlings contains several kinds of oligomannose-type and N-acetyllactosamine-type oligosaccharides. The processing pathway of oligosaccharide moieties in rice cells is discussed on the basis of a comparison of these oligosaccharides structures.  相似文献   

20.
A simple mathematical model describing the cell cycle dependency of rice alpha-amylase production by a recombinant yeast was constructed to investigate the efficiency of cell cycle population control. First, the effects of the glucose concentration and cultivation temperature on the specific growth rate, the specific production rate of rice alpha-amylase, and the distribution of the cell cycle population were studied under balanced growth conditions. On the basis of the results, parameter values for the mathematical model were then estimated. The proposed model was shown to be applicable for unbalanced as well as balanced growth phases. The optimal control strategy in respect of temperature and glucose concentration for maximum rice alpha-amylase production, taking into account the cell cycle population, was determined and the result was compared with that obtained by a simple mathematical model in which cell cycle distribution was not considered. Finally, the effect of the initial population of each cell cycle phase on the final amount of the product under optimal operational conditions was investigated. The simulation and experimental data coincided well with each other, and the model was used to optimize the control strategy for maximum alpha-amylase production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号