首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PH75 strain of filamentous bacteriophage (Inovirus) grows in the thermophilic bacterium Thermus thermophilus at 70 degrees C. We have characterized the viral DNA and determined the amino acid sequence of the major coat protein, p8. The p8 protein is synthesized without a leader sequence, like that of bacteriophage Pf3 but unlike that of bacteriophage Pf1, both of which grow in the mesophile Pseudomonas aeruginosa. X-ray diffraction patterns from ordered fibres of the PH75 virion are similar to those from bacteriophages Pf1 and Pf3, indicating that the protein capsid of the PH75 virion has the same helix symmetry and subunit shape, even though the primary structures of the major coat proteins are quite different and the virions assemble at very different temperatures. We have used this information to build a molecular model of the PH75 protein capsid based on that of Pf1, and refined the model by simulated annealing, using fibre diffraction data extending to 2.4 A resolution in the meridional direction and to 3.1 A resolution in the equatorial direction. The common design may reflect a fundamental motif of alpha-helix packing, although differences exist in the DNA packaging and in the means of insertion of the major coat protein of these filamentous bacteriophages into the membrane of the host bacterial cell. These may reflect differences in the assembly mechanisms of the virions.  相似文献   

2.
The filamentous virus PH75, which infects the thermophile Thermus thermophilus, consists of a closed DNA strand of 6500 nucleotides encapsidated by 2700 copies of a 46-residue coat subunit (pVIII). The PH75 virion is similar in composition to filamentous viruses infecting mesophilic bacteria but is distinguished by in vivo assembly at 70 degrees C and thermostability to at least 90 degrees C. Structural details of the PH75 assembly are not known, although a fiber X-ray diffraction based model suggests that capsid subunits are highly alpha-helical and organized with the same symmetry (class II) as in the mesophilic filamentous phages Pf1 and Pf3 [Pederson et al. (2001) J. Mol. Biol. 309, 401-421]. This is distinct from the symmetry (class I) of phages fd and M13. We have employed polarized Raman microspectroscopy to obtain further details of PH75 architecture. The spectra are interpreted in combination with known Raman tensors for modes of the pVIII main chain (amide I) and Trp and Tyr side chains to reveal the following structural features of PH75: (i) The average pVIII peptide group is oriented with greater displacement from the virion axis than peptide groups of fd, Pf1, or Pf3. The data correspond to an average helix tilt angle of 25 degrees in PH75 vs 16 degrees in fd, Pf1, and Pf3. (ii) The indolyl ring of Trp 37 in PH75 projects nearly equatorially from the subunit alpha-helix axis, in contrast to the more axial orientations for Trp 26 of fd and Trp 38 of Pf3. (iii) The phenolic rings of Tyr 15 and Tyr 39 project along the subunit helix axis, and one phenoxyl engages in hydrogen-bonding interaction that has no counterpart in either fd or Pf1 tyrosines. Also, in contrast to fd, Pf1, and Pf3, the packaged DNA genome of PH75 exhibits no Raman anisotropy, suggesting that DNA bases are not oriented unidirectionally within the nucleocapsid assembly. The structural findings are discussed in relation to intrasubunit and intersubunit interactions that may confer hyperthermostability to the PH75 virion. A refined molecular model is proposed for the PH75 capsid subunit.  相似文献   

3.
We determined the sequence of the 152,372 bp genome of phiYS40, a lytic tailed bacteriophage of Thermus thermophilus. The genome contains 170 putative open reading frames and three tRNA genes. Functions for 25% of phiYS40 gene products were predicted on the basis of similarity to proteins of known function from diverse phages and bacteria. phiYS40 encodes a cluster of proteins involved in nucleotide salvage, such as flavin-dependent thymidylate synthase, thymidylate kinase, ribonucleotide reductase, and deoxycytidylate deaminase, and in DNA replication, such as DNA primase, helicase, type A DNA polymerase, and predicted terminal protein involved in initiation of DNA synthesis. The structural genes of phiYS40, most of which have no similarity to sequences in public databases, were identified by mass spectrometric analysis of purified virions. Various phiYS40 proteins have different phylogenetic neighbors, including myovirus, podovirus, and siphovirus gene products, bacterial genes and, in one case, a dUTPase from a eukaryotic virus. phiYS40 has apparently arisen through multiple acts of recombination between different phage genomes as well as through acquisition of bacterial genes.  相似文献   

4.
The structural characterization of glycolipids from Thermus thermophilus HB8 was performed in this study. Two neutral and one acidic glycolipids were extracted and purified by the modified TLC-blotting method, after which their chemical structures were determined by chemical composition analysis, mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. The structure of one of the neutral glycolipids, NGL-A, was Galp(α1-6)GlcpNacyl(β1-2)Glcp(α1-)acyl(2)Gro, and the other, NGL-C, was Galf(β1-2)Galp(α1-6)GlcpNacyl(β1-2)Glcp(α1-)acyl(2)Gro. The structure of NGL-C was identical to that reported previously [Oshima, M. and Ariga, T. (1976) FEBS Lett. 64, 440]. Both neutral glycolipids shared a common structural unit found in the Thermus species. The acyl groups found in NGL-A and NGL-C, iso-type pentadecanoxy and heptadecanoxy fatty acid, were also the same as those found in this species. In contrast, the acidic glycolipid, AGL-B, possessed the structure of N-(((GlcpNAc(α1-)acyl(2)Gro)P-2)GroA)alkylamine. The alkyl group in AGL-B was an iso-type heptadecanyl, suggesting that the iso-type structure of the long alkyl chain is responsible for the thermal stability of the bacteria.  相似文献   

5.
Purification and characterization of Thermus thermophilus UvrD   总被引:1,自引:0,他引:1  
The DNA helicase UvrD (helicase II) protein plays an important role in nucleotide excision repair, mismatch repair, rolling circular plasmid replication, and in DNA replication. A homologue of the Escherichia coli uvrD gene was previously identified in Thermus thermophilus; however, to date, a UvrD helicase has not been purified and characterized from a thermophile. Here we report the purification and characterization of a UvrD protein from Thermus thermophilus HB8. The purified UvrD has a temperature range from 10 degrees to >65 degrees C, with an optimum of 50 degrees C, within the temperature limits of the assay. The enzyme had a requirement for divalent metal ions and nucleoside triphosphates which related to enzyme activity in the order ATP > dATP > dGTP > GTP > CTP > dCTP > UTP. A simple real-time helicase assay was developed that should facilitate detailed kinetic studies of the enzyme. Evaluation of helicase substrates using this assay showed that the enzyme was highly active on a double-stranded DNA with 5' recessed ends in comparison with substrates with 3' recessed or blunt ends, and supports enzyme translocation in a 3'-5' direction relative to the strand bound by the enzyme.  相似文献   

6.
UV-resonance Raman spectroscopy is applied as a method for the identification of lactic acid bacteria from yogurt. Eight different strains of bacteria from Lactobacillus acidophilus, L. delbrueckii ssp. bulgaricus, and Streptococcus thermophilus were investigated. At an excitation wavelength of 244 nm signals from nucleic acids and proteins are selectively enhanced. Classification was accomplished using different chemometric methods. In a first attempt, the unsupervised methods hierarchical cluster analysis and principal component analysis were applied to investigate natural grouping in the data. In a second step the spectra were analyzed using several supervised methods: K-nearest neighbor classifier, nearest mean classifier, linear discriminant analysis, and support vector machines.  相似文献   

7.
The L11 ribosomal protein from Thermus thermophilus (TthL11) has been overproduced and purified to homogeneity using a two-step purification protocol. The overproduced protein carries a similar methylation pattern at Lys-3 as does its homolog from Escherichia coli. Chymotrypsin digested only a small part of the TthL11 protein and did not cleave TthL11 into two peptides, as in the case of EcoL11, but produced only a single N-terminal peptide. Tryptic digestion of TthL11 also produced an N-terminal peptide, in contrast to the C-terminal peptide obtained with L11 from Bacillus stearothermophilus. The recombinant protein forms a specific complex with a 55-nt 23S rRNA fragment known to interact with members of the L11 family from several organisms. Cooperative binding of TthL11 and thiostrepton to 23S rRNA leads to an increased protection of TthL11 from tryptic digestion. The similar structural and biochemical properties as well as the significant homology between L11 from E. coli and B. stearothermophilus with the corresponding protein from Thermus thermophilus indicate an evolutionarily conserved protein important for ribosome function.  相似文献   

8.
The flavoenzyme proline dehydrogenase catalyzes the first step of proline catabolism, the oxidation of proline to pyrroline-5-carboxylate. Here we report the first crystal structure of an irreversibly inactivated proline dehydrogenase. The 1.9 A resolution structure of Thermus thermophilus proline dehydrogenase inactivated by the mechanism-based inhibitor N-propargylglycine shows that N5 of the flavin cofactor is covalently connected to the -amino group of Lys99 via a three-carbon linkage, consistent with the mass spectral analysis of the inactivated enzyme. The isoalloxazine ring has a butterfly angle of 25 degrees , which suggests that the flavin cofactor is reduced. Two mechanisms can account for these observations. In both, N-propargylglycine is oxidized to N-propargyliminoglycine. In one mechanism, this alpha,beta-unsaturated iminium compound is attacked by the N5 atom of the now reduced flavin to produce a 1,4-addition product. Schiff base formation between Lys99 and the imine of the 1,4-addition product releases glycine and links the enzyme to the modified flavin. In the second mechanism, hydrolysis of N-propargyliminoglycine yields propynal and glycine. A 1,4-addition reaction with propynal coupled with Schiff base formation between Lys99 and the carbonyl group tethers the enzyme to the flavin via a three-carbon chain. The presumed nonenzymatic hydrolysis of N-propargyliminoglycine and the subsequent rebinding of propynal to the enzyme make the latter mechanism less likely.  相似文献   

9.
Filamentous phage use the two N‐terminal domains of their gene‐3‐proteins to initiate infection of Escherichia coli. One domain interacts with a pilus, and then the other domain binds to TolA at the cell surface. In phage fd, these two domains are tightly associated with each other, which renders the phage robust but non‐infectious, because the TolA binding site is inaccessible. Activation for infection requires partial unfolding, domain disassembly and prolyl isomerization. Phage IKe infects E. coli less efficiently than phage fd. Unlike in phage fd, the pilus‐ and TolA‐binding domains of phage IKe are independent of each other in stability and folding. The site for TolA binding is thus always accessible, but the affinity is very low. The structures of the two domains, analysed by X‐ray crystallography and by NMR spectroscopy, revealed a unique fold for the N‐pilus‐binding domain and a conserved fold for the TolA‐binding domain. The absence of an activation mechanism as in phage fd and the low affinity for TolA probably explain the low infectivity of phage IKe. They also explain why, in a previous co‐evolution experiment with a mixture of phage fd and phage IKe, all hybrid phage adopted the superior infection mechanism of phage fd.  相似文献   

10.
A bacteriophage (phiYS40) infectious to an extreme thermophile, Thermus thermophilus HB8, was isolated and characterized. phiYS40 grows over the temperature range of 56 to 78 C, and the optimum growth temperature is about 65 C. The phage had a latent period of 80 min and a burst size of about 80 at 65 C. The phage has a hexagonal head 0.125 mum in diameter, a tail 0.178 mum long and 0.027 mum wide, a base plate and tail fibers. The phage is thermostable in broth but rather unstable in a buffer containing 10 mM Tris, 10 mM MgCl2, pH 7.5. The addition of Casamino Acids (1 percent), polypeptone (0.8 percent), yeast extract (0.4 percent), NaCl (0.1 M) or spermidine (1 mM) to the buffer restores the thermostability of phiYS40 to the same degree as in broth. The phage is also thermostable in water of the hot spring from which this phage was isolated. The nucleic acid of PhiYS40 is a double-stranded DNA and has a molecular weight of 1.36 X 10-8. The guanine plus cytosine content of the DNA was determined to be about 35 percent from chemical determinations, buoyant density (1.693 g/cm-3 in CsCl), and melting temperature (83.5 C in 0.15 M NaCl plus 0.015 M sodium citrate).  相似文献   

11.
Enzymes serving as respiratory complex II belong to the succinate:quinone oxidoreductases superfamily that comprises succinate:quinone reductases (SQRs) and quinol:fumarate reductases. The SQR from the extreme thermophile Thermus thermophilus has been isolated, identified and purified to homogeneity. It consists of four polypeptides with apparent molecular masses of 64, 27, 14 and 15kDa, corresponding to SdhA (flavoprotein), SdhB (iron-sulfur protein), SdhC and SdhD (membrane anchor proteins), respectively. The existence of [2Fe-2S], [4Fe-4S] and [3Fe-4S] iron-sulfur clusters within the purified protein was confirmed by electron paramagnetic resonance spectroscopy which also revealed a previously unnoticed influence of the substrate on the signal corresponding to the [2Fe-2S] cluster. The enzyme contains two heme b cofactors of reduction midpoint potentials of -20mV and -160mV for b(H) and b(L), respectively. Circular dichroism and blue-native polyacrylamide gel electrophoresis revealed that the enzyme forms a trimer with a predominantly helical fold. The optimum temperature for succinate dehydrogenase activity is 70°C, which is in agreement with the optimum growth temperature of T. thermophilus. Inhibition studies confirmed sensitivity of the enzyme to the classical inhibitors of the active site, as there are sodium malonate, sodium diethyl oxaloacetate and 3-nitropropionic acid. Activity measurements in the presence of the semiquinone analog, nonyl-4-hydroxyquinoline-N-oxide (NQNO) showed that the membrane part of the enzyme is functionally connected to the active site. Steady-state kinetic measurements showed that the enzyme displays standard Michaelis-Menten kinetics at a low temperature (30°C) with a K(M) for succinate of 0.21mM but exhibits deviation from it at a higher temperature (70°C). This is the first example of complex II with such a kinetic behavior suggesting positive cooperativity with k' of 0.39mM and Hill coefficient of 2.105. While the crystal structures of several SQORs are already available, no crystal structure of type A SQOR has been elucidated to date. Here we present for the first time a detailed biophysical and biochemical study of type A SQOR-a significant step towards understanding its structure-function relationship.  相似文献   

12.
The soluble ferredoxin from Thermus thermophilus was examined by M?ssbauer and EPR spectroscopies and by reductive titrations. These studies demonstrate the presence of one 3Fe center, responsible for the characteristic g = 2.02 EPR signal in the oxidized protein, and one [4Fe-4S] center which is responsible for the rhombic EPR spectrum of the fully reduced protein. These assignments should replace those made by Ohnishi et al. (Ohnishi, T., Blum, H., Sato, S., Nakazawa, K., Hon-nami, K., and Oshima, T. (1980) J. Biol. Chem. 255, 345-348) prior to the discovery of the 3Fe clusters. The amino acid composition was determined and is discussed with reference to recent structural studies of 7Fe ferredoxins.  相似文献   

13.
Prokaryotic chromosomes and plasmids encode partitioning systems that are required for DNA segregation at cell division. The plasmid partitioning loci encode two proteins, ParA and ParB, and a cis-acting centromere-like site denoted parS. The chromosomally encoded homologues of ParA and ParB, Soj and Spo0J, play an active role in chromosome segregation during bacterial cell division and sporulation. Spo0J is a DNA-binding protein that binds to parS sites in vivo. We have solved the X-ray crystal structure of a C-terminally truncated Spo0J (amino acids 1-222) from Thermus thermophilus to 2.3 A resolution by multiwavelength anomalous dispersion. It is a DNA-binding protein with structural similarity to the helix-turn-helix (HTH) motif of the lambda repressor DNA-binding domain. The crystal structure is an antiparallel dimer with the recognition alpha-helices of the HTH motifs of each monomer separated by a distance of 34 A corresponding to the length of the helical repeat of B-DNA. Sedimentation velocity and equilibrium ultracentrifugation studies show that full-length Spo0J exists in a monomer-dimer equilibrium in solution and that Spo0J1-222 is exclusively monomeric. Sedimentation of the C-terminal domain of Spo0J shows it to be exclusively dimeric, confirming that the C-terminus is the primary dimerization domain. We hypothesize that the C-terminus mediates dimerization of Spo0J, thereby effectively increasing the local concentration of the N-termini, which most probably dimerize, as shown by our structure, upon binding to a cognate parS site.  相似文献   

14.
Free reduced flavins are involved in a variety of biological functions. They are generated from NAD(P)H by flavin reductase via co-factor flavin bound to the enzyme. Although recent findings on the structure and function of flavin reductase provide new information about co-factor FAD and substrate NAD, there have been no reports on the substrate flavin binding site. Here we report the structure of TTHA0420 from Thermus thermophilus HB8, which belongs to flavin reductase, and describe the dual binding mode of the substrate and co-factor flavins. We also report that TTHA0420 has not only the flavin reductase motif GDH but also a specific motif YGG in C terminus as well as Phe-41 and Arg-11, which are conserved in its subclass. From the structure, these motifs are important for the substrate flavin binding. On the contrary, the C terminus is stacked on the NADH binding site, apparently to block NADH binding to the active site. To identify the function of the C-terminal region, we designed and expressed a mutant TTHA0420 enzyme in which the C-terminal five residues were deleted (TTHA0420-ΔC5). Notably, the activity of TTHA0420-ΔC5 was about 10 times higher than that of the wild-type enzyme at 20-40 °C. Our findings suggest that the C-terminal region of TTHA0420 may regulate the alternative binding of NADH and substrate flavin to the enzyme.  相似文献   

15.
16.
The RecA protein plays a central role in homologous recombination by promoting strand exchange between ssDNA and homologous dsDNA. Since RecA alone can advance this reaction in vitro, it is widely used in gene manipulation techniques. The RecX protein downregulates the function of RecA, indicating that it could be used as an inhibitor to control the activities of RecA in vitro. In this study, the RecX protein of the hyper-thermophilic bacterium Thermus thermophilus (ttRecX) was over-expressed in Escherichia coli and purified by heat treatment and several column chromatography steps. Size-exclusion chromatography indicated that purified ttRecX exists as a monomer in solution. Circular dichroism measurements indicated that the alpha-helical content of ttRecX is 54% and that it is stable up to 80 degrees C at neutral pH. In addition, ttRecX inhibited the DNA-dependent ATPase activity of the T. thermophilus RecA protein (ttRecA). The stable ttRecX may be applicable for variety of techniques using the ttRecA reaction.  相似文献   

17.
We examined a single, non-spore-forming, aerobic, thermophilic strain that was isolated from a deep-sea hydrothermal vent in the Guaymas Basin at a depth of 2000 m and initially placed in a phenetic group with Thermus scotoductus (X-1). We identified this deep-sea isolate as a new strain belonging to Thermus thermophilus using several parameters. DNA–DNA hybridization under stringent conditions showed 74% similarity between the deep-sea isolate and T. thermophilus HB-8T (T = type strain). Phenotypic characteristics, such as the utilization of carbon sources, hydrolysis of different compounds, and antibiotic sensitivity were identical in the two strains. The polar lipids composition showed that strain Gy1211 belonged to the genus Thermus. The fatty acids composition indicated that this strain was related to the marine T. thermophilus strain isolated from the Azores. The new isolate T. thermophilus strain Gy1211 grew optimally at 75°C, pH 8.0, and 2% NaCl. A hydrostatic pressure of 20 MPa, similar to the in situ hydrostatic pressure of the deep-sea vent from which the strain was isolated, had no effect on growth. Strain HB-8T, however, showed slower growth under these conditions. Received: November 26, 1997 / Accepted: May 20, 1999  相似文献   

18.
Cell-free extracts of Thermus thermophilus HB8 catalyze the in vitro, NADH-dependent reduction of potassium tellurite (K2TeO3). Three different protein fractions with tellurite-reducing activities were identified. Two exhibited high molecular weight and were composed of at least two different polypeptides. The protein in the third fraction was purified to homogeneity and had a single polypeptide chain of 53 to 54 kilodaltons, with an isoelectric point of 8.1. Each enzyme was thermostable, the temperature optimum was 75 degrees C, and 30 mM NaCl, 1.5 M urea, or 0.004% sodium dodecyl sulfate caused 50% inhibition of the enzymes. However, 2% Triton X-100 did not have an inhibitory effect. The enzymes were also able to catalyze the reduction of sodium selenite and sodium sulfite in vitro. NADH was replaceable by NADPH. Divalent cations, such as Ca2+ and Ba2+, had no effect on the activity, while similar concentrations of Zn2+, Ni2+, and Cu2+ abolished the activity. This reductase activity could enable these bacteria both to reduce K2TeO3 and to increase their tolerance toward this salt.  相似文献   

19.
20.
This is the first detailed report of xylanolytic activity in Thermus strains. Two highly thermophilic xylanolytic bacteria, very closely related to non-xylanolytic T. thermophilus strains, have been isolated from the hottest zones of compost piles. Strain X6 was investigated in more detail. The growth rate (optical density monitoring) on xylan was 0.404.h-1 at 75 degrees C. Maximal growth temperature was 81 degrees C. Xylanase activity was mainly cell-bound, but was solubilized into the medium by sonication. It was induced by xylan or xylose in the culture medium. The temperature and pH optima of the xylanases were determined to be around 100 degrees C and pH 6, respectively. Xylanase activity was fairly thermostable; only 39% of activity was lost after an incubation period of 48 h at 90 degrees C in the absence of substrate. Xylanolytic T. thermophilus strains could contribute to the degradation of hemicellulose during the thermogenic phase of industrial composting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号