首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The lincomycin-production gene cluster of the industrial overproduction strain Streptomyces lincolnensis 78-11 has been sequenced (Peschke et al. 1995) and twenty-seven putative open reading frames with biosynthetic or regulatory functions (lmb genes) identified. Two distinct hypothetical genes, lmbI and lmbH, were found downstream of the lmbJ gene, coding for LmbJ protein, which is believed to participate in the last lincomycin biosynthetic step, i.e. conversion of N-demethyllincomycin (NDL) to lincomycin. In the present study, we demonstrate the presence of a single larger open reading frame, called lmbIH, in the lincomycin low-production type strain Streptomyces lincolnensis ATCC 25466, instead of two smaller lmbI and lmbH genes. The product, LmbIH, is a protein of an unknown function and is homologous with the TldD protein family. Escherichia coli TldD protein was previously shown to be involved in the control of DNA gyrase by LetD protein. Moreover, our experiments indicate co-regulation of lmbJ and lmbIH expression. This translation coupling probably reflects an eight nucleotide overlap between the lmbJ and lmbIH genes, as well as the lack of a Shine-Dalgarno sequence upstream of the lmbIH gene.  相似文献   

2.
Lincomycin is a lincosamide antibiotic produced by Streptomyces lincolnensis. Through mutagenesis by ethylmethansulfonate (EMS) and ultraviolet (UV) irradiation repeatedly, M2 was picked out in plate with glutamine and propylproline orderly. In 50-L stirred bioreactor, the production of lincomycin, fermented by M2, was increased to 8136?u/ml under the optimal condition as compared to original strain S. lincolnensis 07–5 (6634?u/ml). Two-dimensional gel electrophoresis (2-D GE) and mass spectrometry (MS)-shown LmbG, LmbI, and acetohydroxy acid isomeroreductase were remarkably synthesized in M2. The gene lmbG and lmbI are responsible for methylation in the lincomycin biosynthetic cluster, while acetohydroxy acid isomeroreductase contributes to stronger metabolic capability. Finally, we obtained a better strain for industrial production.  相似文献   

3.
Abstract

As a lincosamide antibiotic, lincomycin is still important for treating diseases caused by Gram-positive bacteria. Manufacturing of lincomycin needs efforts to, e.g. maximize desirable species and minimizing unwanted fermentation byproducts. Analysis of the lincomycin biosynthetic gene cluster of Streptomyces lincolnensis, lmbB1, was shown to catalyze the conversion of L-dopa but not of L-tyrosine and then further generated the precursor of lincomycin A. Based on the principle of directed breeding, a strain termed as S. lincolnensis 24-2, was obtained in this work. By overexpressing the lmbB1 gene, this strain produces efficacious lincomycin A and suppresses melanin generation, whereas contains unwanted lincomycin B. The good fermentation performance of the mutant-lmbB1 (M-lmbB1) was also confirmed in a 15?L-scale bioreactor, which increased the lincomycin A production by 37.6% compared with control of 6435?u/mL and reduced the accumulation of melanin by 29.9% and lincomycin B by 73.4%. This work demonstrated that the amplification of lmbB1 gene mutation and metabolic engineering could promote lincomycin biosynthesis and might be helpful for reducing the production of other industrially unnecessary byproduct.  相似文献   

4.
In the biosynthesis of lincosamide antibiotics lincomycin and celesticetin, the amino acid and amino sugar units are linked by an amide bond. The respective condensing enzyme lincosamide synthetase (LS) is expected to be an unusual system combining nonribosomal peptide synthetase (NRPS) components with so far unknown amino sugar related activities. The biosynthetic gene cluster of celesticetin was sequenced and compared to the lincomycin one revealing putative LS coding ORFs shared in both clusters. Based on a bioassay and production profiles of S. lincolnensis strains with individually deleted putative LS coding genes, the proteins LmbC, D, E, F and V were assigned to LS function. Moreover, the newly recognized N-terminal domain of LmbN (LmbN-CP) was also assigned to LS as a NRPS carrier protein (CP). Surprisingly, the homologous CP coding sequence in celesticetin cluster is part of ccbZ gene adjacent to ccbN, the counterpart of lmbN, suggesting the gene rearrangement, evident also from still active internal translation start in lmbN, and indicating the direction of lincosamide biosynthesis evolution. The in vitro test with LmbN-CP, LmbC and the newly identified S. lincolnensis phosphopantetheinyl transferase Slp, confirmed the cooperation of the previously characterized NRPS A-domain LmbC with a holo-LmbN-CP in activation of a 4-propyl-L-proline precursor of lincomycin. This result completed the functional characterization of LS subunits resembling NRPS initiation module. Two of the four remaining putative LS subunits, LmbE/CcbE and LmbV/CcbV, exhibit low but significant homology to enzymes from the metabolism of mycothiol, the NRPS-independent system processing the amino sugar and amino acid units. The functions of particular LS subunits as well as cooperation of both NRPS-based and NRPS-independent LS blocks are discussed. The described condensing enzyme represents a unique hybrid system with overall composition quite dissimilar to any other known enzyme system.  相似文献   

5.
A cosmid bearing an insert of 38 217 bp covering the gene cluster and its flanking regions of type strain Streptomyces lincolnensis ATCC 25466 was sequenced. Two relatively extensive sequence changes and several hundred point mutations were identified if compared with the previously published sequence of the lincomycin (Lin) industrial strain S. lincolnensis 78-11. Analysis of the cluster-flanking regions revealed its localization within the genome of the ATCC 25466 strain. The cluster-bearing cosmid was integrated into the chromosome of Lin non-producing strains S. coelicolor CH 999 and S. coelicolor M 145. The modified strains heterologously produced Lin but the level dropped to ≈1–3 % of the production in the ATCC 25466 strain.  相似文献   

6.
【目的】本研究旨在通过将琼脂糖包埋染色体DNA的方法与ExoCET重组技术相结合,建立放线菌天然产物生物合成基因簇的捕获方法。然后将克隆基因簇导入通用底盘宿主中,实现目标生物合成基因簇的异源表达。【方法】首先,利用低熔点琼脂糖包埋技术制备菌株的染色体基因组总DNA,再用限制性内切酶消化含有染色体DNA的琼脂块,获得线性化的DNA样品;然后利用ExoCET重组技术,以p15A线性载体片段将目标基因簇线性片段进行捕获;再通过PCR-targeting的方法向目标质粒中引入所需的接合转移DNA元件。接着,将改造质粒通过接合转移导入到Streptomyces coelicolor M1252宿主中,获得不同的重组菌株。最后,对不同的菌株进行发酵并提取化合物,最后进行活性检测以及质谱检测。【结果】通过该方法,从菌株S.lincolnensisNRR2936中成功获得了林可霉素生物合成基因簇(lmb-BGC),从菌株Nonomuraea nitratireducens WYY166T中克隆得到了2个核糖体肽类化合物的生物合成基因簇(nioblantin,niob-BGC和nitblantin,nitb-BGC),并实现了lmb-BGC在天蓝色链霉菌M1252中的成功表达。【结论】本研究通过将低熔点琼脂糖包埋技术与ExoCET重组技术进行合理整合,定向克隆得到了林可霉素以及2个新颖的羊毛硫肽类化合物的生物合成基因簇。然后,分别对重组质粒改造后,在天蓝色链霉菌M1252宿主中进行表达,分别获得重组菌株MJX01、MJX02和MJX04。最后,利用质谱以及活性测试的手段对发酵提取物进行了检测,确定了林可霉素生物合成基因簇在天蓝色链霉菌M1252中成功表达。本研究为通过基因簇克隆和异源表达发掘新化合物奠定了基础。  相似文献   

7.
The gene lmbB2 of the lincomycin biosynthetic gene cluster of Streptomyces lincolnensis ATCC 25466 was shown to code for an unusual tyrosine hydroxylating enzyme involved in the biosynthetic pathway of this clinically important antibiotic. LmbB2 was expressed in Escherichia coli, purified near to homogeneity and shown to convert tyrosine to 3,4-dihydroxyphenylalanine (DOPA). In contrast to the well-known tyrosine hydroxylases (EC 1.14.16.2) and tyrosinases (EC 1.14.18.1), LmbB2 was identified as a heme protein. Mass spectrometry and Soret band-excited Raman spectroscopy of LmbB2 showed that LmbB2 contains heme b as prosthetic group. The CO-reduced differential absorption spectra of LmbB2 showed that the coordination of Fe was different from that of cytochrome P450 enzymes. LmbB2 exhibits sequence similarity to Orf13 of the anthramycin biosynthetic gene cluster, which has recently been classified as a heme peroxidase. Tyrosine hydroxylating activity of LmbB2 yielding DOPA in the presence of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) was also observed. Reaction mechanism of this unique heme peroxidases family is discussed. Also, tyrosine hydroxylation was confirmed as the first step of the amino acid branch of the lincomycin biosynthesis.  相似文献   

8.
林可霉素生物合成的研究进展   总被引:2,自引:1,他引:1  
刘瑞华 《微生物学通报》2018,45(5):1138-1145
林可霉素是林可链霉菌(Streptomyces lincolnensis)产生的林可酰胺类抗生素,它抑制细菌细胞的蛋白质合成,临床上主要用于治疗革兰氏阳性菌引起的感染性疾病。林可霉素生物合成基因簇已被克隆和测序。近年来,围绕林可酰胺和丙基脯氨酸的生物合成、调控等进行了深入研究,其硫化反应取得了突破性成果,本文综述了林可霉素生物合成的新进展。  相似文献   

9.
10.
An increase in compactin (ML-236B) production was achieved by introducing a whole compactin biosynthetic gene cluster or the regulatory gene mlcR into compactin high-producing Penicillium citrinum. In the previous report, we introduced mlcR encoding the positive regulator of compactin biosynthetic genes into compactin high-producing strain no. 41520, and most of the transformants produced higher amounts of compactin. Here, we characterize one of the resulting high producers (strain TIR-35, which produced 50% more compactin) and reveal that TIR-35 contained five copies of mlcR and that early, enhanced expression of mlcR caused compactin overproduction. Similarly, the introduction of mlcR into strain T48.19, which was created previously from strain no. 41520 by introducing a partial compactin biosynthetic gene cluster, enhanced compactin production further. Our results indicated that genetic engineering is an effective tool to improve compactin production, even in compactin high producers.  相似文献   

11.
Aims: In this study, we explored the possibility of construction of a ‘universal targeting vector’ by Red/ET recombination to inactivate L gene encoding 3‐amino‐5‐hydroxybenzoic acid (AHBA)‐oxidoreductase in AHBA biosynthetic gene cluster to facilitate the detection of ansamycins production in actinomycetes. Methods and Results: Based on the conserved regions of linked AHBA synthase (K), oxidoreductase (L) and phosphatase (M) gene clusters, degenerate primers were designed and PCR was performed to detect KLM gene clusters within 33 AHBA synthase gene‐positive actinomycetes strains. Among them, 22 KLM gene cluster‐positive strains were identified. A ‘universal targeting vector’ was further constructed using the 50‐nt homologous sequences chosen from four strains internal L gene in KLM gene clusters through Red/ET recombination. The L gene from nine of the KLM gene cluster‐positive actinomycetes strains was inactivated by insertion of a kanamycin (Km) resistance marker into its internal region from the ‘universal targeting vector’. By comparison of the metabolites produced in parent strains with those in L gene‐inactivated mutants, we demonstrated the possible ansamycins production produced by these strains. One strain (4089) was proved to be a geldanamycin producer. Three strains (3‐20, 7‐32 and 8‐32) were identified as potential triene‐ansamycins producers. Another strain (3‐27) was possible to be a streptovaricin C producer. Strains 24‐100 and 4‐124 might be served as ansamitocin‐like producers. Conclusions: The results confirmed the feasibility that a ‘universal targeting vector’ could be constructed through Red/ET recombination using the conserved regions of KLM gene clusters to detect ansamycins production in actinomycetes. Significance and Impact of the Study: The ‘universal targeting vector’ provides a rapid approach in certain degree to detect the potential ansamycin producers from the 22 KLM gene cluster‐positive actinomycetes strains.  相似文献   

12.
Streptomyces spp. are robust producers of medicinally-, industrially- and agriculturally-important small molecules. Increased resistance to antibacterial agents and the lack of new antibiotics in the pipeline have led to a renaissance in natural product discovery. This endeavor has benefited from inexpensive high quality DNA sequencing technology, which has generated more than 140 genome sequences for taxonomic type strains and environmental Streptomyces spp. isolates. Many of the sequenced streptomycetes belong to the same species. For instance, Streptomyces albus has been isolated from diverse environmental niches and seven strains have been sequenced, consequently this species has been sequenced more than any other streptomycete, allowing valuable analyses of strain-level diversity in secondary metabolism. Bioinformatics analyses identified a total of 48 unique biosynthetic gene clusters harboured by Streptomyces albus strains. Eighteen of these gene clusters specify the core secondary metabolome of the species. Fourteen of the gene clusters are contained by one or more strain and are considered auxiliary, while 16 of the gene clusters encode the production of putative strain-specific secondary metabolites. Analysis of Streptomyces albus strains suggests that each strain of a Streptomyces species likely harbours at least one strain-specific biosynthetic gene cluster. Importantly, this implies that deep sequencing of a species will not exhaust gene cluster diversity and will continue to yield novelty.  相似文献   

13.
林可霉素(lincomycin)是由林可链霉菌(Streptomyces lincolnensis)产生的酰胺类抗生素,在临床上主要用于治疗革兰氏阳性菌引起的感染。鉴于其具有高药用价值和经济价值,林可霉素生物合成和分子调控备受关注,并取得了较好的研究进展。本文综述了林可霉素的特征结构和生物合成,并重点介绍了林可链霉菌中林可霉素的分子调控机制等方面的研究进展,有利于深入认识林可链霉菌次级代谢调控网络,为在林可霉素高产菌中改造调控因子或其靶点元件提高产量提供理论指导。  相似文献   

14.
15.
The first insight into celesticetin biosynthetic gene cluster of S. caelestis is presented. The genomic DNA of producing strain was digested, digoxigenin-labeled and hybridized with a set of probes designed according to S. lincolnensis gene sequences. Genes with high homology to the lincomycin biosynthetic genes coding for the predicted common parts of the pathway were identified in S. caelestis. Then, genomic DNA of S. caelestis treated by a multiple digestion was hybridized with five digoxigenin-labeled probes to construct a rough restriction map. Two consecutive islands formed by the genes with a putative function in biosynthesis of the shared saccharide moiety revealed an organization similar to the lincomycin biosynthetic gene cluster. The celesticetin cluster was mapped and essential information was obtained for subsequent steps, i.e. isolation and sequence analysis of the cluster.  相似文献   

16.
He W  Wu L  Gao Q  Du Y  Wang Y 《Current microbiology》2006,52(3):197-203
To clone and study the geldanamycin biosynthetic gene cluster in Streptomyces hygroscopicus 17997, we designed degenerate primers based on the conserved sequence of the ansamycin 3-amino-5-hydroxybenzoic acid (AHBA) synthase gene. A 755-bp polymerase chain reaction product was obtained from S. hygroscopicus 17997 genomic DNA, which showed high similarity to ansamycin AHBA synthase genes. Through screening the cosmid library of S. hygroscopicus 17997, two loci of separated AHBA biosynthetic gene clusters were discovered. Comparisons of sequence homology and gene organization indicated that the two AHBA biosynthetic gene clusters could be divided into a benzenic and a naphthalenic subgroup. Gene disruption demonstrated that the benzenic AHBA gene cluster is involved in the biosynthesis of geldanamycin. However, the naphthalenic AHBA genes in the genome of Streptomyces hygroscopicus 17997 could not complement the deficiency of the benzenic AHBA genes. This is the first report on the AHBA biosynthetic gene cluster in a geldanamycin-producing strain. W. He and L. Wu contributed equally to this work.  相似文献   

17.
18.
The paulomycins are a group of glycosylated compounds featuring a unique paulic acid moiety. To locate their biosynthetic gene clusters, the genomes of two paulomycin producers, Streptomyces paulus NRRL 8115 and Streptomyces sp. YN86, were sequenced. The paulomycin biosynthetic gene clusters were defined by comparative analyses of the two genomes together with the genome of the third paulomycin producer Streptomyces albus J1074. Subsequently, the identity of the paulomycin biosynthetic gene cluster was confirmed by inactivation of two genes involved in biosynthesis of the paulomycose branched chain (pau11) and the ring A moiety (pau18) in Streptomyces paulus NRRL 8115. After determining the gene cluster boundaries, a convergent biosynthetic model was proposed for paulomycin based on the deduced functions of the pau genes. Finally, a paulomycin high-producing strain was constructed by expressing an activator-encoding gene (pau13) in S. paulus, setting the stage for future investigations.  相似文献   

19.
【目的】嗜热链球菌IMAU20246是一株具有良好发酵特性且高产胞外多糖(exopolysaccharides,EPS)的菌株,但其EPS基因簇及合成途径尚不清晰。因此可通过全基因组测序及生物信息学分析菌株基因组序列,探究EPS合成及调控机制。【方法】本实验对嗜热链球菌IMAU20246进行全基因组测序并进行生物信息学分析,解析EPS生物合成相关基因簇及EPS合成途径,同时采用实时荧光定量PCR技术(quantitative real-time PCR,qRT-PCR)对其不同时间点EPS基因簇的表达进行定量分析。【结果】嗜热链球菌IMAU20246基因组中有一个18.1 kb的EPS生物合成基因簇,编码15个与EPS生物合成相关的基因。嗜热链球菌IMAU20246通过转运葡萄糖、甘露糖、果糖、半乳糖、乳糖、海藻糖、纤维二糖及蔗糖合成UDP-葡萄糖、dTDP-葡萄糖、dTDP-鼠李糖、UDP-半乳糖、UDP-呋喃半乳糖、UDP-N-乙酰葡萄糖胺和UDP-N-乙酰半乳糖胺等7种糖核苷酸。qRT-PCR的结果表明,EPS基因簇中的基因在细胞生长阶段均能表达,特别是糖基转移酶基因epsE、epsF、epsH和epsJ在培养6 h时表达量最高,此时EPS产量达到最高。【结论】本研究从基因组解析了嗜热链球菌IMAU20246 EPS基因簇及其合成途径,为菌株的进一步开发提供了理论依据。  相似文献   

20.
Aims: The aims of this study are to obtain the draft genome sequence of Streptomyces coelicoflavus ZG0656, which produces novel acarviostatin family α‐amylase inhibitors, and then to reveal the putative acarviostatin‐related gene cluster and the biosynthetic pathway. Methods and Results: The draft genome sequence of S. coelicoflavus ZG0656 was generated using a shotgun approach employing a combination of 454 and Solexa sequencing technologies. Genome analysis revealed a putative gene cluster for acarviostatin biosynthesis, termed sct‐cluster. The cluster contains 13 acarviostatin synthetic genes, six transporter genes, four starch degrading or transglycosylation enzyme genes and two regulator genes. On the basis of bioinformatic analysis, we proposed a putative biosynthetic pathway of acarviostatins. The intracellular steps produce a structural core, acarviostatin I00‐7‐P, and the extracellular assemblies lead to diverse acarviostatin end products. Conclusions: The draft genome sequence of S. coelicoflavus ZG0656 revealed the putative biosynthetic gene cluster of acarviostatins and a putative pathway of acarviostatin production. Significance and Impact of the Study: To our knowledge, S. coelicoflavus ZG0656 is the first strain in this species for which a genome sequence has been reported. The analysis of sct‐cluster provided important insights into the biosynthesis of acarviostatins. This work will be a platform for producing novel variants and yield improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号