首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Identification of the molecular machinery employed in cancer invasion, but not in normal adult cells, will greatly contribute to cancer therapeutics. Here we found that an ArfGAP, AMAP1/PAG2, is expressed at high levels in highly invasive breast cancer cells, but at very low levels in noninvasive breast cancer cells and normal mammary epithelial cells. siRNA-mediated silencing of AMAP1 effectively blocked the invasive activities. AMAP1 expression in human breast primary tumors also indicated its potential correlation with malignancy. Paxillin and cortactin have been shown to colocalize at invadopodia and play a pivotal role in breast cancer invasion. We found that AMAP1 is also localized at invadopodia, and acts to bridge paxillin and cortactin. This AMAP1-mediated trimeric protein complex was detected only in invasive cancer cells, and blocking this complex formation effectively inhibited their invasive activities in vitro and metastasis in mice. Our results indicate that AMAP1 is a component involved in invasive activities of different breast cancers, and provide new information regarding the possible therapeutic targets for prevention of breast cancer invasion and metastasis.  相似文献   

2.
The lysyl oxidase gene inhibits Ras signaling in transformed fibroblasts and breast cancer cells. Its activity was mapped to the 162 amino acid propeptide domain (LOX-PP) of the lysyl oxidase precursor protein. LOX-PP inhibited the Her-2/Ras signaling axis in breast cancer cells, and reduced the Her-2-driven breast tumor burden in a xenograft model. Since its mechanism of action is largely unknown, co-affinity-purification/mass spectrometry was performed and the “Cbl-interacting protein of 85-kDa” (CIN85) identified as an associating protein. CIN85 is an SH3-containing adapter protein that is overexpressed in invasive breast cancers. The CIN85 SH3 domains interact with c-Cbl, an E3 ubiquitin ligase, via an unconventional PxxxPR ligand sequence, with the highest affinity displayed by the SH3-B domain. Interaction with CIN85 recruits c-Cbl to the AMAP1 complex where its ubiquitination activity is necessary for cancer cells to develop an invasive phenotype and to degrade the matrix. Direct interaction of LOX-PP with CIN85 was confirmed using co-immunoprecipitation analysis of lysates from breast cancer cells and of purified expressed proteins. CIN85 interaction with c-Cbl was reduced by LOX-PP. Domain specific CIN85 regions and deletion mutants of LOX-PP were prepared and used to map the sites of interaction to the SH3-B domain of CIN85 and to an epitope encompassing amino acids 111 to 116 of LOX-PP. Specific LOX-PP point mutant proteins P111A and R116A failed to interact with CIN85 or to compete for CIN85 binding with c-Cbl. Structural modeling identified a new atypical PxpxxRh SH3-binding motif in this region of LOX-PP. The LOX-PP interaction with CIN85 was shown to reduce the invasive phenotype of breast cancer cells, including their ability to degrade the surrounding extracellular matrix and for Matrigel outgrowth. Thus, LOX-PP interacts with CIN85 via a novel SH3-binding motif and this association reduces CIN85-promoted invasion by breast cancer cells.  相似文献   

3.
The Cbl family of ubiquitin ligases in mammals contains three members, Cbl, Cbl-b, and Cbl-3, that are involved in down-regulation of receptor tyrosine kinases (RTKs) by mediating receptor ubiquitination and degradation. More recently, a novel pathway has been identified whereby Cbl promotes internalization of EGF receptor via a CIN85/endophilin pathway that is functionally separable from the ubiquitin ligase activity of Cbl (1). Here we show that Cbl-b, but not Cbl-3, utilize the same mechanism to down-regulate multiple RTKs. CIN85 was shown to bind to the minimal binding domain identified in the carboxyl terminus of Cbl-b. Ligand-induced phosphorylation of Cbl-b further increased their interactions and led to a rapid and sustained recruitment of CIN85 in the complex with EGF or PDGF receptors. Inhibition of binding between CIN85 and Cbl-b was sufficient to impair Cbl-b-mediated internalization of EGF receptors, while being dispensable for Cbl-b-directed polyubiquitination of EGF receptors. Moreover, CIN85 and Cbl/Cbl-b were constitutively associated with activated PDGF, EGF, or c-Kit receptors in several tumor cell lines. Our data reveal a common pathway utilized by Cbl and Cbl-b that may have an important and redundant function in negative regulation of ligand-activated as well as oncogenically activated RTKs in vivo.  相似文献   

4.
Invasive cancer cells form dynamic adhesive structures associated with matrix degradation called invadopodia. Calpain 2 is a calcium-dependent intracellular protease that regulates adhesion turnover and disassembly through the targeting of specific substrates such as talin. Here, we describe a novel function for calpain 2 in the formation of invadopodia and in the invasive abilities of breast cancer cells through the modulation of endogenous c-Src activity. Calpain-deficient breast cancer cells show impaired invadopodia formation that is rescued by expression of a truncated fragment of protein tyrosine phosphatase 1B (PTP1B) corresponding to the calpain proteolytic fragment, which indicates that calpain modulates invadopodia through PTP1B. Moreover, PTP1B activity is required for efficient invadopodia formation and breast cancer invasion, which suggests that PTP1B may modulate breast cancer progression through its effects on invadopodia. Collectively, our experiments implicate a novel signaling pathway involving calpain 2, PTP1B, and Src in the regulation of invadopodia and breast cancer invasion.  相似文献   

5.
CIN85 is a multidomain adaptor protein implicated in Cbl-mediated down-regulation of receptor tyrosine kinases. CIN85 binding to Cbl is increased after growth factor stimulation and is critical for targeting receptor tyrosine kinases to clathrin-mediated endocytosis. Here we report the identification of a novel polyproline-arginine motif (PXXXPR), specifically recognized by the SH3 domains of CIN85 and its homologue CMS/CD2AP. This motif was indispensable for CIN85 binding to Cbl/Cbl-b, to other CIN85 SH3 domains' effectors, and for mediating an intramolecular interaction between the SH3-A domain and the proline-rich region of CIN85. Individual SH3 domains of CIN85 bound to PXXXPR peptides of Cbl/Cbl-b with micromolar affinities, whereas an extended structure of two or three SH3 domains bound with higher stoichiometry and increased affinity to the same peptides. This enabled full size CIN85 to simultaneously interact with multiple Cbl molecules, promoting their clustering in mammalian cells. The ability of CIN85 to cluster Cbl was important for ligand-induced stabilization of CIN85.Cbl.epidermal growth factor receptor complexes, as well as for epidermal growth factor receptor degradation in the lysosome. Thus, specific interactions of CIN85 SH3 domains with the PXXXPR motif in Cbl play multiple roles in down-regulation of receptor tyrosine kinases.  相似文献   

6.
7.
Focal adhesion kinase (FAK) is important for breast cancer progression and invasion and is necessary for the dynamic turnover of focal adhesions. However, it has not been determined whether FAK also regulates the dynamics of invasive adhesions formed in cancer cells known as invadopodia. In this study, we report that endogenous FAK functions upstream of cellular Src (c-Src) as a negative regulator of invadopodia formation and dynamics in breast cancer cells. We show that depletion of FAK induces the formation of active invadopodia but impairs invasive cell migration. FAK-deficient MTLn3 breast cancer cells display enhanced assembly and dynamics of invadopodia that are rescued by expression of wild-type FAK but not by FAK that cannot be phosphorylated at tyrosine 397. Moreover, our findings demonstrate that FAK depletion switches phosphotyrosine-containing proteins from focal adhesions to invadopodia through the temporal and spatial regulation of c-Src activity. Collectively, our findings provide novel insight into the interplay between FAK and Src to promote invasion.  相似文献   

8.
Invadopodia are extracellular matrix-degrading protrusions formed by invasive cancer cells that are thought to function in cancer invasion. Although many invadopodia components have been identified, signaling pathways that link extracellular stimuli to invadopodia formation remain largely unknown. We investigate the role of phosphoinositide 3-kinase (PI3K) signaling during invadopodia formation. We find that in human breast cancer cells, both invadopodia formation and degradation of a gelatin matrix were blocked by treatment with PI3K inhibitors or sequestration of D-3 phosphoinositides. Functional analyses revealed that among the PI3K family proteins, the class I PI3K catalytic subunit p110α, a frequently mutated gene product in human cancers, was selectively involved in invadopodia formation. The expression of p110α with cancerous mutations promoted invadopodia-mediated invasive activity. Furthermore, knockdown or inhibition of PDK1 and Akt, downstream effectors of PI3K signaling, suppressed invadopodia formation induced by p110α mutants. These data suggest that PI3K signaling via p110α regulates invadopodia-mediated invasion of breast cancer cells.  相似文献   

9.
Angiogenesis and cancer invasiveness greatly contribute to cancer malignancy.Arf6 and its effector, AMAP1, are frequently overexpressed in breast cancer, and constitute a central pathway to induce the invasion and metastasis. In this pathway, Arf6 is activated by EGFR via GEP100. Arf6 is highly expressed also in human umbilical vein endothelial cells (HUVECs) and is implicated in angiogenesis. Here, we found that HUVECs also highly express AMAP1, and that vascular endothelial growth factor receptor-2 (VEGFR2) recruits GEP100 to activate Arf6. AMAP1 functions by binding to cortactin in cancer invasion and metastasis. We demonstrate that the same GEP100-Arf6-AMAP1-cortactin pathway is essential for angiogenesis activities, including cell migration and tubular formation, as well as for the enhancement of cell permeability and VE-cadherin endocytosis of VEGF-stimulated HUVECs. Components of this pathway are highly expressed in pathologic angiogenesis, and blocking of this pathway effectively inhibits VEGF- or tumor-induced angiogenesis and choroidal neovascularization. The GEP100-Arf6-AMAP1-cortactin pathway, activated by receptor tyrosine kinases, appears to be common in angiogenesis and cancer invasion and metastasis, and provides their new therapeutic targets.  相似文献   

10.
The ubiquitin ligase Cbl mediates ubiquitination of activated receptor tyrosine kinases (RTKs) and interacts with endocytic scaffold complexes, including CIN85/endophilins, to facilitate RTK endocytosis and degradation. Several mechanisms regulate the functions of Cbl to ensure the fine-tuning of RTK signalling and cellular homeostasis. One regulatory mechanism involves the binding of Cbl to Sprouty2, which sequesters Cbl away from activated epidermal growth factor receptors (EGFRs). Here, we show that Sprouty2 associates with CIN85 and acts at the interface between Cbl and CIN85 to inhibit EGFR downregulation. The CIN85 SH3 domains A and C bind specifically to proline-arginine motifs present in Sprouty2. Intact association between Sprouty2, Cbl and CIN85 is required for inhibition of EGFR endocytosis as well as EGF-induced differentiation of PC12 cells. Moreover, Sprouty4, which lacks CIN85-binding sites, does not inhibit EGFR downregulation, providing a molecular explanation for functional differences between Sprouty isoforms. Sprouty2 therefore acts as an inducible inhibitor of EGFR downregulation by targeting both the Cbl and CIN85 pathways.  相似文献   

11.
Invadopodia are membrane protrusions dynamically assembled by invasive cancer cells in contact with the extracellular matrix (ECM). Invadopodia are enriched by the structural proteins actin and cortactin as well as metalloproteases such as MT1-MMP, whose function is to degrade the surrounding ECM. During metastasis, invadopodia are necessary for cancer cell intravasation and extravasation. Although signaling pathways involved in the assembly and function of invadopodia are well studied, few studies address invadopodia dynamics and how the cell-ECM interactions contribute to cell invasion. Using iterative analysis based on time-lapse microscopy and mathematical modeling of invasive cancer cells, we found that cells oscillate between invadopodia presence and cell stasis—termed the “invadopodia state”—and invadopodia absence during cell translocation—termed the “migration state.” Our data suggest that β1-integrin-ECM binding and ECM cross-linking control the duration of each of the two states. By changing the concentration of cross-linkers in two-dimensional and three-dimensional cultures, we generate an ECM in which 0–0.92 of total lysine residues are cross-linked. Using an ECM with a range of cross-linking degrees, we demonstrate that the dynamics of invadopodia-related functions have a biphasic relationship to ECM cross-linking. At intermediate levels of ECM cross-linking (0.39), cells exhibit rapid invadopodia protrusion-retraction cycles and rapid calcium spikes, which lead to more frequent MT1-MMP delivery, causing maximal invadopodia-mediated ECM degradation. In contrast, both extremely high or low levels of cross-linking lead to slower invadopodia-related dynamics and lower ECM degradation. Additionally, β1-integrin inhibition modifies the dynamics of invadopodia-related functions as well as the length of time cells spend in either of the states. Collectively, these data suggest that β1-integrin-ECM binding nonlinearly translates small physical differences in the extracellular environment to differences in the dynamics of cancer cell behaviors. Understanding the conditions under which invadopodia can be reduced by subtle environment-targeting treatments may lead to combination therapies for preventing metastatic spread.  相似文献   

12.
CIN85 is an adaptor protein linking the ubiquitin ligase Cbl and clathrin-binding proteins in clathrin-mediated receptor endocytosis. The SH3 domains of CIN85 bind to a proline-rich region of Cbl. Here we show that all three SH3 domains of CIN85 bind to ubiquitin. We also present a data-based structural model of the CIN85 SH3-C domain in complex with ubiquitin. In this complex, ubiquitin binds to the canonical interaction surface of the SH3 domain for proline-rich ligands and mimics the PPII helix, and we provide evidence that ubiquitin competes with these ligands for binding. We demonstrate that disruption of ubiquitin binding results in constitutive ubiquitination of CIN85 and an increased level of ubiquitination of EGFR in the absence of EGF stimulation. These results suggest that competition between Cbl and ubiquitin binding to CIN85 regulates Cbl function and EGFR endocytosis.  相似文献   

13.
Up-regulation of the cytoskeleton linker protein ezrin frequently occurs in aggressive cancer types and is closely linked with metastatic progression. However, the underlying molecular mechanisms detailing how ezrin is involved in the invasive and metastatic phenotype remain unclear. Here we report a novel function of ezrin in regulating focal adhesion (FA) and invadopodia dynamics, two key processes required for efficient invasion to occur. We show that depletion of ezrin expression in invasive breast cancer cells impairs both FA and invadopodia turnover. We also demonstrate that ezrin-depleted cells display reduced calpain-mediated cleavage of the FA and invadopodia-associated proteins talin, focal adhesion kinase (FAK), and cortactin and reduced calpain-1–specific membrane localization, suggesting a requirement for ezrin in maintaining proper localization and activity of calpain-1. Furthermore, we show that ezrin is required for cell directionality, early lung seeding, and distant organ colonization but not primary tumor growth. Collectively our results unveil a novel mechanism by which ezrin regulates breast cancer cell invasion and metastasis.  相似文献   

14.
Clinically, increased breast tumor stiffness is associated with metastasis and poorer outcomes. Yet, in vitro studies of tumor cells in 3D scaffolds have found decreased invasion in stiffer environments. To resolve this apparent contradiction, MDA-MB-231 breast tumor spheroids were embedded in ‘low’ (2 kPa) and ‘high’ (12 kPa) stiffness 3D hydrogels comprised of methacrylated gelatin/collagen I, a material that allows for physiologically-relevant changes in stiffness while matrix density is held constant. Cells in high stiffness materials exhibited delayed invasion, but more abundant actin-enriched protrusions, compared to those in low stiffness. We find that cells in high stiffness had increased expression of Mena, an invadopodia protein associated with metastasis in breast cancer, as a result of EGFR and PLCγ1 activation. As invadopodia promote invasion through matrix remodeling, we examined matrix organization and determined that spheroids in high stiffness displayed a large fibronectin halo. Interestingly, this halo did not result from increased fibronectin production, but rather from Mena/α5 integrin dependent organization. In high stiffness environments, FN1 knockout inhibited invasion while addition of exogenous cellular fibronectin lessened the invasion delay. Analysis of fibronectin isoforms demonstrated that EDA-fibronectin promoted invasion and that clinical invasive breast cancer specimens displayed elevated EDA-fibronectin. Combined, our data support a mechanism by which breast cancer cells respond to stiffness and render the environment conducive to invasion. More broadly, these findings provide important insight on the roles of matrix stiffness, composition, and organization in promoting tumor invasion.  相似文献   

15.
16.
Epidermal growth factor receptor (EGFR) signaling is one of the crucial factors in breast cancer malignancy. Breast cancer cells often overexpress Arf6 and its effector, AMAP1/ASAP1/DDEF1; in these cells, EGFR signaling may activate the Arf6 pathway to induce invasion and metastasis. Active recycling of some integrins is crucial for invasion and metastasis. Here, we show that the Arf6-AMAP1 pathway links to the machinery that recycles β1 integrins, such as α3β1, to promote cell invasion upon EGFR stimulation. We found that AMAP1 had the ability to bind directly to PRKD2 and hence to make a complex with the cytoplasmic tail of the β1 subunit. Moreover, GTP-Rab5c also bound to AMAP1, and activation of Rab5c by EGFR signaling was necessary to promote the intracellular association of AMAP1 and PRKD2. Our results suggest a novel mechanism by which EGFR signaling promotes the invasiveness of some breast cancer cells via integrin recycling.  相似文献   

17.
CIN85 is a multidomain adaptor protein involved in Cbl-mediated down-regulation of epidermal growth factor (EGF) receptors. CIN85 src homology 3 domains specifically bind to a proline-arginine (PxxxPR) motif in Cbl, and this association seems to be important for EGF receptor endocytosis. Here, we report identification of novel CIN85 effectors, all containing one or more PxxxPR motifs, that are indispensable for their mutual interactions. These effectors include phosphatidyl-inositol phosphatases SHIP-1 and synaptojanin 2B1, Arf GTPase-activating proteins ASAP1 and ARAP3, adaptor proteins Hip1R and STAP1, and a Rho exchange factor, p115Rho GEF. Acting as a molecular scaffold, CIN85 clusters its effectors and recruits them to high-molecular-weight complexes in cytosolic extracts of cells. Further characterization of CIN85 binding to ASAP1 revealed that formation of the complex is independent on cell stimulation. Overexpression of ASAP1 increased EGF receptor recycling, whereas ASAP1 containing mutated PxxxPR motif failed to promote this event. We propose that CIN85 functions as a scaffold molecule that binds to numerous endocytic accessory proteins, thus controlling distinct steps in trafficking of EGF receptors along the endocytic and recycling pathways.  相似文献   

18.
Arf6 and its effector AMAP1 are overexpressed in malignant breast cancer cells, and are involved in their invasion and metastasis. We recently revealed that GEP100, a guanine nucleotide exchanging factor, is responsible for the activation of Arf6 which induces invasion and metastasis. GEP100 associated directly with ligand-activated epidermal growth factor receptor (EGFR) to be activated. Disruption of E-cadherin-mediated cell-cell adhesion is one of the major steps involved in acquisition of invasive phenotypes of most carcinomas. The EGFR-GEP100-Arf6 pathway not only activated matrix invasion activity but also perturbed E-cadherin function. GEP100 was found to be expressed in more than 80% of invasive ductal carcinomas. However, 60% of ductal carcinomas in situ were also positive for GEP100, in which GEP100 was preferentially coexpressed with EGFR in their malignant cases. Microenvionments have been highly implicated in the development of tumor malignancy. Our results reveal an aspect of the precise molecular mechanism of cancer invasion and metastasis, in which full invasiveness is not acquired just by alterations of cancer cells themselves, but their microenvironments may also play pivotal roles.  相似文献   

19.
Invasion of tumor cells is a key step in metastasis that depends largely on the ability of these cells to degrade the extracellular matrix. Although we have showed that the GTPase ADP-ribosylation factor 1 (ARF1) is overexpressed in highly invasive breast cancer cell lines and that epidermal growth factor stimulation can activate this ARF isoform to regulate migration as well as proliferation, the role of this small GTP-binding protein has not been addressed in the context of invasiveness. Here we report that modulation of ARF1 expression and activity markedly impaired the ability of M.D. Anderson-metastatic breast-231 cells, a prototypical highly invasive breast cancer cell line, to degrade the extracellular matrix by controlling metalloproteinase-9 activity. In addition, we demonstrate that this occurs through inhibition of invadopodia maturation and shedding of membrane-derived microvesicles, the two key structures involved in invasion. To further define the molecular mechanisms by which ARF1 controls invasiveness, we show that ARF1 acts to modulate RhoA and RhoC activity, which in turn affects myosin light-chain (MLC) phosphorylation. Together our findings underscore for the first time a key role for ARF1 in invasion of breast cancer cells and suggest that targeting the ARF/Rho/MLC signaling axis might be a promising strategy to inhibit invasiveness and metastasis.  相似文献   

20.
The ability of cancer cells to invade underlies metastatic progression. One mechanism by which cancer cells can become invasive is through the formation of structures called invadopodia, which are dynamic, actin-rich membrane protrusions that are sites of focal extracellular matrix degradation. While there is a growing consensus that invadopodia are instrumental in tumor metastasis, less is known about whether they are involved in tumor growth, particularly in vivo. The adaptor protein Tks5 is an obligate component of invadopodia, and is linked molecularly to both actin-remodeling proteins and pericellular proteases. Tks5 appears to localize exclusively to invadopodia in cancer cells, and in vitro studies have demonstrated its critical requirement for the invasive nature of these cells, making it an ideal surrogate to investigate the role of invadopodia in vivo. In this study, we examined how Tks5 contributes to human breast cancer progression. We used immunohistochemistry and RNA sequencing data to evaluate Tks5 expression in clinical samples, and we characterized the role of Tks5 in breast cancer progression using RNA interference and orthotopic implantation in SCID-Beige mice. We found that Tks5 is expressed to high levels in approximately 50% of primary invasive breast cancers. Furthermore, high expression was correlated with poor outcome, particularly in those patients with late relapse of stage I/II disease. Knockdown of Tks5 expression in breast cancer cells resulted in decreased growth, both in 3D in vitro cultures and in vivo. Moreover, our data also suggest that Tks5 is important for the integrity and permeability of the tumor vasculature. Together, this work establishes an important role for Tks5 in tumor growth in vivo, and suggests that invadopodia may play broad roles in tumor progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号