首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  总被引:1,自引:0,他引:1  
Aim To explore successional processes associated with rain forest expansion in Eucalyptus‐dominated woodland savanna vegetation in north‐eastern Australia. Location Iron Range National Park and environs, northeast Queensland, Australia. This remote region supports probably the largest extent of lowland (< 300 m) rainforest remnant in Australia. Rainfall (c. 1700 mm p.a.) occurs mostly between November and June, with some rain typically occurring even in the driest months July–October. Methods (1) Sampling of rain forest seedling distributions, and other vegetation structural attributes, in fifteen 10 × 10 m quadrats distributed equi‐distantly between mature rain forest margins (range: 70–840 m), at each of 10 sites which were open‐canopied vegetation in 1943. (2) Assessment of relationships between rain forest seedling densities and structural characteristics, including distance‐to‐rain forest‐margin, canopy height, stem density. (3) Assessment of lifeform and dispersal spectra for defined vegetation structural types. Results Rates of rain forest invasion were found to be substrate‐mediated. Transects established on hematite schist, diorite, riverine alluvium, and granite developed closed canopies (termed phase III sites) by 1991. The remainder (four transects on poorly drained colluvial/alluvial sediments; one on dune sands) continued to occur either as grassy woodland (phase I), or with developing rain forest understoreys (phase II). Rain forest seedlings were observed at maximum sampled distances from mature rain forest margins at all sites. Lifeform and dispersal spectra data illustrated that: (1) the proportions of woodland trees, shrubs and graminoids declined with successional phase, with concomitant increases in rain forest primary trees and all other lifeform categories save rain forest trees; (2) the proportions of major dispersal syndromes did not vary between successional phases, neither for rain forest nor woodland taxa. Main conclusions Rain forest seedling distribution data for phases I and II sites illustrate three successional processes: margin extension – seedling density significantly negatively correlated with distance from mature rain forest margins at two sites; nucleation – seedling densities significantly positively correlated with tall trees at two sites; and irruption – seedling densities at two sites neither correlated with distance from mature rain forest margins, nor with measured vegetation structural features. The observation of irruptive rain forest regeneration at these sites, combined with decadal‐scale rain forest canopy development at the five remaining sites, illustrates that under conditions conducive to growth (moisture, substrate), low fire disturbance, and maintenance of diverse dispersal processes (high frugivore richness), rain forest can rapidly invade regional landscapes.  相似文献   

2.
    
Abstract In late 2001 a category 3 cyclone impacted forest plots that were established in Tonga in 1995, and additionally, one plot was accidentally burned by an escaped land‐clearing fire. Subsequent surveys provide observations of 10 years of forest dynamics in this poorly studied region, and the first reported observations of large interannual variation in juvenile (seedling and sapling) abundance in the western tropical Pacific. The severely disturbed (burned) plot was initially colonized by a non‐native early pioneer, Carica papaya L., but 3.5 years later a native pioneer, Macaranga harveyana (Muell. Arg.) Muell. Arg., was the most abundant tree species. The seedling layer included some long‐lived pioneers and shade‐tolerant species. Two mature forest plots affected only by the cyclone changed very little over a decade. Late‐successional shade‐tolerant species that dominated the overstory were also abundant as seedlings and saplings. This is in contrast with a 30‐ to 40‐year‐old, formerly cultivated, secondary forest plot that still shows no recruitment of late‐successional dominants, in spite of the proximity of remnant forest patches. This study suggests differing pathways of succession following shifting cultivation versus cyclone and fire disturbances in Tonga. Land use legacies appear to have a long‐lasting effect on community composition.  相似文献   

3.
    
Most tropical trees produce fleshy fruits that attract frugivores that disperse their seeds. Early demography and distribution for these tree species depend on the effects of frugivores and their behavior. Anthropogenic changes that affect frugivore communities could ultimately result in changes in tree distribution and population demography. We studied the frugivore assemblage at 38 fruiting Elmerrillia tsiampaca, a rain forest canopy tree species in Papua New Guinea. Elmerrillia tsiampaca is an important resource for frugivorous birds at our study site because it produces abundant lipid-rich fruits at a time of low fruit availability. We classified avian frugivores into functional disperser groups and quantified visitation rates and behavior at trees during 56 canopy and 35 ground observation periods. We tested predictions derived from other studies of plant–frugivore interactions with this little-studied frugivore assemblage in an undisturbed rain forest. Elmerrillia tsiampaca fruits were consumed by 26 bird species, but most seeds were removed by eight species. The most important visitors (Columbidae, Paradisaeidae and Rhyticeros plicatus) were of a larger size than predicted based on diaspore size. Columbidae efficiently exploited the structurally protected fruit, which was inconsistent with other studies in New Guinea where structurally protected fruits were predominantly consumed by Paradisaeidae. Birds vulnerable to predation foraged for short time periods, consistent with the hypothesis that predator avoidance enhances seed dispersal. We identified seven functional disperser groups, indicating there is little redundancy in disperser groups among the regular and frequent visitors to this tropical rain forest tree species.  相似文献   

4.
Rebecca J. Cole 《Biotropica》2009,41(3):319-327
Variation in postdispersal seed fate is an important factor driving patterns of forest regeneration. Because most previous studies have not tracked final seed fate and have commonly equated seed removal with predation without considering the possibility of secondary dispersal, little is known about individual seed mortality factors in successional and degraded habitats. This study tracked the postdispersal fate of large-seeded tropical montane trees in abandoned pasture, young secondary forests, and small forest fragments during two consecutive years in an agricultural landscape in southern Costa Rica. The incidence of secondary dispersal by animals, scatterhoarding in particular, and the effects of seed burial on germination were measured. Overall, seeds survived through germination more often in secondary forests with high levels of mortality occurring in abandoned pastures and forest fragments. The majority of seed mortality was caused by rodent predation in forest fragments, insects and fungal pathogens in secondary forests, and a combination of desiccation, insects, and fungal pathogens in pastures. Seeds were frequently secondarily dispersed in larger forest fragments, whereas they were only rarely moved in pastures and secondary forests. Burial tended to improve germination in pastures and was important for an often scatterhoarded species, Otoba novogranatensis, in all habitats. The results of this study suggest that: (1) seed mortality factors differ in response to the type of habitat degradation; (2) large-seeded species have high potential for survival when dispersed to young secondary forests; and (3) seed removal is not a reliable proxy for seed predation, particularly in less degraded forest fragments.  相似文献   

5.
We describe liana diversity and variation in morphology of flowers and diaspores in two tropical forests in Mexico: a seasonally deciduous forest at Chamela, Jalisco and a lowland rain forest at Chajul, Chiapas. Flowers were classified as inconspicuous (1 cm in length and white or pale green flowers) or conspicuous (> 1 cm and brightly colored flowers). Dispersal syndrome was classified as anemochory, barochory, and zoochory. We recorded a higher number of lianas species in Chajul (128 spp.) than in Chamela (71 spp.). In both sites, families with the highest number of species were Bignoniaceae, Leguminosae, Sapindaceae, and Malphigiaceae, and almost half of the liana species had inconspicuous flowers. Most of the species had an abiotic syndrome of dispersal with 40 (56.3%) and 71 (55.5%) wind-dispersed species in Chamela and Chajul, respectively. Zoochory was significantly associated with inconspicuous flowers and anemochory with conspicuous flowers. Our results suggest that (1) flower morphology and dispersal type are not related with the amount of rainfall and (2) lianas are more prone to be wind-dispersed.  相似文献   

6.
    
The mobility and dispersal of organisms affect population genetics and dynamics, and consequently affect persistence and the risk of extinction. Thus, it is important to understand how organisms move in the fragmented landscapes in order to manage populations and predict the effects of habitat changes on species persistence. This study evaluated the functional connectivity of an orchid bee (Eulaema atleticana Nemésio, 2009) with a high fidelity to forest habitats in the Brazilian Atlantic Forest Corridor by analyzing genetic diversity, spatial genetic structure, and gene flow estimated from microsatellite and mitochondrial markers. Genetic diversity was not correlated with area of the forest fragments, or with forest isolation. At the mosaic scale, Eulaema atleticana showed no significant or low genetic differentiation, indicating genetic homogeneity among forest fragments. A previous field study indicated that Eulaema atleticana was one of the most sensitive Euglossina bees to forest fragmentation but the present molecular analyses demonstrates that current gene flow is sufficient to maintain genetic variability at the mosaic scale.  相似文献   

7.
西双版纳热带山地雨林生物量研究   总被引:3,自引:0,他引:3  
观测了西双版纳山地气候,建立了山地雨林生物量回归方程,调查了海拔1 100~1 820 m范围5块样地(面积0.16~0.25 hm2)的热带山地雨林生物量。结果表明,海拔1 105和1 610 m的年平均温度分别为20.1和16.6℃,年降雨量分别为1 659和2 011 mm,旱季(11~4月)降雨量分别为295和283mm,年平均相对湿度分别为81%和84%;5块样地生物量变化为256.4~368.6 t.hm-2,平均为312.6t.hm-2,其中乔木占97.1%、木质藤本占1.2%、幼树和灌木占1.3%、草本和幼苗占0.4%;采用热带季节雨林生物量回归方程估计山地雨林生物量,会使得总生物量以及树干和树根生物量高估38.3%~61.5%,树枝生物量低估7.6%~30.8%。可见,西双版纳山地海拔增加导致雨季降雨量增加,山地雨林生物量较热带季节雨林降低32.6%,季节雨林生物量方程不适用于山地雨林。  相似文献   

8.
云南热带季雨林及其与热带雨林植被的比较   总被引:2,自引:0,他引:2       下载免费PDF全文
朱华 《植物生态学报》2011,35(4):463-470
在中国植物学文献中, 对热带季雨林的解释和运用是不一致的, 特别是易于把季雨林与热带雨林相混淆。季雨林是在具有明显干、湿季变化的热带季风气候下发育的一种热带落叶森林植被, 是介于热带雨林与热带稀树草原(savanna)之间的一个植被类型。云南的热带季雨林在分布生境、生态外貌特征、植物种类组成和地理成分构成上, 均与热带雨林有明显区别, 季雨林主要分布在海拔1 000 m以下的几大河流开阔河段两岸和河谷盆地, 其群落结构相对简单, 乔木一般仅有1至2层, 上层树种在干季落叶或上层及下层树种在干季都落叶; 在生活型组成上, 季雨林的木质藤本相对较少, 大高位芽植物及地上芽植物很少, 但地面芽植物很丰富, 地下芽植物和一年生植物也相对丰富; 在叶级和叶型特征上, 季雨林植物的小叶和复叶比例相对较高, 分别占到24%和44%; 在植物区系地理成分构成上, 季雨林的热带分布属合计也占绝对优势, 但以泛热带分布属的比例相对较高, 约占到总属数的30%, 热带亚洲至热带非洲分布属的比例也较高, 约占总属数的12%。季雨林的地理成分更为多样性, 起源与发展历史也更复杂和古老。  相似文献   

9.
    
  相似文献   

10.
11.
Results of 3 years of pollen trapping on Barro Colorado Island, Panama, are presented. Minimum pollen dispersal distances are estimated for the most abundant pollen taxa. Dispersal distances for some taxa appear to be as low as 5 m, while for other taxa at least 50% of the trapped pollen had travelled more than 40 m. No consistent pattern of spatial variation was reflected in the pollen rain, however, samples close to large canopy gaps had exceptional abundances of 'disturbance' taxa. A preliminary analysis of the representation of canopy components indicates that as much as 19% of pollen caught in the traps was derived from large tree species.  相似文献   

12.
Seed dynamics is an important part of stand dynamics in forest ecosystems. In this paper, 26 gaps were randomly selected to study the influence of gaps on the spatial and temporal patterns of seed rains in a tropical montane rainforest of Hainan Island, South China. Three zones for each gap, including outside gap zone (Non-gap), transitional gap zone (EG-CG), and central gap zone (CG), were designed, and fourseed traps (each lm x lm in size) were placed in each zone. Seed rains were collected by these traps every 10 days from June 2001 to May 2002. Seed rain varied greatly with season and generally exhibited a pattern of unimodal change during the study period: seed abundance and species richness were both greater in the wet season than in the dry season. Gaps significantly influenced the temporal patterns of both species richness and density of seed rains. Gaps had no significant influences on the spatial distribution patterns of seed rain species richness, but significantly affected the spatial distribution pattern of seed rain densities. Among the three different zones of gaps, the outside gap zone generally received more seeds inputs than the two other gap zones.  相似文献   

13.
    
In human‐modified tropical landscapes (HMLs) the conservation of biodiversity, functions and services of forest ecosystems depends on persistence of old growth forest remnants, forest regeneration in abandoned agricultural fields, and restoration of degraded lands. Understanding the impacts of agricultural land uses (ALUs) on forest regeneration is critical for biodiversity conservation in HMLs. Here, we develop a conceptual framework that considers the availability of propagules and the environment prevailing after field abandonment as two major determinants of forest regeneration in HMLs. The framework proposes that regeneration potential decreases with size, duration and severity of agricultural disturbance, reducing propagule availability and creating ill‐suited environmental conditions for regeneration. We used studies from Southern Mexico to assess this framework. First, we identify regeneration bottlenecks that trees face during transit from seed to follow‐up life stages, using demographic analysis of dominant pioneer species in recently abandoned fields. Then, we explore effects of ALUs on forest regeneration at the field and landscape scales, addressing major legacies. Finally, we integrate agricultural disturbance with landscape composition to predict attributes of successful second growth forests in HMLs, and provide indicators useful to select tree native species for active restoration. An indicator of disturbance inflicted by ALUs, based on farmers’ information, predicted better regeneration potential than measurements of soil and microclimate conditions at time of abandonment. Cover of cattle pastures in the landscape was a stronger indicator of forest regenerating attributes than cover of old growth forest remnants. To conclude, we offer recommendations to promote forest regeneration and biodiversity conservation in HMLs.  相似文献   

14.
15.
    
This paper presents a new synthesis of the role of native and non‐native species in diverse pathways and processes that influence forest regeneration on anthropogenic grassland in the moist tropics. Because of altered species composition, abiotic conditions and landscape habitat mosaics, together with human interventions, these successional pathways differ from those seen in pre‐clearing forests. However, representation of different functional life forms of plant (tree, vine, grass, herb and fern) and animal (frugivorous seed disperser, granivorous seed predator, seedling herbivore and carnivore) shows consistent global variation among areas of pasture, intact forest, and post‐grassland regrowth. Biotic webs of interaction involve complex indirect influences and feedbacks, which can account for wide observed variation in regeneration trajectories over time. Important processes include: limitation of tree establishment by dense grasses; recruitment and growth of pioneer pasture trees (shading grasses and facilitating bird‐assisted seed dispersal); and smothering of trees by vines. In these interactions, species’ functional roles are more important than their biogeographic origins. Case studies in eastern Australia show native rain forest plant species diversity in all life forms increasing over time when pioneer trees are non‐native (e.g., Cinnamomum camphora, Solanum mauritianum), concurrent with decreased grass and fern cover and increased abundance of trees and vine tangles. The global literature shows both native and non‐native species facilitating and inhibiting regeneration. However conservation goals are often targeted at removing non‐native species. Achieving large‐scale tropical forest restoration will require increased recognition of their multiple roles, and compromises about allocating resources to their removal.  相似文献   

16.
In Neotropical rain forests, fresh mammal dung, especially that of howler monkeys, constitutes an important resource used by dung beetles as food and for oviposition and further feeding by their larvae. Tropical rain forest destruction, fragmentation, and subsequent isolation causing reductions in numbers of and the disappearance of howler moneys may result in decreasing numbers of dung beetles, but this has not been documented. In this study, we present information on the presence of howlers and dung beetles in 38 isolated forest fragments and 15 agricultural habitats. Howler monkeys were censused by visual means, while dung beetles were sampled with traps baited with a mixture of howler, cow, horse, and dog dung. Results indicated that loss of area and isolation of forest fragments result in significant decrements in howlers and dung beetles. However, dung beetle abundance was found to be closely related to the presence of howler monkeys at the sites and habitats investigated. Scenarios of land management designed to reduce isolation among forest fragments may help sustain populations of howler monkeys and dung beetles, which may have positive consequences for rain forest regeneration. Am. J. Primatol. 48:253–262, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

17.
Andean montane rain forests are among the most species‐rich terrestrial habitats. Little is known about their insect communities and how these respond to anthropogenic habitat alteration. We investigated exceptionally speciose ensembles of nocturnal tiger moths (Arctiidae) at 15 anthropogenically disturbed sites, which together depict a gradient of forest recovery and six closed‐forest understorey sites in southern Ecuador. At weak light traps we sampled 9211 arctiids, representing 287 species. Arctiid abundance and diversity were highest at advanced succession sites, where secondary scrub or young forest had re‐established, followed by early succession sites, and were lowest, but still high, in mature forest understorey. The proportion of rare species showed the reverse pattern. We ordinated moth samples by non‐metric multidimensional scaling using the chord‐normalized expected species shared index (CNESS) index at various levels of the sample size parameter m. A distinct segregation of arctiid ensembles at succession sites from those in mature forest consistently emerged only at high m‐values. Segregation between ensembles of early vs. late succession stages was also clear at high m values only, and was rather weak. Rare species were responsible for much of the faunal difference along the succession gradient, whereas many common arctiid species occurred in all sites. Matrix correlation tests as well as exploration of relationships between ordination axes and environmental variables revealed the degree of habitat openness, and to a lesser extent, elevation, as best predictors of faunal dissimilarity. Faunal differences were not related to geographical distances between sampling sites. Our results suggest that many of the more common tiger moths of Neotropical montane forests have a substantial recolonization potential at the small spatial scale of our study and accordingly occur also in landscape mosaics surrounding nature reserves. These species contribute to the unexpectedly high diversity of arctiid ensembles at disturbed sites, whereas the proportion of rare species declines outside mature forest.  相似文献   

18.
If secondary succession can accumulate species rapidly, then tropical secondary forests may have an important role to play in the conservation of biodiversity. Data on the floristic composition of forest stands in the Central Catchment Nature Reserve, Singapore, have been analysed to investigate the diversity of approximately 100-year-old tropical secondary forest. Classification using TWINSPAN indicated that three floristic communities could be recognized from 59 0.2 ha plots enumerated for trees >30 cm gbh. These were two types of secondary forest, both dominated by Rhodamnia cinerea (Myrtaceae), and dryland primary forest. The secondary forest was developed on land abandoned after use for agriculture at the end of the 19th century. The 16 primary forest plots contained a total of 340 species, more than the 281 recorded from the 43 plots of the two secondary forest types combined. The mean species number per plot in the more diverse of the two secondary forests was only about 60% of the primary forest. Thus the secondary forest, despite a century or so for colonization by species and the presence of contiguous primary forest, was still significantly less diverse than primary forest areas. It is concluded that secondary forest cannot be assumed to accrete biodiversity rapidly in the tropics, and may not be of direct value in conservation. However, other indirect roles, such as providing resources for native animals, and buffering and protecting primary forest fragments may make the protection of secondary forest worthwhile.  相似文献   

19.
    
We evaluated leaf characteristics and herbivory intensities for saplings of fifteen tropical tree species differing in their successional position. Eight leaf traits were selected, related to the costs of leaf display (specific leaf area [SLA], water content), photosynthesis (N and P concentration per unit mass), and herbivory defence (lignin concentration, C:N ratio). We hypothesised that species traits are shaped by variation in abiotic and biotic (herbivory) selection pressures along the successional gradient. All leaf traits varied with the successional position of the species. The SLA, water content and nutrient concentration decreased, and lignin concentration increased with the successional position. Herbivory damage (defined as the percentage of damage found at one moment in time) varied from 0.9-8.5% among the species, but was not related to their successional position. Herbivory damage appeared to be a poor estimator of the herbivory rate experienced by species, due to the confounding effect of leaf lifespan. Herbivory rate (defined as percentage leaf area removal per unit time) declined with the successional position of the species. Herbivory rate was only positively correlated to water content, and negatively correlated to lignin concentration, suggesting that herbivores select leaves based upon their digestibility rather than upon their nutritive value. Surprisingly, most species traits change linearly with succession, while resource availability (light, nutrients) declines exponentially with succession.  相似文献   

20.
Forest succession was studied in four plots in former grasslands at the Ngogo study area in Kibale National Park, Uganda. The plots were located in areas that had been protected from fire for 0.58, 25, 9 and ≈30 years for plots 1, 2, 3 and 4, respectively. Species richness reflected the length of time that the plot had been protected from fire; it was highest in plot 4 and lowest in plot 1. Species density, stem density and basal area were all highest in plot 4 and lowest in plot 1. The species densities of plots 2 and 3 were not different. Similarly, plots 2 and 4 did not differ with regard to stem density or basal area. Animal seed dispersers played a vital role in the colonization of grasslands by forest tree species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号