首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tol1 is a DNA-based transposable element identified in the medaka fish Oryzias latipes and a member of the hAT (hobo/Activator/Tam3) transposable element family. Its mobility has already been demonstrated in the human and mouse, in addition to its original host species. This element is thus expected to be useful in a wide range of vertebrates as a genomic manipulation tool. Herein, we show that the Tol1 element can undergo excision in the African clawed frog Xenopus laevis, a major model organism for vertebrate genetics and developmental biology. An indicator plasmid carrying a Tol1 element was injected into 2- or 4-cell-stage embryos together with either a helper plasmid coding for the full-length Tol1 transposase or a modified helper plasmid yielding a truncated protein, and recovered from tailbud-stage embryos. Deletion of the Tol1 region of the indicator plasmid was observed in the experiment with the full-length transposase, and not in the other case. The deletion was associated with various footprint sequences at breakpoints, as frequently observed with many DNA-based transposable elements. These results indicate that the Tol1 element was excised from the indicator plasmid by catalysis of the transposase, and suggest that the Tol1 element is mobile in this frog species.  相似文献   

2.
The hAT family is a group of transposable elements of the terminal inverted repeat class, which includes Ac of maize, hobo of Drosophila and Tam3 of Antirrhinum (snapdragon). All the members of this family so far examined are known to comprise complete and defective copies, with a good correspondence to autonomous and non-autonomous elements, respectively. Internal deletion is the most common cause of defective copies. Tol2, a transposable element of the medaka fish Oryzias latipes, is a member of the hAT family. We examined, mainly by the genomic Southern blot analysis, variation in the structure of copies of this element, and revealed that there are few or no internally deleted copies. This situation is unusual in a member of the hAT family. Possible causes of this anomaly are discussed.  相似文献   

3.
4.
Detection of de novo insertion of the medaka fish transposable element Tol2   总被引:2,自引:0,他引:2  
Koga A  Hori H 《Genetics》2000,156(3):1243-1247
Tol2 is a terminal-inverted-repeat transposable element of the medaka fish Oryzias latipes. It is a member of the hAT (hobo/Activator/Tam3) transposable element family that is distributed in a wide range of organisms. We here document direct evidence for de novo insertion of this element. A Tol2 clone marked with the bacterial tetracycline-resistance gene was microinjected into fertilized eggs together with a target plasmid, and the plasmid was recovered from embryos. The screening of plasmid molecules after transformation into Escherichia coli demonstrated transposition of tet into the plasmid and, by inference, precise insertion of Tol2 in medaka fish cells. De novo excision of Tol2 has previously been demonstrated. The present study provides direct evidence that the Tol2 element has the entire activity necessary for cut-and-paste transposition. Some elements of the mariner/Tc1 family, another widespread group, have already been applied to development of gene tagging systems in vertebrates. The Tol2 element of the hAT family, having different features from mariner/Tc1 family elements, also has potential as an alternative gene tagging tool in vertebrates.  相似文献   

5.
Kawakami K  Noda T 《Genetics》2004,166(2):895-899
The Tol2 transposable element of the Japanese medaka fish belongs to the hAT family of transposons including hobo of Drosophila, Ac of maize, and Tam3 of snapdragon. To date, Tol2 is the only natural transposon in vertebrates that has ever been shown to encode a fully functional transposase. It has not been known, however, whether Tol2 can transpose in vertebrates other than fish. We report here transposition of Tol2 in mouse embryonic stem (ES) cells. We constructed a transposon donor plasmid containing a nonautonomous Tol2 element with the neomycin resistance gene and a helper plasmid capable of expressing the transposase and introduced the donor plasmid with various amounts of the helper plasmid by electroporation into mouse ES cells. The number of G418-resistant ES colonies increased as the amount of helper plasmid was increased, in a dose-dependent manner, indicating that the transposase activity elevated the integration efficiency. These G418-resistant ES colonies were cloned and the structure of the junction of the integrated Tol2 element and the genomic DNA was analyzed by inverse PCR. In those clones, Tol2 was surrounded by mouse genomic sequences and an 8-bp direct repeat was created adjacent to both ends of Tol2, indicating that Tol2 was integrated in the genome through transposition. The Tol2 transposon system is thus active in mouse as well as in fish. We propose that it should be used as a genetic tool to develop novel gene transfer, transgenesis, and mutagenesis methods in mammals.  相似文献   

6.
Koga A  Shimada A  Shima A  Sakaizumi M  Tachida H  Hori H 《Genetics》2000,155(1):273-281
Tol2 is a transposable element of the terminal-inverted-repeat class, residing in the genome of the medaka fish Oryzias latipes. The genus Oryzias contains more than 10 species for which phylogenetic relationships have previously been estimated. To infer the history of Tol2 in this genus we performed genomic Southern blots and PCR analyses of 10 of the species. It was revealed that Tol2 occurs in 2 of the 10 species (O. curvinotus and O. latipes) and that the length and the restriction map structure of Tol2 are identical in the two cases. Further, sequencing analysis revealed an extremely low level of divergence compared with that in a nuclear gene. These results suggest recent incorporation of Tol2 into one or both of the two species, implying horizontal transfer of Tol2 from one species to the other or into them both from a common source.  相似文献   

7.
Several DNA-based transposable elements are known to be present in vertebrate genomes, but few of them have been demonstrated to be active. The Tol2 element of the medaka fish is one such element and, therefore, is potentially useful for developing a gene tagging system and other molecular biological tools applicable to vertebrates. Towards this goal, analyses of the element at the molecular, cellular and population levels are in progress. Results so far obtained are described here.  相似文献   

8.
In the medaka fish (Oryzias latipes) many mutants for body color have been isolated. A typical example is the recessive oculocutaneous albino mutant i, which has amelanotic skin and red-colored eyes with no tyrosinase activity. To cast light on the molecular basis of the albino mechanism, we performed Southern blot analysis of genomic DNA from the mutant with an authentic tyrosinase gene probe; the results demonstrate that an extra 1.9 kb fragment is present inside the first exon. The insertion is responsible for the oculocutaneous albinism. About 80 copies of this fragment are present in the genomes of albino-i and wild-type fish; these repeated sequences are here designated Tol1 elements and the particular element found in the tyrosinase gene of albino-i is denoted Tol1-tyr. The nucleotide sequence of Tol1-tyr shows that the fragment (i) carries terminal inverted repeats of 14 bp, and (ii) is flanked by duplicated 8 by segments of the host chromosome. These are properties of DNA-mediated transposable elements. Comparison of the nucleotide sequence of Tol1-tyr with other sequences in DNA databases, with special attention to sequences of transposable elements known to date, did not reveal any similarity. Thus, Tol1 constitutes a hitherto unknown family of DNA transposable elements.  相似文献   

9.
Tol2 transposon-mediated transgenesis in Xenopus tropicalis   总被引:1,自引:0,他引:1  
The diploid frog Xenopus tropicalis is becoming a powerful developmental genetic model system. Sequencing of the X. tropicalis genome is nearing completion and several labs are embarking on mutagenesis screens. We are interested in developing insertional mutagenesis strategies in X. tropicalis. Transposon-mediated insertional mutagenesis, once used exclusively in plants and invertebrate systems, is now more widely applicable to vertebrates. The first step in developing transposons as tools for mutagenesis is to demonstrate that these mobile elements function efficiently in the target organism. Here, we show that the Medaka fish transposon, Tol2, is able to stably integrate into the X. tropicalis genome and will serve as a powerful tool for insertional mutagenesis strategies in the frog.  相似文献   

10.
To examine the spermatogenesis (and spermiogenesis) cell population kinetics after gamma-irradiation, the frequency and fate of BrdU-labeled pre-meiotic spermatogenic cells (spermatogonia and pre-leptotene spermatocytes) and spermatogonial stem cells (SSCs) of the medaka fish (Oryzias latipes) were examined immunohistochemically and by BrdU-labeling. After 4.75 Gy of gamma-irradiation, a statistically significant decrease in the frequency of BrdU-labeled cells was detected in the SSCs, but not in pre-meiotic spermatogenic cells. The time necessary for differentiation of surviving pre-meiotic spermatogenic cells without delay of germ cell development was shortened. More than 90% of surviving pre-meiotic spermatogenic cells differentiated into haploid cells within 5 days after irradiation, followed by a temporal spermatozoa exhaust in the testis. Next, spermatogenesis began in the surviving SSCs. However, the outcome was abnormal spermatozoa, indicating that accelerated maturation process led to morphological abnormalities. Moreover, 35% of the morphologically normal spermatozoa were dead at day 6. Based on these results, we suggest a reset system; after irradiation most surviving spermatogenic cells, except for the SSCs, are prematurely eliminated from the testis by spermatogenesis (and spermiogenesis) acceleration, and subsequent spermatogenesis begins with the surviving SSCs, a possible safeguard against male germ cell mutagenesis.  相似文献   

11.
The Tol2 element of the medaka fish Oryzias latipes is a member of the hAT (hobo/Activator/Tam3) transposable element family. There is evidence for rapid expansion in the genome and throughout the species in the past but a high spontaneous transposition rate is not observed with current fish materials, suggesting that the Tol2 element and its host species have already acquired an interactive mechanism to control the transposition frequency. DNA methylation is a possible contributing factor, given its involvement with many other transposable elements. We therefore soaked embryos in 5-azacytidine, a reagent that causes reduction in the DNA methylation level, and examined amounts of PCR products reflecting the somatic excision frequency, obtaining direct evidence that exposure promotes Tol2 excision. Our results thus suggest that methylation of the genome DNA is a factor included in the putative mechanisms of control of transposition of the Tol2 element.  相似文献   

12.
The production of cloned fish in the medaka (Oryzias latipes)   总被引:5,自引:0,他引:5  
The measurement of cellular DNA content by DNA microfluorometry revealed that medaka embryos that were fertilized with normal sperm and exposed to heat shock (41 degrees C for 3 min) or hydrostatic pressure (700 kg/cm2 for 10 min) at 85-95 min after insemination were tetraploid. Embryos fertilized with normal sperm and exposed to heat shock (41 degrees C for 2 min at 2-3 min after insemination) were triploid. These results suggest that heat shock or hydrostatic pressure at 85-95 min after insemination arrests the first cleavage, while heat shock at 2-3 min after insemination arrests the second meiotic division. Medaka clones have been produced by the following method: Eggs from orange-red or variegated variety were activated by UV-irradiated, genetically impotent sperm of wild-type fish (UV sperm). The haploid eggs obtained were diploidized by preventing the first cleavage with heat shock or hydrostatic pressure to produce homozygous females. Each of the two homozygous females was mated with vasectomized male in isotonic balanced salt solution to collect unfertilized eggs. The collected eggs were activated with UV sperm and converted from haploid to diploid by arrest of the second meiotic division with heat shock. Hatched fry of each homozygous diploid (all females) were fed with a methyltestosterone-containing diet (40 micrograms/gm diet) to produce sex-reversed males, which were mated with brood females, and thus two cloned lines were obtained.  相似文献   

13.
Kondo R  Kaneko S  Sun H  Sakaizumi M  Chigusa SI 《Gene》2002,282(1-2):113-120
Vertebrate olfactory receptors (OR) exists as the largest multigene family, scattered throughout the genome in clusters. Studies have shown that different animals possess remarkably diverse set of OR genes to recognize diverse odor molecules. In order to examine the evolutionary process of OR diversification, we examined three OR gene subfamilies from Japanese medaka fish (seven lines sampled from four populations). For each subfamily, the sequences of ancestral genes were inferred based on distance method. Examination of d(N)/d(S) ratios for each branch of phylogenetic trees suggested that purifying selection is the major force of evolution in medaka OR genes. However, for the mfOR1 and mfOR2 paralogous gene pairs, a nonrandom distribution of fixed amino acid changes and the d(N)>d(S) in a branch suggested that diversifying selection occurred after gene duplication. The fixed amino acid changes were observed in the third, fifth and sixth transmembrane domains, which has been predicted to serve as a ligand-binding pocket in a structural model. Compatibility test suggested that interlocus recombinations involving the fourth transmembrane domain occurred between the mfOR1 and mfOR2 gene pairs. The pattern of nucleotide substitutions in other OR genes agrees with the hypothesis that a limited number of amino acid residues are involved in odorant binding. Such comparative analyses of paralogous OR genes should provide bases for understanding the evolution, the structure, and the functional specificity of OR genes.  相似文献   

14.
Kodama K  Takagi S  Koga A 《Heredity》2008,101(3):222-227
Tol1 is a DNA-based transposable element residing in the genome of the medaka fish Oryzias latipes, and has been proven to be transposed in various vertebrate species, including mammals. This element belongs to the hAT (hobo/Activator/Tam3) transposable element family, whose members are distributed in a wide range of organisms. It is thus possible that Tol1 is mobile in organisms other than vertebrates. We here show that transposition of this element occurs in the nematode Caenorhabditis elegans. A donor plasmid containing a Tol1 element and a helper plasmid carrying the transposase gene were delivered into gonad cells and, after several generations of culturing, were recovered from worms. PCR analysis of the donor plasmid, using primers that encompassed the Tol1 element, revealed excision of the Tol1 portion from the plasmid. Analysis of genomic DNA of the worms by the inverse PCR method provided evidence that Tol1 had been integrated into the C. elegans chromosomes. Vertebrates and C. elegans are phylogenetically distantly related organisms in that the former are deuterostomes and the latter a protostome animal. Our results indicate (1) the transposition reaction of the Tol1 element requires, besides the transposase, no factors from host cells, or (2) the host factors, even if required, are those that are common to protostomes and deuterostomes. The results also have significance for the development of a gene transfer vector and other biotechnology tools for C. elegans.  相似文献   

15.
Wild-type medaka are known to have remarkable capabilities of fin, or epimorphic, regeneration. However, a hypothyroid mutant, kamaitachi (kmi), frequently suffers from injury in fins, suggesting an important role of thyroid hormone in fin regeneration. This led us to examine the relationship between thyroid hormone and fin regeneration using medaka as a model. For this, we first set up a medaka experimental system in which the rate of regeneration was statistically analyzed after caudal fin amputation under normal and hypothyroid conditions. As expected, the regeneration of amputated caudal fins was delayed in hypothyroid kmi -/- mutants. We then examined wild-type medaka with thiourea-induced hypothyroidism to evaluate the requirement of thyroid hormone during epimorphic fin regeneration. The results demonstrate that the growth rate of regenerates was much reduced in severely hypothyroid medaka throughout the regeneration period. This reduction in regenerative rate was recovered by exogenous administration of L-thyroxine. The present study is thus the first to report the direct involvement of thyroid hormone in teleost fin regeneration, and provides a basic framework for future molecular and genetic analyses.  相似文献   

16.
The phylogeny and geography of the medaka (Oryzias latipes) populations of Korea were investigated by analyzing sequence data for the mitochondrial control region. From the 41 haplotypes including 25 Korean haplotypes detected in 64 Korean specimens and data for the Japanese and Chinese populations, phylogenetic and nested clade analyses were executed to examine the phylogeny of haplogroups and the relation of the genetic architecture of the haplotypes to the historical geography of the Korean medaka fish. The analyses suggest that there are two very distinct lineages of Korean medaka, and that these result from reproductive isolation mechanisms due to geographic barriers. The southeastern lineage has experienced recent range expansion to the western region. The northwestern lineage, sister to Chinese populations, showed evidence of internal range expansion with shared haplotypes.  相似文献   

17.
18.
In the mammalian testis germline stem cells keep producing many sperms, while there is no direct evidence for the presence of germline stem cells in the ovary. It is widely accepted in mammals that the mature oocytes are supplied from a pool of primordial follicles in the adult ovary. In other vertebrates, such as fish, however, there has been no investigation on the mechanism underlying the high egg-producing ability. In this review, we introduce the recently identified ovarian germline stem cells and the surrounding unique structure in teleost fish, medaka (Oryzias latipes) [Nakamura S et al. Science. 2010; 328: 1561-1563]. We also discuss about the expression and function of sox9 that characterizes this unique structure.  相似文献   

19.
Ding L  Kuhne WW  Hinton DE  Song J  Dynan WS 《PloS one》2010,5(10):e13287

Background

Small laboratory fish share many anatomical and histological characteristics with other vertebrates, yet can be maintained in large numbers at low cost for lifetime studies. Here we characterize biomarkers associated with normal aging in the Japanese medaka (Oryzias latipes), a species that has been widely used in toxicology studies and has potential utility as a model organism for experimental aging research.

Principal Findings

The median lifespan of medaka was approximately 22 months under laboratory conditions. We performed quantitative histological analysis of tissues from age-grouped individuals representing young adults (6 months old), mature adults (16 months old), and adults that had survived beyond the median lifespan (24 months). Livers of 24-month old individuals showed extensive morphologic changes, including spongiosis hepatis, steatosis, ballooning degeneration, inflammation, and nuclear pyknosis. There were also phagolysosomes, vacuoles, and residual bodies in parenchymal cells and congestion of sinusoidal vessels. Livers of aged individuals were characterized by increases in lipofuscin deposits and in the number of TUNEL-positive apoptotic cells. Some of these degenerative characteristics were seen, to a lesser extent, in the livers of 16-month old individuals, but not in 6-month old individuals. The basal layer of the dermis showed an age-dependent decline in the number of dividing cells and an increase in senescence-associated β-galactosidase. The hearts of aged individuals were characterized by fibrosis and lipofuscin deposition. There was also a loss of pigmented cells from the retinal epithelium. By contrast, age-associated changes were not apparent in skeletal muscle, the ocular lens, or the brain.

Significance

The results provide a set of markers that can be used to trace the process of normal tissue aging in medaka and to evaluate the effect of environmental stressors.  相似文献   

20.
We cloned cDNAs for gelatinase A and gelatinase B from an ovary cDNA library of the medaka fish Oryzias latipes. The gelatinase A clone encodes a protein of 657 amino acids, whereas the gelatinase B clone encodes a protein of 690 amino acids. Gelatinase A mRNA was expressed in the testis, ovary, intestine, heart, spleen and kidney of the animal. In contrast, gelatinase B mRNA was detected in the ovary. Localization of the respective mRNAs in the ovary was examined using in situ hybridization. Gelatinase A mRNA was found only in the oocytes of small and middle-sized follicles. In contrast, gelatinase B was expressed exclusively in follicular tissues that had ovulated. In situ zymographic analysis revealed that gelatinolytic activity, presumably due to matrix metalloproteinase activity, was detectable in the areas surrounding small and middle-sized follicles, interstitial stromal tissues and the cytoplasm of oocytes. Using extracts of the whole ovary and of ovulated oocytes, several gelatin-degrading enzymes, which probably represent the intermediate and active forms of medaka fish gelatinase A and gelatinase B, were detected by gelatin zymographic analysis. These results clearly indicate that gelatinase A and gelatinase B play a discrete role in the ovary of this lower vertebrate animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号