首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
Summary 2,5-diketo-D-gluconic acid reductase, that converts 2,5-diketo-D-gluconic acid into 2-keto-L-gulonic acid (the direct precursor of vitamin C) was extracted and purified from Corynebacterium sp.. The enzyme was characterised in terms of kinetic parameters, molecular weight and isoelectric point. Enzyme stability at different operating temperatures was investigated, as well.  相似文献   

2.
Corynebacterium 2,5-Diketo-D-gluconic acid reductase (2,5-DKGR) catalyzes the reduction of 2,5-diketo-D-gluconic acid (2,5-DKG) to 2-Keto-L-gulonic acid (2-KLG). 2-KLG is an immediate precursor to L-ascorbic acid (vitamin C), and 2,5-DKGR is, therefore, an important enzyme in a novel industrial method for the production of vitamin C. 2,5-DKGR, as with most other members of the aldo-keto reductase (AKR) superfamily, exhibits a preference for NADPH compared to NADH as a cofactor in the stereo-specific reduction of substrate. The application of 2,5-DKGR in the industrial production of vitamin C would be greatly enhanced if NADH could be efficiently utilized as a cofactor. A mutant form of 2,5-DKGR has previously been identified that exhibits two orders of magnitude higher activity with NADH in comparison to the wild-type enzyme, while retaining a high level of activity with NADPH. We report here an X-ray crystal structure of the holo form of this mutant in complex with NADH cofactor, as well as thermodynamic stability data. By comparing the results to our previously reported X-ray structure of the holo form of wild-type 2,5-DKGR in complex with NADPH, the structural basis of the differential NAD(P)H selectivity of wild-type and mutant 2,5-DKGR enzymes has been identified.  相似文献   

3.
Total DNA of a population of uncultured organisms was extracted from soil samples, and by using PCR methods, the genes encoding two different 2,5-diketo-D-gluconic acid reductases (DKGRs) were recovered. Degenerate PCR primers based on published sequence information gave internal gene fragments homologous to known DKGRs. Nested primers specific for the internal fragments were combined with random primers to amplify flanking gene fragments from the environmental DNA, and two hypothetical full-length genes were predicted from the combined sequences. Based on these predictions, specific primers were used to amplify the two complete genes in single PCRs. These genes were cloned and expressed in Escherichia coli. The purified gene products catalyzed the reduction of 2,5-diketo-D-gluconic acid to 2-keto-L-gulonic acid. Compared to previously described DKGRs isolated from Corynebacterium spp., these environmental reductases possessed some valuable properties. Both exhibited greater than 20-fold-higher kcat/Km values than those previously determined, primarily as a result of better binding of substrate. The Km values for the two new reductases were 57 and 67 microM, versus 2 and 13 mM for the Corynebacterium enzymes. Both environmental DKGRs accepted NADH as well as NADPH as a cosubstrate; other DKGRs and most related aldo-keto reductases use only NADPH. In addition, one of the new reductases was more thermostable than known DKGRs.  相似文献   

4.
The NADPH-dependent 2,5-diketo-D-gluconic acid (2,5-DKG) reductase enzyme is a required component in some novel biosynthetic vitamin C production processes. This enzyme catalyzes the conversion of 2,5-DKG to 2-keto-L-gulonic acid, which is an immediate precursor to L-ascorbic acid. Forty unique site-directed mutations were made at five residues in the cofactor-binding pocket of 2,5-DKG reductase A in an attempt to improve its ability to use NADH as a cofactor. NADH is more stable, less expensive and more prevalent in the cell than is NADPH. To the best of our knowledge, this is the first focused attempt to alter the cofactor specificity of a member of the aldo-keto reductase superfamily by engineering improved activity with NADH into the enzyme. Activity of the mutants with NADH or NADPH was assayed using activity-stained native polyacrylamide gels. Eight of the mutants at three different sites were identified as having improved activity with NADH. These mutants were purified and subjected to a kinetic characterization with NADH as a cofactor. The best mutant obtained, R238H, produced an almost 7-fold improvement in catalysis with NADH compared with the wild-type enzyme. Surprisingly, most of this catalytic improvement appeared to be due to an improvement in the apparent kcat for the reaction rather than a large improvement in the affinity of the enzyme for NADH.  相似文献   

5.
Banta S  Swanson BA  Wu S  Jarnagin A  Anderson S 《Biochemistry》2002,41(20):6226-6236
The strict cofactor specificity of many enzymes can potentially become a liability when these enzymes are to be employed in an artificial metabolic pathway. The preference for NADPH over NADH exhibited by the Corynebacterium 2,5-diketo-D-gluconic acid (2,5-DKG) reductase may not be ideal for use in industrial scale vitamin C biosynthesis. We have previously reported making a number of site-directed mutations at five sites located in the cofactor-binding pocket that interact with the 2'-phosphate group of NADPH. These mutations conferred greater activity with NADH upon the Corynebacterium 2,5-DKG reductase [Banta, S., Swanson, B. A., Wu, S., Jarnagin, A., and Anderson, S. (2002) Protein Eng. 15, 131-140; (1)]. The best of these mutations have now been combined to see if further improvements can be obtained. In addition, several chimeric mutants have been produced that contain the same residues as are found in other members of the aldo-keto reductase superfamily that are naturally able to use NADH as a cofactor. The most active mutants obtained in this work were also combined with a previously reported substrate-binding pocket double mutant, F22Y/A272G. Mutant activity was assayed using activity-stained native polyacrylamide gels. Superior mutants were purified and subjected to a simplified kinetic analysis. The simplified kinetic analysis was extended for the most active mutants in order to obtain the kinetic parameters in the full-ordered bi bi rate equation in the absence of products, with both NADH and NADPH as cofactors. The best mutant 2,5-DKG reductase produced in this work was the F22Y/K232G/R238H/A272G quadruple mutant, which exhibits activity with NADH that is more than 2 orders of magnitude higher than that of the wild-type enzyme, and it retains a high level of activity with NADPH. This new 2,5-DKG reductase may be a valuable new catalyst for use in vitamin C biosynthesis.  相似文献   

6.
In this work an Escherichia coli metabolically engineered to ferment lignocellulosic biomass sugars to succinic acid was tested for growth and fermentation of detoxified softwood dilute sulfuric acid hydrolyzates, and the minimum detoxification requirements were investigated with activated carbon and/or overliming treatments. Detoxified hydrolyzates supported fast growth and complete fermentation of all hydrolyzate sugars to succinate at yields comparable to pure sugar, while untreated hydrolyzates were unable to support either growth or fermentation. Activated carbon treatment was able to remove significantly more HMF and phenolics than overliming. However, in some cases, overliming treatment was capable of generating a fermentable hydrolyzate where activated carbon treatment was not. The implications of this are that in addition to the known organic inhibitors, the changes in the inorganic content and/or composition due to overliming are significant to the hydrolyzate toxicity. It was also found that any HMF remaining after detoxification was completely metabolized during aerobic cell growth on the hydrolyzates that were capable of supporting growth.  相似文献   

7.
A screening method has been developed to support randomized mutagenesis of amino acids in the cofactor-binding pocket of the NADPH-dependent 2,5-diketo-D-gluconic acid (2,5-DKG) reductase. Such an approach could enable the isolation of an enzyme that can better catalyze the reduction of 2,5-DKG to 2-keto-L-gulonic acid (2-KLG) using NADH as a cofactor. 2-KLG is a valuable precursor to ascorbic acid, or vitamin C, and an enzyme with increased activity with NADH may be able to improve two potential vitamin C production processes. Previously we have identified three amino acid residues that can be mutated to improve activity with NADH as a cofactor. As a pilot study to show feasibility, a library was made with these three amino acids randomized, and 300 random colonies were screened for increased NADH activity. The activities of seven mutants with apparent improvements were verified using activity-stained native gels, and sequencing showed that the amino acids obtained were similar to some of those already discovered using rational design. The four most active mutants were purified and kinetically characterized. All of the new mutations resulted in apparent kcat values that were equal to or higher than that of the best mutant obtained through rational design. At saturating levels of cofactor, the best mutant obtained was almost twice as active with NADH as a cofactor as the wild-type enzyme is with NADPH. This screen is a valuable tool for improving 2,5-DKG reductase, and it could easily be modified for improving other aspects of this protein or similar enzymes.  相似文献   

8.
The attrition bioreactor (ABR) combines wet ball milling and enzymatic hydrolysis in one process step. It was found that the ABR did not accelerate enzyme deacti-vation. Interfacial forces, not shear forces, caused the most deactivation. Elimination of the air-liquid interface by covering the reactor substantially increased enzyme stability. A simple exponential kinetic model was tested to predict the cellulose conversion in an ABR. Kinetic parameters were estimated from batch runs performed at various enzyme and substrate concentrations.  相似文献   

9.
Towards a high-yield bioconversion of ferulic acid to vanillin   总被引:13,自引:2,他引:11  
Natural vanillin is of high interest in the flavor market. Microbial routes to vanillin have so far not been economical as the medium concentrations achieved have been well below 1 g l−1. We have now screened microbial isolates from nature and known strains for their ability to convert eugenol or ferulic acid into vanillin. Ferulic acid, in contrast to the rather toxic eugenol, was found to be an excellent precursor for the conversion to vanillin, as doses of several g l−1 could be fed. One of the isolated microbes, later identified as Pseudomonas putida, very efficiently converted ferulic acid to vanillic acid. As vanillin was oxidized faster than ferulic acid, accumulation of vanillin as an intermediate was not observed. A completely different metabolic flux was observed with Streptomyces setonii. During the metabolism of ferulic acid, this strain accumulated vanillic acid only to a level of around 200 mg l−1 and then started to accumulate vanillin as the principal metabolic overflow product. In shake-flask experiments, vanillin concentrations of up to 6.4 g l−1 were achieved with a molar yield of 68%. This high level now forms the basis for an economical microbial production of vanillin that can be used for flavoring purposes. Received: 15 October 1998 / Received revision: 13 January 1999 / Accepted: 18 January 1999  相似文献   

10.
A two-step batch fermentation-bioconversion of vanillin (4-hydroxy-3-methoxybenzaldehyde) to vanillic acid (4-hydroxy-3-methoxybenzoic acid) was developed, utilizing whole cells of Streptomyces viridosporus T7A. In the first step, cells were grown in a yeast extract-vanillin medium under conditions where cells produced an aromatic aldehyde oxidase. In the second step, vanillin was incubated with the active cells and was quantitatively oxidized to vanillic acid which accumulated in the growth medium. Vanillic acid was readily recovered from the spent medium by a combination of acid precipitation and ether extraction at greater than or equal to 96% molar yield and upon recrystallization from glacial acetic acid was obtained in greater than or equal to 99% purity.  相似文献   

11.
The impact of glucose on glycerol metabolism, especially on 3-hydroxypropionaldehyde (3-HPA) accumulation by resting cells of Lactobacillus reuteri has been investigated. Two systems were used in the study: MRS(-) (modified MRS - omitting glucose, acetate and Tween 80) and distilled water (H(2)O). In MRS(-), addition of glucose enhanced glycerol metabolism in resting cells of L. reuteri, consequently increasing the accumulation of 3-HPA by regulating the NAD/NADH ratio. Enhanced glycerol metabolism correlated positively with the concentration of glucose. NADH produced during glucose metabolism was preferentially reoxidized to NAD by the reduction of 3-HPA to 1,3-propanediol; an adequate supply of glycerol therefore outweighed the repression of glucose on the accumulation of 3-HPA. At a molar ratio of glucose to glycerol no greater than 0.33, accumulation of 3-HPA was favored. In non-growing medium (H(2)O), addition of glucose seemed to be counter-productive with respect to 3-HPA accumulation. Lactate had a positive impact on glycerol metabolism, presumably by altering the redox flux, resulting in enhanced 3-HPA accumulation in both MRS(-) and H(2)O systems.  相似文献   

12.
Lignocellulosic biomass has considerable potential for the production of fuels and chemicals as a promising alternative to conventional fossil fuels. However, the bioconversion of lignocellulosic biomass to desired products must be improved to reach economic viability. One of the main technical hurdles is the presence of inhibitors in biomass hydrolysates, which hampers the bioconversion efficiency by biorefinery microbial platforms such as Saccharomyces cerevisiae in terms of both production yields and rates. In particular, acetic acid, a major inhibitor derived from lignocellulosic biomass, severely restrains the performance of engineered xylose‐utilizing S. cerevisiae strains, resulting in decreased cell growth, xylose utilization rate, and product yield. In this study, the robustness of XUSE, one of the best xylose‐utilizing strains, was improved for the efficient conversion of lignocellulosic biomass into bioethanol under the inhibitory condition of acetic acid stress. Through adaptive laboratory evolution, we successfully developed the evolved strain XUSAE57, which efficiently converted xylose to ethanol with high yields of 0.43–0.50 g ethanol/g xylose even under 2–5 g/L of acetic stress. XUSAE57 not only achieved twofold higher ethanol yields but also improved the xylose utilization rate by more than twofold compared to those of XUSE in the presence of 4 g/L of acetic acid. During fermentation of lignocellulosic hydrolysate, XUSAE57 simultaneously converted glucose and xylose with the highest ethanol yield reported to date (0.49 g ethanol/g sugars). This study demonstrates that the bioconversion of lignocellulosic biomass by an engineered strain could be significantly improved through adaptive laboratory evolution for acetate tolerance, which could help realize the development of an economically feasible lignocellulosic biorefinery to produce fuels and chemicals.  相似文献   

13.
A two-step batch fermentation-bioconversion of vanillin (4-hydroxy-3-methoxybenzaldehyde) to vanillic acid (4-hydroxy-3-methoxybenzoic acid) was developed, utilizing whole cells of Streptomyces viridosporus T7A. In the first step, cells were grown in a yeast extract-vanillin medium under conditions where cells produced an aromatic aldehyde oxidase. In the second step, vanillin was incubated with the active cells and was quantitatively oxidized to vanillic acid which accumulated in the growth medium. Vanillic acid was readily recovered from the spent medium by a combination of acid precipitation and ether extraction at greater than or equal to 96% molar yield and upon recrystallization from glacial acetic acid was obtained in greater than or equal to 99% purity.  相似文献   

14.
循环利用重组大肠杆菌细胞转化合成丁二酸   总被引:1,自引:0,他引:1  
研究了回收丁二酸发酵液中的大肠杆菌进行细胞转化的可行性,以转化率和生产效率为指标,考察了不同菌体浓度、底物浓度、pH调节剂对细胞转化的影响。发酵结果表明大肠杆菌可以在仅含有葡萄糖和pH调节剂的水环境中转化生产丁二酸,并确定了最佳的转化条件为:细胞浓度(OD600)50,底物浓度40g/L,缓冲盐为MgCO3。基于优化好的条件,在7L发酵罐中进行重复批次转化,第1次转化的转化率和生产效率分别达到91%和3.22g/(L·h),第2次转化的生产效率和转化率达到了86%和2.04g/(L·h),第3次转化的转化率和生产效率分别达到了83%和1.82g/(L·h)。  相似文献   

15.
Yun J  Buchwald SL 《Chirality》2000,12(5-6):476-478
The efficient kinetic resolution of 2,5-disubstituted pyrrolines was accomplished by employing hydrosilylation with a chiral catalyst, (EBTHI)TiF2 (EBTHI = ethylenebis(tetrahydroindenyl)). An interesting isomerization reaction of the cyclic imines catalyzed by the same chiral catalyst was also discovered.  相似文献   

16.
17.
本实验旨在研究透性化嗜酸乳杆菌细胞生物转化共轭亚油酸的反应动力学。探讨了细胞浓度、底物浓度、反应体系pH值和温度等因素对生物转化共轭亚油酸反应速度的影响;建立了透性化嗜酸乳杆菌细胞生物转化共轭亚油酸的动力学模型。结果表明,透性化嗜酸乳杆菌细胞有利于共轭亚油酸的生物转化,最适细胞浓度、pH值和反应温度分别为10×1010ufc/mL、4.5和45℃;生物转化共轭亚油酸存在底物抑制现象,当亚油酸的浓度为0.6mg/mL时,反应速度达到最大值17.8μg/(mL·min)。在低亚油酸浓度下,反应初始阶段的反应规律与经典米氏方程相符,而在高亚油酸浓度下,存在底物抑制现象。在最适反应条件下建立了动力学模型,模型基本反映了共轭亚油酸的生物转化特性。  相似文献   

18.
Simultaneous isomerisation and fermentation (SIF) of xylose and simultaneous isomerisation and cofermentation (SICF) of glucose-xylose mixture was carried out by the yeastSaccharomyces cerevisiae in the presence of a compatible xylose isomerase. The enzyme converted xylose to xylulose andS. cerevisiae fermented xylulose, along with glucose, to ethanol at pH 5.0 and 30°C. This compatible xylose isomerase fromCandida boidinii, having an optimum pH and temperature range of 4.5–5.0 and 30–50°C respectively, was partially purified and immobilized on an inexpensive, inert and easily available support, hen egg shell. An immobilized xylose isomerase loading of 4.5 IU/(g initial xylose) was optimum for SIF of xylose as well as SICF of glucose-xylose mixture to ethanol byS. cerevisiae. The SICF of 30 g/L glucose and 70 g xylose/L gave an ethanol concentration of 22.3 g/L with yield of 0.36 g/(g sugar consumed) and xylose conversion efficiency of 42.8%.  相似文献   

19.
Simultaneous isomerisation and fermentation (SIF) of xylose and simultaneous isomerisation and cofermentation (SICF) of a glucose/xylose mixture was carried out by Saccharomyces cerevisiae in the presence of xylose isomerase. The SIF of 50 g l−1 xylose gave an ethanol concentration and metabolic yield of 7.5 g l−1 and 0.36 g (g xylose consumed)−1. These parameters improved to 13.4 g l−1 and 0.40 respectively, when borate was added to the medium. The SICF of a mixture of 50 g l−1 glucose and 50 g l−1 xylose gave an ethanol concentration and metabolic yield of 29.8 g l−1 and 0.42 respectively, in the presence of borate. Temperature modulation from 30 °C to 35 °C during fermentation further enhanced the above parameters to 39 g l−1 and 0.45 respectively. The approach was extended to the bioconversion of sugars present in a real lignocellulose hydrolysate (peanut-shell hydrolysate) to ethanol, with a fairly good yield. Received: 14 May 1999 / Received revision: 27 September 1999 / Accepted: 2 October 1999  相似文献   

20.
Penicillium decumbens is able to epoxidize cis-propenylphosphonic acid (cPA) to produce the antibiotic fosfomycin [FOM; also referred to as phosphonomycin and (-)-cis-1,2-epoxypropylphosphonic acid], a bioconversion of considerable commercial significance. We sought to improve the efficiency of the process by overexpression of the genes involved. A conventional approach of isolating the presumed epoxidase and its corresponding gene was not possible since cPA epoxidation could not be achieved with protein extracts. As an alternative approach, proteins induced by cPA were detected by two-dimensional gel electrophoresis. The observation that a 31-kDa protein (EpoA) was both cPA induced and overaccumulated in a strain which more efficiently converted cPA suggested that it might take part in the bioconversion. EpoA was purified, its amino acid sequence was partially determined, and the corresponding gene was isolated from cosmid and cDNA libraries with oligonucleotide probes. The DNA sequence for this gene (epoA) contained two introns and an open reading frame encoding a peptide of 277 amino acids having some similarity to oxygenases. When the gene was subcloned into P. decumbens, a fourfold increase in epoxidation activity was achieved. epoA-disruption mutants which were obtained by homologous recombination could not convert cPA to FOM. To investigate the regulation of the epoA promoter, the bialaphos resistance gene (bar, encoding phosphinothricin acetyltransferase) was used to replace the epoA-coding region. In P. decumbens, expression of the bar reporter gene was induced by cPA, FOM, and phosphorous acid but not by phosphoric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号