首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is essential to characterize the water use of plants that have potential for the stabilization of rising saline ground-water which could lead to increases in soil salinity. In this study, several techniques were used to determine the seasonal water use characteristics of the perennial grass Agropyron elongatum (tall wheatgrass) growing in a moderately saline, dryland environment with a fluctuating shallow groundwater table varying in electrical conductivity between 0 and 10 dS m?1. Soil conditions were examined in terms of water potential measurements, plant water sources were identified using a stable isotope of water (deuterium, 2H) and evapotranspiration was estimated using hydrological and ventilated chamber methods. Seasonal changes in soil water potential were caused by salt accumulation and soil moisture leading to changes in plant water availability, particularly in the surface soil region over summer and autumn. Evapotranspiration in A. elongatum was high over summer during the peak period of growth (4 mm d?1), with evidence of water use from groundwater and from specific regions of the soil profile. Evapotranspiration was low during the period that A. elongatum was partially senescent in autumn (< 0.5 mm d?1) and the lowest leaf water potential of -3 MPa that was measured occurred during this period of moderate water stress. Intermediate levels of water use (1.5 mm d?1) were measured during winter when the entire soil profile was available for water uptake. Based on physiological characteristics, including aspects of summer water use, root morphology and salt tolerance in A. elongatum, we conclude that this species is suitable for stabilizing the level of moderately saline groundwater in parts of southern Australia, which could reduce the potential for soil salinization.  相似文献   

2.
Effects of waterlogging were studied in the field and under glasshouse conditions on two clonal lines of Eucalyptus camaldulensis Dehnh (river red gum), which are used in the rehabilitation of damaged agricultural catchments in Western Australia. The plantation of 9-year-old trees was in a position that covered a range of waterlogging and salinity conditions. Up-slope the water table was deeper (0.65–1.5 m), whereas the water table was closer to the ground surface down-slope (0.45 m in winter; 1.25 m in summer). Salinity was greater downslope and increased at the end of the dry summer, remaining high until diluted by the winter rains. Trees of both clonal lines were smaller downslope and used less water over the year. Clone M80 used more water in winter; clone M66 more in summer. In the field, the roots of clone M80 were evenly distributed through the soil profile, while roots of clone M66 decreased with increasing depth. Production of new root terminals varied with season. Greatest production was in spring and early summer, with much lower production over late autumn and winter. Only clone M66 produced new root terminals at depth (60–75 cm) during the drier months of late summer and early autumn. At this time, saline ground-water was the main source for water uptake. To explore clonal differences more closely, the effects of prolonged waterlogging were studied under glasshouse conditions. Clone M80 grew similarly under freely drained and continuously waterlogged conditions for the experimental period (21 weeks). The response under continuously waterlogged conditions was achieved through adventitious root production. By contrast, growth of clone M66 was suppressed under continuous waterlogging, a response associated with the lack of adventitious root production. The results from field and glasshouse studies suggest that clone M80 is more adapted to waterlogging by relatively fresh water than clone M66, but that clone M66 may use water of higher salinity than clone M80. Clone M80 would be better suited to higher positions in partially cleared catchments, where rainfall provides relatively fresh soil water. Clone M66 is better suited to lower catchment positions due to its ability to utilize more saline groundwater. Restoration of the water balance of damaged agricultural catchments can be best managed by matching specialized genotypes with particular catchment positions.  相似文献   

3.
Johnson DW 《Oecologia》2008,155(1):43-52
The flow regimes of arid zone rivers are often highly variable, and shallow groundwater in the alluvial aquifers can be very saline, thus constraining the availability and quality of the major water sources available to riparian trees—soil water, shallow groundwater and stream water. We have identified water sources and strategies used by riparian trees in more highly saline and arid conditions than previously studied for riparian trees of arid zone rivers. Our research focused on the riparian species Eucalyptus coolabah, one of the major riparian trees of ephemeral arid zone rivers in Australia. The water sources available to this riparian tree were examined using δ18O isotope data from xylem, soil water, groundwater and surface water. Additionally, soil chloride and matric potential data were used to infer zones of water availability for root uptake. Despite the saline conditions, the trees used a mixture of soil water and groundwater sources, but they did not use surface water directly. The study identified three strategies used to cope with typically high groundwater and soil water salinities. Firstly, the trees preferentially grow in zones of most frequent flushing by infiltrating streamflow, such as the bank-tops of channels. Secondly, the trees limit water use by having low transpiration rates. Thirdly, the trees are able to extract water at very low osmotic potentials, with water uptake continuing at chloride concentrations of at least 20,000–30,000 mg L−1.  相似文献   

4.
R. F. Grant 《Plant and Soil》1995,172(2):309-322
There is a need to establish how root water uptake should be calculated under saline conditions, and to test calculated uptake against experimental data recorded under documented site conditions. In this study, the ecosystem simulation model ecosys was expanded to include an ion transfer-equilibrium-exchange model used to calculated electrical conductivity and osmotic potential. This expanded model was tested against experimental data for maize growth and water use reported under different irrigation and salinity levels at four different sites in the western U.S. to determine if salinity effects on crop growth and water use could be modelled from the effects of salinity on soil osmotic potential. The model was able to reproduce reductions in water use and phytomass yields on salinized (10 g total salts kg–1 water) soils that ranged from 10 to 50% of those on non-salinized controls. In general, these reductions increased with increasing irrigation deficits. These reductions arose in the model from reduced canopy water potentials and conductances caused by reduced osmotic potentials in the saline soils. The hypothesis that salinity effects on crop growth and water use are caused by salinity effects on soil osmotic potential appear to be supported under the range of conditions included in this study. Models such as ecosys that are based on general hypotheses for the effects of salinity upon biological activity may be well adapted for general use in assessing the effects of salinity on crop growth and water use with different soils, managements and climates.  相似文献   

5.
An analytical model, based on unsaturated zone water and solute balances, was developed to describe the uptake of saline groundwater by plants in dry regions. It was assumed that: i. initially, the profile had low water and salt contents to some depth; ii. both water and solutes move upwards from the water table by piston flow due only to plant water extraction; iii. the uptake of water concentrates solutes in the soil solution until some threshold salinity is reached, above which plants can no longer extract water due to osmotic effects; iv. uptake of the groundwater does not affect the water table level; and v. uptake of groundwater is only limited by transmission of groundwater through the soil. Model predictions were compared with measurements of groundwater uptake made over 15 months at five sites in aEucalyptus forest in a semi-arid area, using independently measured model parameters. Depth and salinity of groundwater, and soil type varied greatly between sites. Predicted groundwater uptake rates were close to measured values, generally being within ∼ 0.1 mm day-1. Sensitivity analysis showed that groundwater depth and salinity were the main controls on uptake of groundwater, while soil properties appeared to have a lesser effect. The model showed that uptake of groundwater would result in complete salinisation of the soil profile within 4 to 30 yr at the sites studied, unless salts were leached from the soil by rainfall or flood waters. However, a relatively small amount of annual leaching may be sufficient to allow groundwater uptake to continue. Thus groundwaters, even when saline, may be important sources of water to plants in arid and semi-arid areas.  相似文献   

6.
More than 2 M ha of remnant vegetation in Australia is predicted to be at risk from shallow water tables by 2050. Currently, vegetation is considered to be at risk where the water table is predicted to be less than 2 m below the soil surface, yet casual observation of areas affected by secondary salinity in the Western Australian wheatbelt has suggested that small differences in elevation (< 0.5 m) are important in determining plant health. In this study, we investigated how small changes in elevation (and hence depth to the water table) affected soil Cl concentrations and water contents, and whether small changes in elevation were associated with major changes in tree health in two remnants of Eucalyptus wandoo Blakely woodland with secondary salinity. At one site there were strong dissimilarities between soil samples collected above or below relative elevations of 0.5 m in areas with a shallow (0.3 m deep in September 2001) and saline water table. This was reflected in almost complete tree mortality at relative elevations below 0.5 m. However, low rainfall in 2001 meant that it was unlikely that current soil conditions had caused tree death. When water table data for 1999 was overlaid over plots of tree health and transect topography, high levels of tree mortality corresponded with areas where the water table was at or above the ground surface. At the other site, there was no clear relationship between elevation, soil characteristics and tree health. Localised variation in abiotic conditions and ecosystem processes at a fine-scale may buffer, to some extent, the spatial impact of soil salinity and waterlogging in remnant vegetation. Collapses in tree health at some sites are likely to be related to extreme and episodic events, which we may have limited ability to predict.  相似文献   

7.
Water uptake profile response of corn to soil moisture depletion   总被引:6,自引:1,他引:5  
The effects of soil moisture distribution on water uptake of drip‐irrigated corn were investigated by simultaneously monitoring the diurnal evolution of sap flow rate in stems, of leaf water potential, and of soil moisture, during intervals between successive irrigations. The results invalidate the steady‐state resistive flow model for the continuum. High hydraulic capacitance of wet soil and low hydraulic conductivity of dry soil surrounding the roots damped significantly diurnal fluctuations of water flow from bulk soil to root surface. By contrast, sap flow responded directly to the large diurnal variation of leaf water potential. In wet soil, the relation between the diurnal courses of uptake rates and leaf water potential was linear. Water potential at the root surface remained nearly constant and uniformly distributed. The slope of the lines allowed calculating the resistance of the hydraulic path in the plant. Resistances increased in inverse relation with root length density. Soil desiccation induced a diurnal variation of water potential at the root surface, the minimum occurring in the late afternoon. The increase of root surface water potential with depth was directly linked to the soil desiccation profile. The development of a water potential gradient at the root surface implies the presence of a significant axial resistance in the root hydraulic path that explains why the desiccation of the soil upper layer induces an absolute increase of water uptake rates from the deeper wet layers.  相似文献   

8.
Measurements of the ratio of deuterium to hydrogen (D/H) in stem xylem water were used to determine the relative uptake of summer precipitation by four co-occurring plant species in southern Utah. The species compared included two trees, Juniperus osteosperma and Pinus edulis, and two shrubs, Artemisia tridentata and Chrysothamnus nauseousus. There were significant differences among species in the relative use of summer precipitation. Chrysothamnus nauseosus had stem water D/H ratios in May through August 1990 that were not significantly different from that of groundwater. In contrast, the other three species had stem water D/H ratios that were intermediate between the groundwater value and summer precipitation values, indicating that a mixture of both precipitation and groundwater was being used by these species. The two tree species generally had higher D/H values than did A. tridentata indicating a higher average uptake of summer precipitation, although the roots of J. osteosperma and P. edulis may not be as responsive to small precipitation events as A. tridentata. There was a strong negative correlation between stem water D/H ratios and predawn water potential, which suggests a relationship between plant rooting pattern and water source use. In addition, water-use efficiency during photosynthetic gas exchange, calculated from leaf carbon isotope composition, differed among species and was strongly correlated with differences in the relative uptake of summer precipitation.  相似文献   

9.
G. Naidoo  S. G. Mundree 《Oecologia》1993,93(3):360-366
The effects of waterlogging and salinity on morphological and physiological responses in the marsh grass Sporobolus virginicus (L.) Kunth were investigated in a 4×2 factorial experiment. Plants were subjected to four salinity levels (0, 100, 200 and 400 mol m–3 NaCl) and two soil inundation conditions (drained and flooded) for 42 days. Flooding at 0 mol m–3 NaCl caused initiation of adventitious surface roots, increased internal acration and plant height, induced alcohol dehydrogenase activity (ADH), and decreased belowground biomass and the number of culms per plant. Salinity increase from 0 to 400 mol m–3 NaCl under drained conditions increased leaf and root proline concentrations and decreased photosynthesis, aboveground biomass, number of culms per plant and number of internodes per culm. Concurrent waterlogging and salinity induced ADH activity and adventitious surface roots but decreased plant height and aboveground biomass. Internal air space increased with waterlogging from 0 to 100 mol m–3 NaCl but further increases in salinity to 400 mol m–3 reduced air space. Combined waterlogging and salinity stresses, however, had no effect on photosynthesis or on the concentrations of proline in leaves or roots. These results are discussed in relation to the widespread colonization by S. virginicus of a wide range of coastal environments varying in soil salinity and in the frequency and intensity of waterlogging.  相似文献   

10.
Influence of root density on the critical soil water potential   总被引:1,自引:1,他引:0  
Estimation of root water uptake in crops is important for making many other agricultural predictions. This estimation often involves two assumptions: (1) that a critical soil water potential exists which is constant for a given combination of soil and crop and which does not depend on root length density, and (2) that the local root water uptake at given soil water potential is proportional to root length density. Recent results of both mathematical modeling and computer tomography show that these assumptions may not be valid when the soil water potential is averaged over a volume of soil containing roots. We tested these assumptions for plants with distinctly different root systems. Root water uptake rates and the critical soil water potential values were determined in several adjacent soil layers for horse bean (Vicia faba) and oat (Avena sativa) grown in lysimeters, and for field-grown cotton (Gossypium L.), maize (Zea mays) and alfalfa (Medicago sativa L.) crops. Root water uptake was calculated from the water balance of each layer in lysimeters. Water uptake rate was proportional to root length density at high soil water potentials, for both horse bean and oat plants, but root water uptake did not depend on root density for horse bean at potentials lower than −25 kPa. We observed a linear dependency of a critical soil water potential on the logarithm of root length density for all plants studied. Soil texture modified the critical water potential values, but not the linearity of the relationship. B E Clothier Section editor  相似文献   

11.
Greenhouse experiments were conducted to assess the effect of salinisation of soil on emergence, growth, water content, proline content and mineral accumulation of seedlings of Delonix regia (Hook.) Raf. (Fabaceae). Sodium chloride (NaCl) was added to the soil and salinity was maintained at 0.3, 1.9, 3.9, 6.0 and 7.9 dS m−1. A negative relationship between seedling emergence and salt concentration was obtained. Salinity caused reduction in water content and water potential of tissues (leaves, stems, tap roots and lateral roots) that resulted in internal water deficit to plants. Consequently, shoot and root elongation, leaf expansion and dry matter accumulation in leaves, stems, tap roots and lateral root tissues of seedlings significantly decreased in response to increasing concentration of salt. Proline content in tissues was very low. There were no effective mechanisms to control net uptake of Na on root plasma membrane and subsequently its transport to shoot tissues. Potassium content significantly decreased in tissues in response to salinisation of soil. This tree species is a moderate salt-tolerant glycophytic plant. Nitrogen and calcium content in tissues significantly decreased as soil salinity increased. Phosphors content in tissues exhibited a declining trend with increase in soil salinity. Changes in tissues and whole-plant accumulation pattern of other elements tested, as well as possible mechanisms for avoidance of Na toxicity in this tree species in response to salinisation, are discussed.  相似文献   

12.
Eucalypt plantations have been trialled in recent years as a control measure for shallow groundwater associated with secondary salinity. Uncertainty still remains as to the potential growth and water use of these plantations; these relate mainly to the problems associated with drought stress and accumulated solutes in the root zone resulting from saline groundwater uptake. This study investigates the water balance and identifies water sources of a 21 year old unirrigated Eucalyptus grandis W. Hill ex Maiden (flooded or rose gum) and E. camaldulensis Dehnh. (river red gum) plantation over shallow saline groundwater in the Shepparton Irrigation Region of northern Victoria, Australia. Water sources used by the plantation were identified using a monthly water balance approach, together with investigations of stable isotopes of water (deuterium and oxygen-18), soil water and chloride. We found these trees to be heavily reliant on rainwater, and derive approximately 15% of their transpiration requirements from saline (10,000 mg l?1) groundwater at the capillary fringe. Rainfall at the site is relatively low (465 mm year?1 on average) and groundwater uptake provides a stable water source that leads to a slight extension of the growing period of these trees. There is little potential for recharge, with subsurface water moving into the groundwater depression created by tree water uptake.  相似文献   

13.
 Seasonal change in the δ2H content of water from twig sap, soil, rainfall and groundwater were measured to determine the water sources accessed by jarrah (Eucalyptus marginata) trees at three sites in Western Australia with differing soils and depths to water table. During winter and spring the main contributor to the water uptake of the trees was stored water in the surface layers of the soil replenished by predominantly winter rainfall. With the onset of summer drought jarrah became more reliant on water from deeper down the profile. There was no clear evidence that jarrah could tap water from groundwater more than 14 m deep in deep sands. Defining the source of water for trees in deep lateritic soils using stable isotopes is hampered by the uniform deuterium profiles down most of the unsaturated zone and into the groundwater. There was a limited response in the δ2H values of sapwater in twigs to changes in the δ2H of the upper layers of the deep sand following input of rainfall in autumn. The damped response was related to the small variation in the δ2H composition of rainfall in most events during the year and the mixing in the tree of water extracted from different locations in the soil profile. Received: 21 August 1995 / Accepted: 3 December 1995  相似文献   

14.
Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na+ and Cl? around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand–clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na+ and Cl? concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P  < 0.001). However, by day 35, the groundwater salinity and height above the water table remained significant factors, but the root fresh mass density was no longer significant. Regression of data from the 200 and 400 mM NaCl treatments showed that the rate of Na+ accumulation in the soil increased until the Na+ concentration reached ~250 mM within the root zone; subsequent decreases in accumulation were associated with decreases in stomatal conductance. Salinization of the soil solution therefore had a feedback effect on further salinization within the root zone.  相似文献   

15.
Uptake of soil water by plants may result in significant gradients between bulk soil and soil in the vicinity of roots. Few experimental studies of water potential gradients in close proximity to roots, and no studies on the relationship of water potential gradients to the root and leaf water potentials, have been conducted. The occurrence and importance of pre-dawn gradients in the soil and their relation to the pre-dawn root and leaf water potentials were investigated with seedlings of four species. Pre-germinated seeds were grown without watering for 7 and lid in a silt loam soil with initial soil matric potentials of -0.02, -0.1 and -0.22 MPa. Significant gradients, independent of the species, were observed only at pre-dawn soil matric potentials lower than -0.25 MPa; the initial soil matric potentials were -0.1 MPa. At an initial bulk soil matric potential of -0.22 MPa, a steep gradient between bulk and rhizoplane soil was observed after 7 d for maize (Zea mays L. cv. Issa) and sunflower (Helianthus annuus L. cv. Nanus), in contrast to barley (Hordeum vulgare L. cv. Athos) and wheat (Triticum aestivum L. cv. Kolibri). Pre-dawn root water potentials were usually about the same as the bulk soil matric potential and were higher than the rhizoplane soil matric potential. Pre-dawn root and leaf water potentials tended to be much higher than rhizoplane soil matric potentials when the latter were lower than -0.5 MPa. It is concluded that plants tend to become equilibrated overnight with the wetter bulk soil or with wetter zones in the bulk soil. Plants can thus circumvent negative effects of localized steep pre-dawn soil matric potential gradients. This may be of considerable importance for water uptake and growth in drying soil.  相似文献   

16.
Water sources of Eucalyptus camaldulensis Dehn. trees were investigated on a semiarid floodplain in south-eastern Australia. The trees investigated ranged in distance from 0.5 to 40 m from a stream, with electrical conductivity 0.8 dSm–1, and grew over groundwater with electrical conductivity ranging from 30 to 50 dSm–1. The sources of water being used by the trees were investigated using the naturally occurring stable isotopes of water and measurements of soil water potential. Xylem water potential and leaf conductance were also examined to identify the trees' response to using these sources of water. Trees at distances greater than about 15 m from the stream used no stream water. The trees used groundwater in summer and a combination of groundwater and rain-derived surface-soil water (0.05–0.15 m depth) in winter. In doing so they suffered water stress at electrical conductivities higher than approximately 40 dSm–1 (equivalent to approximately –1.4 MPa). Trees adjacent to the stream used stream water directly in summer, but may have used stream water from the soil profile in winter, after the stream had risen and recharged the soil water. E. camaldulensis appeared to be partially opportunistic in the sources of water they used.  相似文献   

17.
In this study, we explored the effect of salinity on cadmium (Cd) tolerance and phytoremediation potential of Acacia nilotica. Two-month-old uniform plants of A. nilotica were grown in pots contaminated with various levels of Cd (0, 5, 10, and 15 mg kg?1), NaCl (0%, 0.5%, 1.0% (hereafter referred as salinity), and all possible combinations of Cd + salinity for a period of six months. Results showed that shoot and root growth, biomass, tissue water content and chlorophyll (chl a, chl b, and total chl a+b) contents decreased more in response to salinity and combination of Cd + salinity compared to Cd alone. Shoot and root K concentrations significantly decreased with increasing soil Cd levels, whereas Na and Cl concentrations were not affected significantly. Shoot and root Cd concentrations, bioconcentration factor (BCF) and translocation factor (TF) increased with increasing soil Cd and Cd + salinity levels. At low level of salinity (0.5%), shoot and root Cd uptake enhanced, while it decreased at high level of salinity (1.0%). Due to Cd tolerance, high shoot biomass and shoot Cd uptake, this tree species has some potential for phytoremediation of Cd from the metal contaminated saline and nonsaline soils.  相似文献   

18.
Water use and sodium chloride uptake by apple trees   总被引:2,自引:0,他引:2  
D. W. West 《Plant and Soil》1978,50(1-3):37-49
Summary Apple trees grown with their root systems split into halves were used to study the effects of non-uniform salinity stress within a root system upon salt and water uptake. Water uptake declined rapidly when sodium chloride solution (90 meq l−1) was added to any root zone but uptake increased correspondingly in the non-saline root zone of each tree. This changed pattern of water uptake with partial salinization did not change the total water use by the trees compared with their water use when neither root zone was salt stressed. After a‘steady-state’ condition of water uptake had been reached 80 to 85% of the water was taken up in the non-saline root zone. Irrigation at three soil matric potential intervals of −6.6, −33 and −66 kPa allowed to develop in the non-saline root zone of each tree did not affect water use responses. Leaf concentrations of Ca, Mg and K were unaffected by treatments. Chloride and Na concentrations increased in leaves with exposure to salinity stress in half root zones and with increasing soil matric potential stress. Some evidence was obtained using tritium enriched water that water was transferred from a non-saline root zone into a saline root zone but the volume involved was unmeasurable.  相似文献   

19.
Greenhouse experiments were conducted to assess the effect of salinisation of soil on emergence, growth, water content, proline content and mineral accumulation of seedlings of Delonix regia (Hook.) Raf. (Fabaceae). Sodium chloride (NaCl) was added to the soil and salinity was maintained at 0.3, 1.9, 3.9, 6.0 and 7.9 dS m?1. A negative relationship between seedling emergence and salt concentration was obtained. Salinity caused reduction in water content and water potential of tissues (leaves, stems, tap roots and lateral roots) that resulted in internal water deficit to plants. Consequently, shoot and root elongation, leaf expansion and dry matter accumulation in leaves, stems, tap roots and lateral root tissues of seedlings significantly decreased in response to increasing concentration of salt. Proline content in tissues was very low. There were no effective mechanisms to control net uptake of Na on root plasma membrane and subsequently its transport to shoot tissues. Potassium content significantly decreased in tissues in response to salinisation of soil. This tree species is a moderate salt-tolerant glycophytic plant. Nitrogen and calcium content in tissues significantly decreased as soil salinity increased. Phosphors content in tissues exhibited a declining trend with increase in soil salinity. Changes in tissues and whole-plant accumulation pattern of other elements tested, as well as possible mechanisms for avoidance of Na toxicity in this tree species in response to salinisation, are discussed.  相似文献   

20.
Hydraulic redistribution: limitations for plants in saline soils   总被引:1,自引:0,他引:1       下载免费PDF全文
Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build‐up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non‐saline soils, will experience a dampened magnitude of water potential gradients in the soil–plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号