首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoptosis is characterized by various cell morphological and biochemical features, one of which is the internucleosomal degradation of genomic DNA. The role of the human chromatin-bound Ca(2+)- and Mg(2+)-dependent endonuclease (CME) DNAS1L3 and its inhibition by poly(ADP-ribosyl)ation in the DNA degradation that accompanies apoptosis was investigated. The nuclear localization of this endonuclease is the unique feature that distinguishes it from other suggested apoptotic nucleases. Purified recombinant DNAS1L3 was shown to cleave nuclear DNA into both high molecular weight and oligonucleosomal fragments in vitro. Furthermore, exposure of mouse skin fibroblasts expressing DNAS1L3 to inducers of apoptosis resulted in oligonucleosomal DNA fragmentation, an effect not observed in cells not expressing this CME, as well as in a decrease in cell viability greater than that apparent in the control cells. Recombinant DNAS1L3 was modified by recombinant human poly(ADP-ribose) polymerase (PARP) in vitro, resulting in a loss of nuclease activity. The DNAS1L3 protein also underwent poly(ADP-ribosyl)ation in transfected mouse skin fibroblasts in response to inducers of apoptosis. The cleavage and inactivation of PARP by a caspase-3-like enzyme late in apoptosis were associated with a decrease in the extent of DNAS1L3 poly(ADP-ribosyl)ation, which likely releases DNAS1L3 from inhibition and allows it to catalyze the degradation of genomic DNA.  相似文献   

2.
Apoptosisorprogrammedcelldeath(PCD)isaprocessofcelldeletionwhichoccursinresponsetoanumberofcytotoxicandphysiologicallyrelevantstimuli.Thisprocessischaracterizedbyseveralearlymorphologicalterationsincludingplasmaandnuclearmembraneblebbing.Endogenousendo…  相似文献   

3.
We examined the fragmentation of DNA treated with N-methyl-N-nitrosourea under conditions in which Ca2+, Mg2+-dependent endonuclease is active. The molecular mass of DNA found in mouse liver slices treated with methylnitrosurea in the presence of Ca2+ plus Mg2+ was 4 X 10(5) Da. Similar results were obtained with a reconstituted system containing partially purified Ca2+, Mg2+-dependent endonuclease and methylnitrosurea-treated DNA. The enzyme extensively cleaved methylnitrosurea-treated DNA, compared with non-treated DNA. The methylnitrosurea-treated nuclear proteins obtained from mouse liver nuclei had no effect on the DNA fragmentation by the enzyme. Using closed-circular DNA treated with methylnitrosurea, the enzyme produced single-strand cuts in the DNA, as was seen in non-treated, closed-circular DNA, however, the rate of hydrolysis was increased. Ca2+, Mg2+-dependent endonuclease thus warrants further investigation, with regard to the precise mechanism of extensive degradation of DNA in cells treated with carcinogenic alkylating agents.  相似文献   

4.
Previously, we have purified three distinct DNases from spermatozoa of sea urchin Strongylocentrotus intermedius and we suppose the role of Ca2+, Mg2+-dependent DNase (Ca, Mg-DNase) in apoptosis of spermatozoa. Two-headed sphingolipid rhizochalin (Rhz) induced characteristic apoptotic nuclear chromatin changes, internucleosomal DNA cleavage, and activation of caspase-9, caspase-8, and caspase-3 in spermatozoa as was shown by fluorescence Hoechst 33342/PI/FDA analysis, DNA fragmentation assay, and fluorescence caspase inhibitors FAM-LEHD-fmk, FAM-IETD-fmk, and FAM-DEVD-fmk, respectively. Inhibitor of caspase-3 z-DEVD-fmk subdued Rhz-induced internucleosomal ladder formation, which confirmed the major role of caspase-3 in apoptotic DNA cleavage probably through Ca, Mg-DNase activation. Participation of sea urchin Ca, Mg-DNase in apoptosis of spermatozoa was demonstrated by ions Zn2+ blocking of Rhz-induced DNA fragmentation due to direct inhibition of the Ca, Mg-DNase and internucleosomal cleavage of HeLa S and Vero E6 cell nuclei chromatin by highly purified Ca, Mg-DNase.  相似文献   

5.
A functional relationship between the apoptotic endonuclease DNAS1L3 and the chemotherapeutic drug VP-16 was established. The lymphoma cell line, Daudi, exhibited a significant resistance to VP-16 treatment in comparison to the lymphoma/leukemia cell line, U-937. While U-937 cells degraded their DNA into internucleosomal fragments, Daudi cells failed to undergo such fragmentation in response to the drug. Activation of both caspase-3 and DNA fragmentation factor was not sufficient to trigger internucleosomal DNA fragmentation in Daudi cells. No correlation was found between expression levels of topoisomerase-II, Pgp, Bcl-2, Bax, or Bad and decreased sensitivity of Daudi cells to VP-16. Daudi cells failed to express DNAS1L3 and ectopic expression of this protein significantly sensitized the cells to VP-16. An enhancement of caspase-3 activity and collapse of mitochondrial membrane potential underlie DNAS1L3-mediated sensitization of Daudi cells to VP-16, which may be a direct result of DNAS1L3-mediated increase in PARP-1-activating DNA breaks after VP-16 treatment. Our results suggest that DNAS1L3 plays an active role in lymphoma cell sensitization to VP-16 and that its deficiency may constitute a novel mechanism of drug resistance in these cells.  相似文献   

6.
Permeabilized mammalian cells and isolated nuclei were used to study various aspects of DNA replication and repair. The present paper describes a progressive fragmentation of parental DNA in human lymphoblastoid cells that were permeabilized with L-alpha-lysophosphatidylcholine or with saponin and incubated at 37 degrees C in a DNA-synthesis mixture. The formation of DNA single-strand breaks (measured by alkaline elution) was linear with the time of incubation and was temperature-dependent. It was prevented by deleting Mg2+ or both Mg2+ and Ca2+ from the incubation mixture, or by the addition of EDTA. It was increased by deleting the components necessary for DNA synthesis, and by substituting Mn2+ for Mg2+ and Ca2+. DNA strand breaks also accumulated in isolated nuclei incubated in a DNA synthesis mixture, but not when Mg2+ was omitted. These results suggest that DNA fragmentation in permeabilized cells and nuclei was due to an activation of (Ca2+ + Mg2+)-dependent endodeoxyribonucleases. The integrity of template DNA needs to be ascertained when the conditions for measuring DNA synthesis in permeabilized cells or in nuclei are formulated.  相似文献   

7.
The molecular mechanism of activation of Ca2+/Mg2+-dependent endonuclease in thymocytes of irradiated rats was studied. Thymocyte nuclei of control and irradiated rats were pre-incubated with NAD under conditions favourable for poly ADP-ribosylation. Pre-incubation results in a decrease in the rate of autolytic DNA digestion by Ca2+/Mg2+-dependent endonuclease of 6-7- and 2-3-fold for control and irradiated animals, respectively. The activity of Ca2+/Mg2+-nuclease extracted from the nuclei pre-incubated with NAD is also considerably decreased. The presence of nicotinamide and thymidine in the preincubation medium prevents the suppression of Ca2+/Mg2+-nuclease activity. In the experiments performed with isolated nuclei and permeabilized thymocytes the synthesis of poly(ADP-ribose) does not significantly change within 1 h after irradiation at a dose of 10 Gy, whereas 2 and 3 h after the exposure it decreases by 35-40 and 45-55 per cent, respectively. The activity of poly(ADP-ribose) glycohydrolase in this period is similar to that in the controls. The average size of the de novo synthesized chains of poly(ADP-ribose) increases from 11 to 17 ADP-ribose units by the second hour after irradiation. Inhibition of poly(ADP-ribose) polymerase in the postirradiation period preceded the internucleosomal fragmentation of chromatin. The results suggest that activation of Ca2+/Mg2+-nuclease in irradiated thymocytes is accounted for by the disturbance of its poly ADP-ribosylation.  相似文献   

8.
Ca2+/Mg(2+)-dependent endonuclease has been implicated in the extensive internucleosomal DNA fragmentation that accompanies apoptosis (gene-directed cell death). We present further evidence that this enzyme is involved in apoptosis. Ca2+/Mg2+ nuclease activity was increased about 6-fold during colchicine-induced apoptosis in human chronic lymphocytic leukaemia cells. The increase in activity coincided with onset of DNA fragmentation. Spleen, liver, kidney and thymus expressed high levels of this enzyme while lung, brain, heart and testis contained little activity. Cells from tissues with high Ca2+/Mg2+ nuclease activity underwent rapid DNA fragmentation in response to a Ca2+ flux. Physiological concentrations of Zn2+ known to inhibit both apoptosis and DNA fragmentation also inhibited Ca2+/Mg2+ nuclease activity.  相似文献   

9.
We have detected Ca2+, Mg2+-dependent endonuclease activity in spleen cells of normal, Friend erythroleukemic, and phenylhydrazine-treated mice. When nuclei were isolated and incubated in the presence of Ca2+ and Mg2+ ions, the activity resulted in the production of 3'-OH termini in the cellular DNA and the release of chromatin due to internucleosomal DNA fragmentation. This enzyme activity was chromatin-bound and could be extracted from chromatin in an active form in 0.35 M KCl. The majority of endonuclease activity from erythroleukemic spleens was present in nuclei of precursor erythroid cells of low buoyant density (1.025-1.05 g/ml). Uninfected normal splenic tissue contained an endonuclease activity which was almost entirely confined to a B-lymphocyte population of high buoyant density (greater than 1.07 g/ml). Erythroid cell-enriched spleens from phenylhydrazine-treated mice exhibited a distribution of endonuclease activity in cells at low and high densities reflecting a mixture of erythroid and lymphoid cells. Cloned erythroleukemic cell lines propagated in vitro lacked cells of low density and showed no detectable endonuclease activity. However, nuclei from these cell lines were susceptible to exogenously added endonuclease extracted from erythroleukemic spleen cells. These same cell lines propagated as subcutaneous tumors contained endonuclease activity and a morphologically-similar low-density cell population which accounted for the endonuclease activity in these tumors. Nuclei from cloned lymphoid cell lines, representing different B-lymphocyte phenotypes, showed differences in the presence of endonuclease activity. Among the cell lines tested, only those expressing late B-cell markers showed detectable endonuclease activity.  相似文献   

10.
In autodigestion assays, endonucleaw activity in non-apoptotic HL-60 promydocytic leukemia cell nuclei cleaved the chromatin of he autologous cells to an oligonucleosomal length pattern. Both EGTA and EDTA inhibited the activation of endonuclease activity in isolated HL-60 cell nuclei. The inhibition by EDTA could be reversed by exogenous Ca2+. but not by exogenous Mg2+. In Ca2+/Mg2+-free nuclei digation buffer, addition of Ca2→ (1-10 mmol/L) induced endonuclease activity in the isolated nuclei, while addition of Mg2+ had no effect. In the presence of Ca2+(0.1 mmol/L), endonuclease activity was enhanced by exogenous Mg2+ (0.1-10mmol/L). These results suggest that the endonuclease responsible for internucleosomal DNA fragmentation in HL-60 cells during apoptosis is activated by Ca2+ and further modulated by Mg2+ in the presence of ca2+.  相似文献   

11.
Gamma-irradiation, glucocorticoid hormones, and calcium ionophores stimulate a suicide process in thymocytes, known as apoptosis or programmed cell death, that involves internucleosomal DNA fragmentation by a Ca(2+)- and Mg(2+)-dependent nuclear endonuclease. In this study we report that N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) blocked DNA fragmentation and cell death in thymocytes exposed to gamma-radiation, dexamethasone, or calcium ionophore A23187. WR-1065 protected the thymocytes from radiation-induced apoptosis when incubated with cells after irradiation but not before and/or during irradiation. WR-1065 inhibited Ca(2+)- and Mg(2+)-dependent DNA fragmentation in isolated thymocyte nuclei. Our results suggest that WR-1065 protects thymocytes from apoptosis by inhibiting Ca(2+)- and Mg(2+)-dependent nuclear endonuclease action.  相似文献   

12.
The endogenous endonuclease activity of chromatin in isolated rat liver nuclei in the presence of Mn2+, Mg2+ and Ca2+ + Mg2+ was studied. The existence of a Mn2+-dependent endonuclease activity not coupled with the Ca2+, Mg2+-dependent endonuclease was demonstrated, which was weaker than the former one in isolated cell nuclei but higher than in the preparation of Ca2+, Mg2+-dependent nuclease obtained by gel filtration through Toyopearl HW 60F. The Mn2+-dependent splitting of chromatin predominantly occurs at linker DNA of distal parts of chromatin loops. A split-off of purified DNA was more universal than in the presence of Ca2+, Mg2+-dependent endonuclease; the hydrolysis rate of native and denaturated DNA appeared to be the same.  相似文献   

13.
The major nuclease from Mycoplasma penetrans has been purified to homogeneity. The enzyme seems to be present as a membrane-associated precursor of 50 kDa and as a peripheral membrane monomeric polypeptide of 40 kDa that is easily removed by washing of cells with isotonic buffers and in the aqueous phase upon Triton partitioning of Triton X-114-solubilized protein. The 40-kDa nuclease was extracted from M. penetrans cells by Triton X-114 and phase fractionation and was further purified by chromatography on Superdex 75 and chelating Sepharose (Zn2+ form) columns. By gel filtration, the apparent molecular mass was 40 kDa. The purified enzyme exhibits both a nicking activity on superhelical and linear double-stranded DNA and a nuclease activity on RNA and single-stranded DNA. No exonuclease activity was found for this enzyme. This nuclease required both Mg2+ (optimum, 5 mM) and Ca2+ (optimum, 2 mM) for activity and exhibited a pH optimum between pH 7 and 8 for DNase activity. It was inhibited by Zn2+, Mn2+, heparin, sodium dodecyl sulfate, and chelator agents such EDTA and EGTA, but no effect was observed with ATP, 2-mercaptoethanol, N-ethylmaleimide, dithiothreitol, nonionic detergents, phenylmethylsulfonyl fluoride, and iodoacetamide. Nuclease activity was inhibited by diethylpyrocarbonate at both pH 6 and 8 and by pepstatin, suggesting the involvement of a histidine and an aspartate in the active site. When added to human lymphoblast nuclei, the purified M. penetrans endonuclease induced internucleosomal fragmentation of the chomatin into oligonucleosomal fragments. On the basis of this result, and taking into account the fact that M. penetrans has the capacity to invade eucaryotic cells, one can suggest, but not assert, that produced Ca2+/Mg2+-dependent endonuclease may alter the nucleic acid metabolism of host cells by DNA and/or RNA degradation and may act as a potential pathogenic determinant.  相似文献   

14.
Zinc ions exert an inhibitory effect on Ca(2+)Mg(2+)-dependent endonuclease which is supposed to be responsible for the fragmentation of DNA during apoptosis. In the experimental system we used, that is HeLa cells treated with VP-16, the protection from internucleosomal DNA degradation is modulated by Zn concentration and appears to be dependent on the time after treatment. This effect does not prevent cell death or occurrence of apoptotic parameters, suggesting that DNA ladder appearance is not a crucial event in apoptosis. The activation of poly(ADP-ribose)polymerase following the administration of VP-16, is not observed in cells in which DNA fragmentation has been abolished by zinc, supporting the hypothesis that this event is regulated by the appearance of small-sized DNA fragments.  相似文献   

15.
Possible mechanisms of internucleosomal DNA fragmentation in thymocytes of irradiated rats were studied. It was shown that thymocyte nuclei contain at least two nucleases that cleave DNA between nucleosomes — a Ca2+/Mg2+-dependent nuclease and an acidic one which does not depend on bivalent ions. 2 and 3 h after irradiation at a dose of 10 Gy the initial rate of DNA cleavage by Ca2+/Mg2+-dependent nuclease in isolated nuclei increased three and seven times, respectively, but the kinetics of DNA digestion by acidic nuclease did not change. The experiments with cycloheximide indicated that Ca2+/Mg2+-dependent endonuclease turns over at a high rate. The activity of the cytoplasmic acidic and Mg2+-dependent nucleases was shown to increase (by 40 and 50%, respectively) 3 h after irradiation. The effect is caused by the de novo synthesis of the nucleases. At the same time the activity of nuclear nucleases did not essentially change. The chromatin isolated from rat thymocytes 3 h after irradiation did not differ in its sensitivity to some exogenic nucleases (DNAase I, micrococcal nuclease and nuclease from Serratia marcescens) from the control. Thus, Ca2+/Mg2+-dependent endonuclease seems to be responsible for the postirradiation internucleosomal DNA fragmentation in dying thymocytes.  相似文献   

16.
The sea urchin embryo nuclei which retained their ability to maintain the DNA synthesis in an in vitro system were isolated. The DNA synthesis isolated nuclei was shown to be an ATP-dependent process which is inhibited by low concentrations of actinomycin D, a polymerase alpha araCTP inhibitor. The newly synthesized DNA is represented by short fragments of about 4S. After addition of Ca2+, Mg2+-dependent DNAase to sea urchin embryo nuclei, the synthesis of short DNA fragments is enhanced. This stimulating effect of Ca2+, Mg2+-dependent DNAase is ATP-dependent and is observed only within a narrow range of enzyme concentrations (of the order of 1-5 units of DNAase activity per ml of incubation sample). The increase in the enzyme concentration to 10 or more units of activity results in the depression of DNA synthesis. It is concluded that DNA replication in sea urchin embryo nuclei depends on the presence of active DNAases as well as on the number of accessible initiation sites of DNA replication.  相似文献   

17.
Apoptosis is commonly associated with the catabolism of the genome in the dying cell. The chromatin degradation occurs in essentially two forms: (1) internucleosomal DNA cleavage to generate oligonucleosomal-length fragments (180-200 bp and multiples thereof), and (2) cleavage of higher order chromatin structures to generate approximately 30-50 Kb fragments. To investigate this component of apoptosis and identify the nuclease(s) responsible, we have developed and utilized an in vitro assay that recapitulates the genomic destruction seen during apoptosis in vivo and allows the simultaneous analysis of both forms of DNA degradation from the same sample. Using this assay we evaluated the digestion patterns of several candidate apoptotic nucleases: DNase I, DNase II, and cyclophilin (NUC18) as well as the bacterial enzyme micrococcal nuclease (not thought to be involved in apoptosis). Chromatin degraded by DNase I formed a smear of DNA on conventional static-field agarose gels and approximately amp;30 - 50 Kb DNA fragments on pulsed field gels. In contrast, DNase II, at a physiologically relevant pH, had no effect on the integrity of HeLa chromatin in either analysis. Similar to DNase I, cyclophilin C produced only approximately 30-50 Kb DNA fragments but did not generate internucleosomal fragments. In contrast, micrococcal nuclease generated both oligonucleosomal and approximately 30-50 Kb DNA fragments. Nuclear extracts from glucocorticoid-treated apoptotic thymocytes generated oligonucleosomal DNA fragments and the larger approximately 30-50 Kb DNA fragments, fully recapitulating both types of apoptotic DNA degradation. Previously, differential sensitivity of nucleases to inhibition by Zn2+ was used to argue that two distinct enzymes mediate approximately 30-50 Kb DNA cleavage and internucleosomal DNA degradation. While, the nuclease activity present in thymocyte nuclear extracts was differentially sensitive to inhibition by Zn2+ during short term incubations it was not during prolonged digestions, suggesting that differences in DNA detection are likely to account for previous results. Together our studies show that none of the nucleases commonly associated with apoptosis could fully recapitulate the DNA degradation seen in vivo.  相似文献   

18.
Hg2+ (0.1 microM-0.5 microM) modified the Ca2+ signals elicited by either KCl or the glutamate-receptor agonist, N-methyl-D-aspartate (NMDA), in cerebellar granule cells (CGCs). Hg2+ enhanced the intracellular Ca2+ transient elicited by high K+ and prevented a complete recovery of the resting intracellular Ca2+ concentration ([Ca2+]i) after either KCl or NMDA stimulation. Higher Hg2+ concentrations (up to 1 microM) increased [Ca2+]i directly. Following the short-term exposure to Hg2+, CGCs underwent apoptosis, which was identified by the cleavage of DNA into large (700-50 kbp) and oligonucleosomal DNA fragments, and by the appearance of typical apoptotic nuclei. Combined treatment with 0.1-0.3 microM Hg2+ and a sublethal NMDA concentration (50 microM) potentiated DNA fragmentation and apoptotic cell death. When the exposure to Hg2+ was carried out in Ca2+-free media or in the presence of Ca2+ channel blockers (L-type or NMDA-R antagonists), the effects on signalling and apoptosis were prevented. Our results suggest that very low Hg2+ concentrations can trigger apoptosis in CGCs by facilitating Ca2+ entry through membrane channels.  相似文献   

19.
An endogenous Ca2+, Mg2+-dependent factor of enzymic nature (apparently an endonuclease) digests a part of chromatin in the rat liver nuclei producing DNA fragments of an uniform size. After 60 min of incubation at 15 degrees C and pH 7.50 in the presence of 5 mM MgCl2 and 2 mM CaCl2 87-93% of the total chromatin becomes soluble. The insoluble chromatin however contains 70-85% of the in vivo newly synthesized RNA. In regenerating liver the proportion of the insoluble residual chromatin increases while the radioactivity of the newly synthesized DNA in this fraction is highest. Residual chromatin can be solubilized by ultrasonic treatment only. The Ca2+, Mg2+-dependent dissolving factor is not present either in brain or in PMN leucocyte nuclei.  相似文献   

20.
Shiokawa D  Tanuma S 《Biochemistry》2001,40(1):143-152
We describe here the characterization of the so far identified human DNase I family DNases, DNase I, DNase X, DNase gamma, and DNAS1L2. The DNase I family genes are found to be expressed with different tissue specificities and suggested to play unique physiological roles. All the recombinant DNases are shown to be Ca(2+)/Mg(2+)-dependent endonucleases and catalyze DNA hydrolysis to produce 3'-OH/5'-P ends. High activities for DNase I, DNase X, and DNase gamma are observed under neutral conditions, whereas DNAS1L2 shows its maximum activity at acidic pH. These enzymes have also some other peculiarities: different sensitivities to G-actin, aurintricarboxylic acid, and metal ions are observed. Using a transient expression system in HeLa S3 cells, the possible involvement of the DNases in apoptosis was examined. The ectopic expression of each DNase has no toxic effect on the host cells; however, extensive DNA fragmentation is observed only in DNase gamma-transfected cells after the induction of apoptosis. Furthermore, DNase gamma is revealed to be located at the perinuclear region in living cells, and to translocate into the nucleus during apoptosis. Our results demonstrate that DNase I, DNase X, DNase gamma, and DNAS1L2 have similar but unique endonuclease activities, and that among DNase I family DNases, DNase gamma is capable of producing apoptotic DNA fragmentation in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号