首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The development of efficient tools is required for the eco-friendly detoxification and effective detection of neurotoxic organophosphates (OPs). Although enzymes have received significant attention as biocatalysts because of their high specific activity, the uneconomic and labor-intensive processes of enzyme production and purification make their broad use in practical applications difficult. Because whole-cell systems offer several advantages compared with free enzymes, including high stability, a reduced purification requirement, and low preparation cost, they have been suggested as promising biocatalysts for the detoxification and detection of OPs. To develop efficient whole-cell biocatalysts with enhanced activity and a broad spectrum of substrate specificity, several factors have been considered, namely the selected strains, the chosen OP-hydrolyzing enzymes, where enzymes are localized in a cell, and which enhancer will assist the expression, function, and folding of the enzyme. In this article, we review the current investigative progress in the development of engineered whole-cell biocatalysts with excellent OP-hydrolyzing activity, a broad spectrum of substrate specificity, and outstanding stability for the detoxification and detection of OPs.  相似文献   

2.
Four different proteases (trypsin, chymotrypsin, papain and pepsin) were covalently attached to the surface of a new type of porous zirconia, as well as a conventional porous silica, activated with 3-isothiocyanatopropyltriethoxy silane (NCS-silane). The immobilization efficiency onto the porous zirconia material was evaluated in terms of the amount of enzyme attached to the particles and from the biological activity remaining after the immobilization step. The results were compared with the corresponding experiments with a porous silica of similar surface area/g support material. In addition, the storage stability of the modified zirconia and silica biocatalysts were evaluated. These results indicated that specific immobilized enzyme biocatalysts can be achieved with this new zirconia support material which exhibits different properties to those observed with the more conventional silica-based materials. Moreover, the results with the enzyme-zirconia biocatalysts also indicate different characteristics when compared with data for the same enzymes immobilized under similar buffer conditions to organic support materials as previously described by various other investigators. The advantages of zirconia-based immobilized enzyme biocatalysts in terms of their density and chemical robustness are also described relative to other alternative support materials currently in use.  相似文献   

3.
Marine enzymes are characterized by well-known habitat-related features such as salt tolerance, hyperthermostability, barophilicity and cold adaptivity although the related environmental conditions are present also in many non-marine environments. Novel chemical and stereochemical characteristics usually possessed by these biocatalysts, increase their interest from scientific and applicative points of view both in academia and in research industry. Chemical and pharmaceutical fields, embracing almost the whole body of applications based on marine catalysts, strictly rely upon their (stereo) chemical features. This review article is organized in two distinct parts. In the first, examples of different types of enzymes identified in marine environment are tabulated showing the importance of marine bioprospecting: in fact, the marine habitat is one of the most important natural locations for enzyme bioprospecting activity. In the second part technological processes based on marine enzymes are described: remarkable or unusual bioprocesses are performed by marine biocatalysts taking advantages by the habitat-related characteristics above mentioned which are desirable features recognized from a general biotechnological perspective. With this aim in mind this review did not search just for novelty in most recent patents but for important aspects within each report, enabling the reader to appreciate the importance of marine environment as source of very useful biocatalyst.  相似文献   

4.
酵母表面展示酶技术   总被引:1,自引:0,他引:1  
酵母表面工程是利用载体蛋白将外源蛋白以活性形式锚定于酵母细胞外表面,免去了外源蛋白的纯化和固定,并且对其有稳定作用。本文综述了酵母表面展示技术的原理、步骤、优点以及目前常见的酵母表面展示酶,如淀粉水解酶、纤维素水解酶、与木糖利用相关的酶、脂肪酶、有机磷水解酶的构建及应用。  相似文献   

5.
生物催化是指将酶或生物有机体用于有用的化学转化的过程,在人们对传统化学催化的环境影响抱有忧虑的情况下,生物催化提供了一种有吸引力的选择。在过去的几十年里,对生物催化剂的研究每出现一次大的进步,生物催化的发展就会出现一次高潮。因此,生物催化剂的发现与改造已成为当今研究的热点。宏基因组文库技术的出现克服了许多微生物不可培养的障碍,人们能够从自然资源中获得丰富的潜在的生物催化剂。而基于理性设计的分子改造技术的发展,可以使得人们对潜在的生物催化剂进行快速而有效的改造以满足工业化生产的需求。随着生物催化剂发现与改造的手段不断进步,更多的优良生物催化剂得到了广泛的应用,生物催化在工业生产中也得到了更深入的应用。结合作者的研究工作,总结了生物催化剂发现与改良的一些研究进展,以为获得更多优良的、能够实现工业应用的生物催化剂奠定理论基础。  相似文献   

6.
Pictet–Spenglerases provide a key role in the biosynthesis of many biologically active alkaloids. There is increasing use of these biocatalysts as an alternative to traditional organic synthetic methods as they provide stereoselective and regioselective control under mild conditions. Products from these enzymes also contain privileged drug scaffolds (such as tetrahydroisoquinoline or β-carboline moieties), so there is interest in the characterization and use of these enzymes as versatile biocatalysts to synthesize analogs of the corresponding natural products for drug discovery. This review discusses all known Pictet–Spenglerase enzymes and their applications as biocatalysts.  相似文献   

7.
Enantioselective biocatalysis optimized by directed evolution   总被引:5,自引:0,他引:5  
Directed evolution methods are now widely used for the optimization of diverse enzyme properties, which include biotechnologically relevant characteristics like stability, regioselectivity and, in particular, enantioselectivity. In principle, three different approaches are followed to optimize enantioselective reactions: the development of whole-cell biocatalysts through the creation of designer organisms; the optimization of enzymes with existing enantioselectivity for process conditions; and the evolution of novel enantioselective biocatalysts starting from non-selective wild-type enzymes.  相似文献   

8.
Yeast cell-surface display—applications of molecular display   总被引:11,自引:0,他引:11  
In a cell-surface engineering system established using the yeast Saccharomyces cerevisiae, novel, so-called arming yeasts are constructed that are armed with biocatalysts in the form of enzymes, functional proteins, antibodies, and combinatorial protein libraries. Among the many advantages of the system, in which proteins are genetically displayed on the cell surface, are easy reproduction of the displayed biocatalysts and easy separation of product from catalyst. As proteins and peptides of various kinds can be displayed on the yeast cell surface, the system is expected to allow the preparation of tailor-made functional proteins. With its ability to express many of the functional proteins necessary for post-translational modification and in a range of different sizes, the yeast-based molecular display system appears uniquely useful among the various display systems so far developed. Capable of conferring novel additional abilities upon living cells, cell-surface engineering heralds a new era of combinatorial bioengineering in the field of biotechnology. This mini-review describes molecular display using yeast and its various applications.  相似文献   

9.
This review attempts to demonstrate the importance of goal-orientated screening for new biocatalysts. Examples of enzymes and microorganisms that have been developed and that have acquired commercial applications are described so as to illustrate the technological potential of biocatalysts. A survey of screening techniques and recently reported examples of screening from food, chemical, pharmaceutical and waste disposal applications etc. are also presented to demonstrate the feasibility of this approach for generating new biocatalysts. An appreciation of some of the difficulties involved, the achievements of Japanese researchers and some examples of the cornucopia of largely unrecognized and potentially valuable microbial activities are also given. An increased effort in screening would have the following benefits: an increased range of biocatalysts with different enzyme activities would be available and more biocatalysts with improved characteristics, suitable for use under industrial conditions, such as resistance to elevated temperatures, extremes of pH and organic solvents would be discovered. Secondly the manpower and other resources required to carry out screening programmes would be reduced, for instance by developing automated techniques. Thirdly, screening procedures would be made much more accessible to non-specialists. Fourthly, improved efforts and expertise in screening would supplement other emerging techniques such as protein engineering. The development of selective, non-random, goal-orientated screening techniques, methods of evaluating biocatalyst performance under operational conditions, and an approach that is more orientated towards commercially desirable goals are essential if these objectives are to be achieved. Screening of naturally occurring microorganisms still appears to be the best way to obtain new strains and/or enzymes for commercial applications. However, two major problems appear to exist. Firstly in identifying applications that are technically feasible and that have sufficient commercial potential to justify the research and development required to generate a new commercially viable biocatalyst and secondly the relatively small number of scientists outside Japan with skill and experience in screening for biocatalysts.  相似文献   

10.
Many biologically active natural products are produced by the host organisms using dedicated biosynthetic pathways. The programming rules of these pathways may be rationally manipulated through combinatorial biosynthesis to produce natural products that contain structural variations or enhanced pharmacological properties. Furthermore, these pathways contain enzymes that can be harvested as powerful biocatalysts for the synthesis of both new drugs and existing blockbuster therapeutics. This review will highlight recent advances in exploring natural product biosynthetic pathways for new compounds, novel enzymes and useful biocatalysts.  相似文献   

11.
The search for the ideal biocatalyst.   总被引:9,自引:0,他引:9  
While the use of enzymes as biocatalysts to assist in the industrial manufacture of fine chemicals and pharmaceuticals has enormous potential, application is frequently limited by evolution-led catalyst traits. The advent of designer biocatalysts, produced by informed selection and mutation through recombinant DNA technology, enables production of process-compatible enzymes. However, to fully realize the potential of designer enzymes in industrial applications, it will be necessary to tailor catalyst properties so that they are optimal not only for a given reaction but also in the context of the industrial process in which the enzyme is applied.  相似文献   

12.
Enzyme immobilization often achieves reusable biocatalysts with improved operational stability and solvent resistance. However, these modifications are generally associated with a decrease in activity or detrimental modifications in catalytic properties. On the other hand, protein engineering aims to generate enzymes with increased performance at specific conditions by means of genetic manipulation, directed evolution and rational design. However, the achieved biocatalysts are generally generated as soluble enzymes, ?thus not reusable- and their performance under real operational conditions is uncertain.Combined protein engineering and enzyme immobilization approaches have been employed as parallel or consecutive strategies for improving an enzyme of interest. Recent reports show efforts on simultaneously improving both enzymatic and immobilization components through genetic modification of enzymes and optimizing binding chemistry for site-specific and oriented immobilization. Nonetheless, enzyme engineering and immobilization are usually performed as separate workflows to achieve improved biocatalysts.In this review, we summarize and discuss recent research aiming to integrate enzyme immobilization and protein engineering and propose strategies to further converge protein engineering and enzyme immobilization efforts into a novel “immobilized biocatalyst engineering” research field. We believe that through the integration of both enzyme engineering and enzyme immobilization strategies, novel biocatalysts can be obtained, not only as the sum of independently improved intrinsic and operational properties of enzymes, but ultimately tailored specifically for increased performance as immobilized biocatalysts, potentially paving the way for a qualitative jump in the development of efficient, stable biocatalysts with greater real-world potential in challenging bioprocess applications.  相似文献   

13.
Abstract

Glycosylation is considered to be an important reaction for the chemical modification of compounds with useful biological activities. Glycoside hydrolases are biotechnologically attractive enzymes which can be used in synthetic reactions for assembling glycosidic linkages with absolute stereoselectivity at an anomeric centre. Most of these enzymes are commercially available but there is great interest in the search for new biocatalysts with original catalytic characteristics. The marine environment has shown to be a very interesting source for new glycosyl hydrolases for both hydrolytic and synthetic aspects. In particular, Aplysia fasciata a marine herbivorous mollusc has been shown to be a potent producer of a library of glycoside hydrolases applied to the synthesis of glycosidic bonds. The impressive assortment of glycosidases in marine organisms clearly indicates that the potential biodiversity of these enzymes is still largely unexplored and that potential applications of biocatalysts from the sea will increase in the near future.  相似文献   

14.
Stereoselectivities of microbial epoxide hydrolases   总被引:5,自引:0,他引:5  
Epoxide hydrolases from bacterial and fungal sources are highly versatile biocatalysts for the asymmetric hydrolysis of epoxides on a preparative scale. Besides kinetic resolution, which yields the corresponding enantiomerically enriched vicinal diol and the remaining nonconverted epoxide, enantioconvergent processes are also possible, which lead to the formation of a single enantiomeric diol from a racemic oxirane. The data available to date indicate that the enantioselectivities of enzymes from certain microbial sources can be correlated to the substitutional pattern of various types of substrates: red yeasts (e.g. Rhodotorula or Rhodosporidium sp.) give best enantioselectivities with monosubstituted oxiranes; fungal cells (e.g. from Aspergillus and Beauveria sp.) are best suited for styrene oxide-type substrates; bacterial enzymes, on the other hand (in particular from Actinomycetes such as Rhodococcus and Nocardia sp.) are the biocatalysts of choice for more highly substituted 2,2- and 2,3-disubstituted epoxides.  相似文献   

15.
The biotechnological application of enzymes necessitates a permanent quest for new biocatalysts. Among others, improvement of catalytic activity, modification of substrate specificity, or increase in stability of the enzymes are desirable goals. The exploration of homologous enzymes from various sources or DNA-based methods, like site-directed mutagenesis or directed evolution, yield an incredible variety of biocatalysts but they all rely on the restricted number of canonical amino acids. Chemistry offers an almost unlimited palette of additional modifications which can endow the proteins with improved or even completely new properties. Numerous techniques to furnish proteins with non-natural amino acids or non-proteinogenic modules have been introduced and are reviewed with special focus on expressed protein ligation, a method that combines the potential of protein biosynthesis and chemical synthesis. An erratum to this article can be found at  相似文献   

16.
“白色”生物技术也叫做工业生物技术,是利用某些微生物或酶进行物质转化,生产新产品或改进原有工业处理过程的技术。其产品可生物降解,生产过程能耗低,废弃物少。它是一门涉及生物学、微生物学、分子生物学、化学以及工程学等多学科的研究领域。综述了白色生物技术的产业优势及其涉及的研究领域,并从生物催化、生物材料、生物能源等方面概述了白色生物技术的应用进展。  相似文献   

17.
Improved biocatalysts by directed evolution and rational protein design   总被引:10,自引:0,他引:10  
The efficient application of biocatalysts requires the availability of suitable enzymes with high activity and stability under process conditions, desired substrate selectivity and high enantioselectivity. However, wild-type enzymes often need to be optimized to fulfill these requirements. Two rather contradictory tools can be used on a molecular level to create tailor-made biocatalysts: directed evolution and rational protein design.  相似文献   

18.
This review is intended to give an account of the knowledge about known enzymes of marine origin described in literature thus stimulating future applications in biocatalysis that these biocatalysts can offer to a large spectra of end-users. The uniqueness of marine biocatalysts is not only based on habitat-related properties such as salt tolerance, hyperthermostability, barophilicity, cold adaptivity, etc. A marine enzyme in fact may carry more, e.g. novel chemical and stereochemical properties. This “chemical biodiversity” increases interest in this field; substrate specificity and affinity are evolved properties linked to the metabolic functions of the enzymes and to ecological asset related to the natural source and this is an important aspect in the bioprospecting for new biocatalysts. The importance of all examples reported should be sufficient to trigger the attention of the biocatalytically oriented scientific community towards marine environment as source of biocatalysts, and this could in turn enhance both new discovery and improvement of marine enzymes.  相似文献   

19.
Despite the first report on the bacterial display of a recombinant peptide appeared almost 30 years ago, industrial application of cells with surface-displayed enzymes is still limited. To display an enzyme on the surface of a living cell bears several advantages. First of all, neither the substrate nor the product of the enzymatic reaction needs to cross a membrane barrier. Second, the enzyme being linked to the cell can be separated from the reaction mixture and hence the product by simple centrifugation. Transfer to a new substrate preparation results in multiple cycles of enzymatic conversion. Finally, the anchoring in a matrix, in this case, the cell envelope stabilizes the enzyme and makes it less accessible to proteolytic degradation and material adsorption resulting in continuous higher activities. These advantages in common need to balance some disadvantages before this application can be taken into account for industrial processes, e.g., the exclusion of the enzyme from the cellular metabolome and hence from redox factors or other co-factors that need to be supplied. Therefore, this digest describes the different systems in Gram-positive and Gram-negative bacteria that have been used for the surface display of enzymes so far and focuses on examples among these which are suitable for industrial purposes or for the production of valuable resources, not least in order to encourage a broader application of whole-cell biocatalysts with surface-displayed enzymes.  相似文献   

20.
The chemical industry has an enormous need for innovation. To save resources, energy and time, currently more and more established chemical processes are being switched to biotechnological routes. This requires white biotechnology to discover and develop novel enzymes, biocatalysts and applications. Due to a limitation in the cultivability of microbes living in certain habitats, technologies have to be established which give access to the enormous resource of uncultivated microbial diversity. Metagenomics promises to provide new and diverse enzymes and biocatalysts as well as bioactive molecules and has the potential to make industrial biotechnology an economic, sustainable success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号