首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca^2+与细胞凋亡   总被引:2,自引:0,他引:2  
Ca^2+在某些因素诱导的细胞凋亡中起着重要信使作用。细胞内Ca^2+浓度上升可来源于胞外Ca^2+内汉、内库钙动员或者二者兼之。  相似文献   

2.
Zhang M  Zhang HQ  Xue SB 《Cell research》2000,10(3):213-220
Apoptosis manifests in two major execution programs downstream of the death signal:the caspase pathway and organelle dysfunction.An important antiapoptosis factor,Bcl-2 protein,contributes in caspase pathway of apoptosis.Calcium,an important intracellular signal element in cells,is also observed to have changes during apoptosis,which maybe affected by Bcl-2 protein.We have previously reported that in Harringtonine (HT) induced apoptosis of HL-60 cells,there‘s change of intracellular calcium distribution,oving from cytoplast especially Golgi‘s apparatus to nucleus and accumulating there with the highest concentration.We report here that caspase-3 becomes activated in HT-induced apoptosis of HL-60 cells,which can be inhibited by overexpression of Bcl-2 protein.No sign of apoptosis or intracellular calcium movement from Golgi‘s apparatus to nucleus in HL-60 cells overexpressing Bcl-2 or treated with Ac-DEVD-CHO,a specific inhibitor of caspase-3.The results indicate that activated caspase-2 can promote the movement of intracellular calcium from Golgi‘s apparatus to nucleus,and the process is inhibited by Ac-DEVD-CHO(inhibitor of caspase-3),and that Bcl-2 can inhibit the movement and accumulation of intracellular calcium in nucleus through its inhibition on caspase-3.Calcium relocalization in apoptosis seems to be irreversible,which is different from the intracellular calcium changes caused by growth factor.  相似文献   

3.
Control of apoptosis by IP(3) and ryanodine receptor driven calcium signals   总被引:12,自引:0,他引:12  
Intracellular calcium signals mediated by IP(3)and ryanodine receptors (IP(3)R/RyR) play a central role in cell survival, but emerging evidence suggests that IP(3)R/RyR are also important in apoptotic cell death. Switch from the life program to the death program may involve coincident detection of proapoptotic stimuli and calcium signals or changes in the spatiotemporal pattern of the calcium signal or changes at the level of effectors activated by the calcium signal (e.g. calpain, calcineurin). The fate of the cell is often determined in the mitochondria, where calcium spikes may support cell survival through stimulation of ATP production or initiate apoptosis v ia opening of the permeability transition pore and release of apoptotic factors such as cytochrome c. The functional importance of these mitochondrial calcium signalling pathways has been underscored by the elucidation of a highly effective, local Ca(2+)coupling between IP(3)R/RyR and mitochondrial Ca(2+)uptake sites. This article will focus on the IP(3)R/RyR-dependent pathways to apoptosis, particularly on the mitochondrial phase of the death cascade.  相似文献   

4.
Mitochondrial cytochrome c release and inositol (1,4,5) trisphosphate receptor (InsP(3)R)-mediated calcium release from the endoplasmic reticulum mediate apoptosis in response to specific stimuli. Here we show that cytochrome c binds to the InsP(3)R during apoptosis. Addition of 1 nM cytochrome c blocks calcium-dependent inhibition of InsP(3)R function. Early in apoptosis, cytochrome c translocates to the endoplasmic reticulum where it selectively binds InsP(3)R, resulting in sustained, oscillatory cytosolic calcium increases. These calcium events are linked to the coordinate release of cytochrome c from all mitochondria. Our findings identify a feed-forward mechanism whereby early cytochrome c release increases InsP(3)R function, resulting in augmented cytochrome c release that amplifies the apoptotic signal.  相似文献   

5.
细胞凋亡中的钙离子调控   总被引:1,自引:0,他引:1  
凋亡是细胞的一种生理性、主动性的自杀行为,它使机体能够有效清除多余或病态的细胞。作为细胞内普遍存在的第二信使,Ca2 在信号转导过程中发挥重要作用。它能够将细胞感受的刺激转化为其在不同细胞组分间的分布差异及自身浓度的振荡,这种在细胞内和细胞间的波动协调了细胞生命活动的各个方面。以往的研究认为细胞内Ca2 浓度的升高是凋亡进行到后期的结果,而最近的研究发现Ca2 也可以在凋亡通路的各个层次,通过不同的方式精细调控凋亡的进程,这构成了凋亡中复杂的钙调控网络。现对钙离子和线粒体凋亡途径中分子间的复杂联系以及钙调控细胞凋亡研究的最新进展进行综述。  相似文献   

6.
Mechanisms of oxysterol-induced apoptosis   总被引:7,自引:0,他引:7  
The rationale for the present review is that oxysterols found in oxidized LDL (oxLDL) play a role in atherogenesis. This perspective is based on studies that show that induction of apoptosis in vascular cells is an important process in atherogenesis, that apoptosis can be induced by oxLDL, and that the oxysterol component of oxLDL is responsible for its proapoptotic activity. The evidence for these concepts is reviewed, as are studies on the mechanisms by which oxysterols can induce apoptosis. An elevation in intracellular calcium appears to be an early signal transduction event that leads to apoptosis through both the extrinsic and intrinsic apoptotic pathways.  相似文献   

7.
The opportunistic pathogen Pseudomonas aeruginosa utilizes a cell density-dependent signalling phenomenon known as quorum sensing (QS) to regulate several virulence factors needed for infection. Acylated homoserine lactones, or autoinducers, are the primary signal molecules that mediate QS in P. aeruginosa. The autoinducer N-3O-dodecanoyl-homoserine lactone (3O-C12) exerts effects on mammalian cells, including upregulation of pro-inflammatory mediators and induction of apoptosis. However, the mechanism(s) by which 3O-C12 affects mammalian cell responses is unknown. Here we report that 3O-C12 induces apoptosis and modulates the expression of immune mediators in murine fibroblasts and human vascular endothelial cells (HUVEC). The effects of 3O-C12 were accompanied by increases in cytosolic calcium levels that were mobilized from intracellular stores in the endoplasmic reticulum (ER). Calcium release was blocked by an inhibitor of phospholipase C, suggesting that release occurred through inositol triphosphate (IP3) receptors in the ER. Apoptosis, but not immunodulatory gene activation, was blocked when 3O-C12-exposed cells were co-incubated with inhibitors of calcium signalling. This study indicates that 3O-C12 can activate at least two independent signal transduction pathways in mammalian cells, one that involves increases in intracellular calcium levels and leads to apoptosis, and a second pathway that results in modulation of the inflammatory response.  相似文献   

8.
Among the many unsolved problems of calcium signalling, the role of calcium elevations in apoptotic and necrotic cell death has been a focus of research in recent years. Evidence has been presented that calcium oscillations can effectively trigger apoptosis under certain conditions and that dysregulation of calcium signalling is a common cause of cell death. These effects are regularly mediated through calcium signal propagation to the mitochondria and the ensuing mitochondrial membrane permeabilization and release of pro-apoptotic factors from mitochondria to the cytoplasm. The progress in this area depended on the development of (1) fluorescent/luminescent probes, including fluorescent proteins that can be genetically targeted to different intracellular locations and (2) the digital imaging technology, fluorescence-activated cell sorting and fluorescent high throughput approaches, which allowed dynamic measurements of both [Ca2+] in the intracellular compartments of interest and the downstream processes. Fluorescence single cell imaging has been the only possible approach to resolve the cell-to-cell heterogeneity and the complex subcellular spatiotemporal organization of the cytoplasmic and mitochondrial calcium signals and downstream events. We outline here fluorometric and fluorescence imaging protocols that we set up for the study of calcium in the context of apoptosis.  相似文献   

9.
Bruton's tyrosine kinase (Btk) is mutated in X-linked agammaglobulinemia patients and plays an essential role in B cell receptor signal transduction. Btk is a member of the Tec family of nonreceptor protein-tyrosine kinases that includes Bmx, Itk, Tec, and Txk. Cell lines deficient for Btk are impaired in phospholipase C-gamma2 (PLCgamma2)-dependent signaling. Itk and Tec have recently been shown to reconstitute PLCgamma2-dependent signaling in Btk-deficient human cells, but it is not known whether the atypical Tec family members, Bmx and Txk, can reconstitute function. Here we reconstitute Btk-deficient DT40 B cells with Bmx and Txk to compare their function with other Tec kinases. We show that in common with Itk and Tec, Bmx reconstituted PLCgamma2-dependent responses including calcium mobilization, extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) activation, and apoptosis. Txk also restored PLCgamma2/calcium signaling but, unlike other Tec kinases, functioned in a phosphatidylinositol 3-kinase-independent manner and failed to reconstitute apoptosis. These results are consistent with a common role for Tec kinases as amplifiers of PLCgamma2-dependent signal transduction, but suggest that the pleckstrin homology domain of Tec kinases, absent in Txk, is essential for apoptosis.  相似文献   

10.
We previously showed that changes in calcium concentrations were related to cell apoptosis in vitro. The endoplasmic reticulum (ER) is the main component of calcium storage and signal transduction, and disrupting the balance of intracellular Ca2+ can cause endoplasmic reticulum stress (ERS). In this process, the ER releases stored Ca 2+ into the cytoplasm and activates calpain-2. To further investigate the effect of calpain in hepatic stellate cells (HSCs), in the current study, we examine the effect of N-acetyl-leu-leu-norleucinal (ALLN) on apoptosis resulting from calcium ionophore A23187–induced ERS. Our findings indicate that calpain inhibition reduces calcium ionophore A23187–induced apoptosis of HSCs and decreases the expression of ER stress proteins that may be related to the calpain/caspase signaling pathway.  相似文献   

11.
Signals transduced through the B cell Ag receptor (BCR) drive B cell development. However, BCR-induced responses are developmentally regulated; immature B cells are tolerized following antigenic exposure while mature B cells are triggered to proliferate and differentiate. This differential responsiveness allows for the negative selection of self-reactive immature B cells while simultaneously allowing for clonal expansion of mature B cells in response to foreign Ags. Intrinsic differences in BCR-induced signal transduction at various stages of development may account for this functional dichotomy. We had previously demonstrated that the BCR-induced proliferation of mature B cells is accompanied by an increase in intracellular calcium levels and polyphosphoinositide bis phosphate (PIP2) hydrolysis. In contrast, immature B cells that undergo BCR-induced apoptosis increase intracellular calcium in the relative absence of PIP2 hydrolysis. Since PIP2 hydrolysis leads to the generation of diacylglycerol, a cofactor for protein kinase C (PKC) activation, these data suggested that an "imbalance" in BCR-induced signal transduction resulting from a relative inability to activate PKC may play a role in the susceptibility of immature B cells to BCR-induced apoptosis. In support of this hypothesis, we demonstrate that PKC activation can rescue immature B cells from BCR-induced apoptosis. Furthermore, the susceptibility of immature B cells to BCR-induced apoptosis is recapitulated in mature B cells that are either PKC depleted or are stimulated in the presence of PKC inhibitors, suggesting that an uncoupling of PKC activation from BCR-induced signaling is responsible for the apoptotic response of immature B cells.  相似文献   

12.
13.
Jurkat cells undergo apoptosis in response to anti-Fas antibody through a caspase-dependent death cascade in which calcium signaling has been implicated. We have now evaluated the role of calcium during this death cascade at the single cell level in real time utilizing flow cytometric analysis and confocal microscopy. Fluo-3 and propidium iodide were employed to evaluate calcium fluxes and to discriminate between viable and non-viable cells, respectively. Anti-Fas treatment of Jurkat cells resulted in a sustained increase in intracellular calcium commencing between 1 and 2 h after treatment and persisting until subsequent loss of cell membrane integrity. The significance of this rise in calcium was evaluated by buffering intracellular calcium with BAPTA and/or removing calcium from the extracellular medium and monitoring the effects of these manipulations on calcium signaling and components of the apoptotic process. Complete inhibition of the anti-Fas induced rise in intracellular calcium required both chelation of [Ca(2+)](i) and removal of extracellular calcium. Interestingly, this condition did not abrogate several events in Fas-induced apoptosis including cell shrinkage, mitochondrial depolarization, annexin binding, caspase activation, and nuclear poly(A)DP-ribose polymerase cleavage. Furthermore, calcium-free conditions in the absence of anti-Fas antibody weakly induced these apoptotic components. In marked contrast, calcium depletion did not induce DNA degradation in control cells, and inhibited apoptotic DNA degradation in response to anti-Fas. These data support the concept that the rise in intracellular calcium is not a necessary component for the early signal transduction pathways in anti-Fas-induced apoptosis in Jurkat cells, but rather is necessary for the final degradation of chromatin via nuclease activation.  相似文献   

14.
The role of calcium in apoptosis   总被引:18,自引:0,他引:18  
Joachim Krebs 《Biometals》1998,11(4):375-382
In this chapter various aspects of apoptosis or programmed cell death (PCD) influenced by calcium as a mediator of signal transduction have been reviewed. Attention has been focused on recently described calcium-binding proteins such as ALG-2 or on a new calcium/calmodulin-dependent kinase, the death asso-ciated protein kinase or DAP-kinase. Both play a central role in apoptotic processes. Calcineurin, which normally is involved in the regulation of T-cell proliferation, is reported to interact with the apoptosis protec-tion protein bcl-2. Its possible involvement in the decision process whether T-cell activation leads to prolif-eration or apoptosis is discussed.© Kluwer Academic Publishers  相似文献   

15.
Myocardial infarctions and stroke arise primarily as a result of hypoxia/ischemia-induced cell injury. However, the molecular mechanism of cardiac cell death due to hypoxia has not been elucidated. We showed here that chemical hypoxia induced by 1 mM azide triggered apoptosis of isolated neonatal rat ventricular cardiac myocytes but had no effect on cardiac fibroblasts. The azide-induced cardiomyocyte apoptosis could be characterized by a reversible initiation phase (0-6 h after azide exposure) during which cytosolic ATP levels remained little affected. This was followed by an irreversible execution phase (12-18 h) exhibiting prominent internucleosomal DNA fragmentation, cell membrane leakage, mitochondrial dysfunction, and increased calpain messenger RNA. Blocking extracellular calcium influx or intracellular calcium release was each effective in suppressing myocyte apoptosis. Cell death was also found to be mediated by calcium sensitive signal transduction events based on the use of specific antagonists. Consistent with the induction of calpain expression during apoptosis, blocking de novo protein synthesis and calpain activity inhibited cell death. These regulatory features coupled with the ease of the cell system suggest that the myocyte apoptosis model described here should be useful in the study of events leading to the demise of the myocardium.  相似文献   

16.
ER stress triggers apoptosis induced by Nogo-B/ASY overexpression   总被引:1,自引:0,他引:1  
Kuang E  Wan Q  Li X  Xu H  Zou T  Qi Y 《Experimental cell research》2006,312(11):1983-1988
Nogo-B/ASY has been characterized as a novel human apoptosis-inducing protein without any known apoptosis-related motifs. However, the validity of Nogo-B/ASY as a physiological apoptotic protein was recently questioned. In present research, we demonstrate that ASY overexpression contributes to ER stress and induces apoptosis through ER Ca2+ depletion and ER-specific pathways. ER stress and the disorder of intracellular calcium trigger the apoptosis induced by ASY overexpression. At the same time, stable transfectants overexpressing high levels of ASY are resistant to ER-stress-associated stimuli, which implies that ASY overexpression activates protective response in response to ER stress. Our results provide a direct apoptotic pathway that ASY overexpression induces apoptosis through ER stress and ER-specific signal pathways.  相似文献   

17.
The mechanism of fibrate-induced myopathy was investigated in this report. When clofibrate (30 to 300 microM) was applied to L6 rat skeletal myoblasts, dose-dependently apoptosis was observed within 24 h. In the apoptotic myoblasts, a caspase-12 cleavage was observed at 2 h and with following caspases-9 and -3-related cascade activation. In contrast, the neutral protease calpain, that is a key enzyme in ER stress-related apoptosis via caspase-12 activation, was significantly decreased during apoptosis. Next, the authors evaluated a role of calcium-dependent signal(s). When clofibrate was added into medium, cytosolic calcium concentration was rapidly and persistently increased. On the other hand, an addition of 10 mM EGTA depressed sustained calcium phase, and concurrent myoblasts apoptosis was completely inhibited. Taken together, our findings indicate that the clofibrate-induced myopathy is triggered by Ca2+ influx, then activated cytosolic caspase-12 through calpain-independent cascade, and consequently caused apoptotic DNA fragmentation.  相似文献   

18.
We constructed a CD95 overexpressing HeLa cell line which was extremely sensitive towards CD95 mediated apoptosis. In these CD95 overexpressing cells, CD95 blocks the nuclear calcium signal induced by perforin positive and CD95 ligand positive killer cells. This phenomenon is highly relevant in states of inflammatory syndromes such as systemic inflammatory response syndrome (SIRS) and sepsis which are associated with a high probability to reactivate latent viruses due to a functional deficiency of cytotoxic effectors.  相似文献   

19.
白细胞介素-6(interleukin-6,IL-6)具有直接或间接的抗肿瘤活性,本组在以前的体内外实验中证明其具有明显的抑制肝癌作用。本文主要报告应用流式细胞仪和共聚焦显微镜检测IL-6对肝癌细胞(BEL-7402)凋亡的作用和该过程中Ca^2 转导机制。生长曲线描绘以及MTT分析结果表明,IL-6(6000u/ml)作用于BEL-7402细胞24小时后,生长抑制率达12%左右,而流式细胞仪结果显示IL-60(6000u/ml)作用于BEL-7402细胞24小时后,BEL-7402细胞凋亡率达8.2%。流式细胞仪分析还表明,IL-60(6000u/ml)作用于BEL-7402细胞24小时后,对照组平均FTTC荧光值为1.03而IL-60(6000u/ml)组为0.759,也就是说,IL-6引起了bcl-2基因表达下降。激光共聚焦显微镜测定表明,IL-60(6000u/ml)作用于BEL-7402细胞后,胞浆[Ca^2 ]c升高达2倍。若事先加入TC(thapsigargin),15min后再加入IL-6,则抑制了胞浆内[Ca^2 ]c升高;事先10min或5min分别加入EGTA和普鲁卡因(procaine)也有同样的抑制作用。上述结果表明,IL-6在一定剂量下可以诱导肝癌细胞BEL-7402发生细胞凋亡,该凋亡过程可能与Ca^2 转导及bcl-2基因表达下调有关。  相似文献   

20.
Aerolysin is a channel-forming toxin that binds to glycosylphosphatidylinositol (GPI)-anchored proteins, such as Thy-1, on target cells. Here, we show that subnanomolar concentrations of aerolysin trigger apoptosis of T lymphomas. Using inactive aerolysin variants, we determined that apoptosis was not directly triggered by binding to GPI-anchored receptors, nor was it caused by receptor clustering induced by toxin oligomerization. Apoptosis was caused by the production of a small number of channels in the cell membrane. Channel formation resulted in a rapid increase in intracellular calcium, which may have been the signal for apoptosis. Overexpression of the antiapoptotic protein bcl-2 blocked aerolysin-induced apoptosis, although this effect was overcome at higher toxin concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号