首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spleen tyrosine kinase (Syk), a nonreceptor protein kinase initially found to be expressed only in hemopoietic cells, has now been shown to be expressed in nonhemopoietic cells and to mediate signaling of various cytokines. Whether Syk plays any role in TNF signaling was investigated. Treatment of Jurkat T cells with TNF activated Syk kinase but not ZAP70, another member of Syk kinase family, and the optimum activation occurred at 10 s and with 1 nM TNF. TNF also activated Syk in myeloid and epithelial cells. TNF-induced Syk activation was abolished by piceatannol (Syk-selective inhibitor), which led to the suppression of TNF-induced activation of c- JNK, p38 MAPK, and p44/p42 MAPK. Jurkat cells that did not express Syk (JCaM1, JCaM1/lck) showed lack of TNF-induced Syk, JNK, p38 MAPK, and p44/p42 MAPK activation, as well as TNF-induced IkappaBalpha phosphorylation, IkappaBalpha degradation, and NF-kappaB activation. TNF-induced NF-kappaB activation was enhanced by overexpression of Syk by Syk-cDNA and suppressed when Syk expression was down-regulated by expression of Syk-small interfering RNA (siRNA-Syk). The apoptotic effects of TNF were reduced by up-regulation of NF-kappaB by Syk-cDNA, and enhanced by down-regulation of NF-kappaB by siRNA-Syk. Immunoprecipitation of cells with Syk Abs showed TNF-dependent association of Syk with both TNFR1 and TNFR2; this association was enhanced by up-regulation of Syk expression with Syk-cDNA and suppressed by down-regulation of Syk using siRNA-Syk. Overall, our results demonstrate that Syk activation plays an essential role in TNF-induced activation of JNK, p38 MAPK, p44/p42 MAPK, NF-kappaB, and apoptosis.  相似文献   

2.
Nitric oxide (NO) is an important regulator of immune responses. Effects of cytokines, such as tumor necrosis factor (TNF)-alpha or IFN-gamma, and bacterial products, such as lipopolysaccharide, on macrophage NO production have been well documented; however, the role of the extracellular matrix proteins, including collagen, in this process remains unclear. We previously reported that discoidin domain receptor 1 (DDR1), a nonintegrin collagen receptor, was expressed in human macrophages, and its activation facilitated their differentiation as well as cytokine/chemokine production. Here, we examined the role for DDR1 in collagen-induced NO production using the murine macrophage cell line J774 cells that endogenously express DDR1. Activation of J774 cells with collagen induced the expression of inducible NO synthase (iNOS) and NO production. Inhibition of DDR1, but not beta1-integrins, abolished collagen-induced iNOS and NO production. Activation of J774 cells with collagen-activated nuclear factor-kappaB, p38 mitogen-activated protein kinase (MAPK), and c-jun N-terminal kinase (JNK) and a pharmacological inhibitor of each signaling molecule significantly reduced collagen-induced NO production. Thus, we have demonstrated, for the first time, that the interaction of DDR1 with collagen induces iNOS expression and subsequent NO synthesis in J774 cells through activation of NF-kappaB, p38 MAPK, and JNK and suggest that intervention of DDR1 signaling in macrophages may be useful in controlling inflammatory diseases in which NO plays a critical role.  相似文献   

3.
Interleukin 1beta (IL-1beta) induces expression of the inducible nitric-oxide synthase (iNOS) with concomitant release of nitric oxide (NO) from glomerular mesangial cells. These events are preceded by activation of the c-Jun NH(2)-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38(MAPK). Our current study demonstrates that overexpression of the dominant negative form of JNK1 or p54 SAPKbeta/JNK2 significantly reduces the iNOS protein expression and NO production induced by IL-1beta. Similarly, overexpression of the kinase-dead mutant form of p38alpha(MAPK) also inhibits IL-1beta-induced iNOS expression and NO production. In previous studies we demonstrated that IL-1beta can activate MKK4/SEK1, MKK3, and MKK6 in renal mesangial cells; therefore, we examined the role of these MAPK kinases in the modulation of iNOS induced by IL-1beta. Overexpression of the dominant negative form of MKK4/SEK1 decreases IL-1beta-induced iNOS expression and NO production with inhibition of both SAPK/JNK and p38(MAPK) phosphorylation. Overexpression of the kinase-dead mutant form of MKK3 or MKK6 demonstrated that either of these two mutant kinase inhibited IL-1beta-induced p38(MAPK) (but not JNK/SAPK) phosphorylation and iNOS expression. Interestingly overexpression of wild type MKK3/6 was associated with phosphorylation of p38(MAPK); however, in the absence of IL-1beta, iNOS expression was not enhanced. This study suggests that the activation of both SAPK/JNK and p38alpha(MAPK) signaling cascades are necessary for the IL-1beta-induced expression of iNOS and production of NO in renal mesangial cells.  相似文献   

4.
5.
6.
Nitric oxide (NO), produced by the inducible isoform of the NO synthase (iNOS), plays an important role in the pathophysiology of arthritic diseases. This work aimed at elucidating the role of the mitogen-activated protein kinases (MAPK), p38MAPK and p42/44MAPK, and of protein tyrosine kinases (PTK) on interleukin-1beta (IL-1)-induced iNOS expression in bovine articular chondrocytes. The specific inhibitor of the p38MAPK, SB 203580, effectively inhibited IL-1-induced iNOS mRNA and protein synthesis, as well as NO production, while the specific inhibitor of the p42/44MAPK, PD 98059, had no effect. These responses to IL-1 were also inhibited by treatment of the cells with the tyrosine kinase inhibitors, genistein and tyrphostin B42, which also prevented IL-1-induced NF-kappaB activation. The p38MAPK inhibitor, SB 203580, had no effect on IL-1-induced NF-kappaB activation. Finally, the p42/44MAPK inhibitor, PD 98059, prevented IL-1-induced AP-1 activation in a concentration that did not inhibit iNOS expression. In conclusion, this study shows that (1) PTK are part of the signaling pathway that leads to IL-1-induced NF-kappaB activation and iNOS expression; (2) the p38MAPK cascade is required for IL-1-induced iNOS expression; (3) the p42/44MAPK and AP-1 are not involved in IL-1-induced iNOS expression; and (4) NF-kappaB and the p38MAPK lie on two distinct pathways that seem to be independently required for IL-1-induced iNOS expression. Hence, inhibition of any of these two signaling cascades is sufficient to prevent iNOS expression and the subsequent production of NO in articular chondrocytes.  相似文献   

7.
Interleukin-1beta (IL-1beta) induces the release of nitric oxide (.NO) and prostaglandin E2 (PGE2) by chondrocytes and this effect can be reversed with the application of dynamic compression. Previous studies have indicated that integrins may play a role. In addition, IL-1beta upregulates the expression of iNOS and COX-2 mRNA via upstream activation of p38 MAPK. The current study examines the involvement of these pathways in mediating .NO and PGE2 release in IL-1beta stimulated bovine chondrocytes subjected to dynamic compression. Bovine chondrocytes were seeded in agarose constructs and cultured with 0 or 10 ng.ml(-1) IL-1beta with or without the application of 15% dynamic compressive strain at 1 Hz. Selected inhibitors were used to interrogate the role of alpha5beta1 integrin signalling and p38 MAPK activation in mediating the release of .NO and PGE2 in response to both IL-1beta and dynamic compression. The relative expression levels of iNOS and COX-2 were assessed using real-time quantitative PCR. Nitrite, a stable end product of .NO, was measured using the Griess assay and PGE2 release was measured using an enzyme immunoassay. IL-1beta enhanced .NO and PGE2 release and this effect was reversed by the application of dynamic compression. Co-incubation with an integrin binding peptide (GRGDSP) abolished the compression-induced effect. Real-time quantitative PCR analysis revealed that IL-1beta enhanced iNOS and COX-2 mRNA levels, with the maximum expression at 6 or 12 hours. Dynamic compression reduced this effect via a p38 MAPK sensitive pathway. These results suggest that dynamic compression acts to abrogate of .NO and PGE2 release by directly influencing the expression levels of iNOS and COX-2.  相似文献   

8.
The role of reactive oxygen species (ROS) in regulating the expression of the inducible nitric oxide synthase (iNOS) was studied in rat aortic vascular smooth muscle cells (VSMC). We hypothesized that ROS regulate iNOS expression through the mitogen-activated protein kinases ERK and p38(MAPK). We found that interleukin-1beta (IL-1beta) stimulated the production of hydrogen peroxide (H2O2) which could be inhibited by loading the cells with the H2O2-scavenging enzyme catalase. Inhibition of the upstream ERK1,2 activator MEK1,2 with U0126 prevented IL-1beta-stimulated iNOS expression, while the p38MAPK inhibitor SB03580 potentiated iNOS expression. Loading the cells with catalase enhanced ERK activation and iNOS expression but had no effect on p38MAPK activation or PDGF-induced ERK activation. These data indicated that H2O2 negatively regulates iNOS expression through ERK inhibition independently of p38MAPK. The present results outline a novel role for H2O2 in suppressing signaling pathways leading to gene expression such as iNOS in VSMC in response to cytokines.  相似文献   

9.
10.
The protein tyrosine kinase Syk is critically involved in immunoreceptor signaling in hematopoietic cells. Recent studies demonstrate Syk expression in nonhematopoietic cells, including fibroblasts, endothelial cells, hepatocytes, and breast epithelium. However, the role of Syk in these cells is uncertain. We hypothesized that Syk is expressed in respiratory epithelial cells (EC) and that it functions as a signaling molecule involved in inflammatory responses in the epithelium. With the use of immunohistochemistry, Western blot, PCR, and laser scanning confocal microscopy, Syk was detected in human, rat, and mouse bronchial epithelium in situ and in cultured human bronchial EC in primary cells and the cell lines HS-24 and BEAS-2B. Syk-dependent signaling pathways in EC were initiated by engagement of beta1-integrin receptors. Stimulation of beta1-integrin receptors by fibronectin or antibody cross-linking caused redistribution of Syk from a cytoplasmic to plasma membrane localization. In stimulated cells, Syk and beta1-integrin colocalized. In addition, following beta1-integrin receptor engagement, tyrosine phosphorylation of Syk was observed. Expression of the intercellular adhesion molecule-1 (ICAM-1) and production of IL-6, both important molecules in lung inflammation, was downregulated in EC treated with Syk small interfering RNA or Syk inhibitor piceatannol. We propose that Syk is involved in signaling pathways induced by integrin engagement in airway EC. Syk-mediated signaling regulates IL-6 and ICAM-1 expression and may be important in the pathophysiology of lung inflammation.  相似文献   

11.
Although CpG containing DNA is an important regulator of innate immune responses via toll-like receptor 9 (TLR9), excessive activation of this receptor is detrimental to the host. Here, we show that cytosolic phospholipase A2 (cPLA2) activation is important for TLR9-mediated inducible nitric oxide synthase (iNOS) expression. Activation of TLR9 signaling by CpG induces iNOS expression and NO production. Inhibition of TLR9 blocked the iNOS expression and NO production. The CpG also stimulates cPLA2-hydrolyzed arachidonic acid (AA) release. Inhibition of cPLA2 activity by inhibitor attenuated the iNOS expression by CpG response. Additionally, knockdown of cPLA2 protein by miRNA also suppressed the CpG-induced iNOS expression. Furthermore, the CpG rapidly phosphorylates three MAPKs and Akt. A potent inhibitor for p38 MAPK or Akt blocked the CpG-induced AA release and iNOS expression. These results suggest that TLR9 activation stimulates cPLA2 activity via p38 or Akt pathways and mediates iNOS expression.  相似文献   

12.
We have reported recently that intrathecal (i.t.) injection of interleukin-1beta (IL-1beta), at a dose of 100 ng, induces inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in the spinal cord and results in thermal hyperalgesia in rats. This study further examines the role of mitogen-activated protein kinase (MAPK) in i.t. IL-1beta-mediated iNOS-NO cascade in spinal nociceptive signal transduction. All rats were implanted with an i.t. catheter either with or without an additional microdialysis probe. Paw withdrawal latency to radiant heat is used to assess thermal hyperalgesia. The iNOS and MAPK protein expression in the spinal cord dorsal horn were examined by western blot. The [NO] in CSF dialysates were also measured. Intrathecal IL-1beta leads to a time-dependent up-regulation of phosphorylated p38 (p-p38) MAPK protein expression in the spinal cord 30-240 min following IL-1beta injection (i.t.). However, neither the phosphorylated extracellular signal-regulated kinase (p-ERK) nor phosphorylated c-Jun NH2-terminal kinase (p-JNK) was affected. The total amount of p38, ERK, and JNK MAPK proteins were not affected following IL-1beta injection. Intrathecal administration of either selective p38 MAPK, or JNK, or ERK inhibitor alone did not affect the thermal nociceptive threshold or iNOS protein expression in the spinal cord. However, pretreatment with a p38 MAPK inhibitor significantly reduced the IL-1beta-induced p-p38 MAPK expression by 38-49%, and nearly completely blocked the subsequent iNOS expression (reduction by 86.6%), NO production, and thermal hyperalgesia. In contrast, both ERK and JNK inhibitor pretreatments only partially (approximately 50%) inhibited the IL-1beta-induced iNOS expression in the spinal cord. Our results suggest that p38 MAPK plays a pivotal role in i.t. IL-1beta-induced spinal sensitization and nociceptive signal transduction.  相似文献   

13.
14.
Xu X  Malave A 《Life sciences》2000,67(26):3221-3230
Recently mitogen-activated protein kinase (MAPK) has been reported to play an important role in phosphorylation cascades governing cell growth and protein expression in numerous cell types. In order to explore the signaling mechanism by which inducible nitric oxide synthase (iNOS) is regulated in C6 glioma cells, we investigated the role of MAPK in iNOS expression by using the specific MAPK inhibitors. First the induction of nitric oxide by lipopolysaccharide (LPS), tumor necrosis factor alpha (TNFalpha), interferon gamma (IFNgamma), alone or their combination, was studied in C6 glioma cells. Administration of LPS, TNFalpha, or IFNgamma alone had no detectable stimulatory effect on the production of nitric oxide (NO). However, combination of the three factors elicited a significant elevation of NO level in C6 cell culture medium. Subsequently pretreatment of C6 cells with a specific inhibitor of p38 MAPK, SB202190, resulted in a dose-dependent inhibition of NO production and iNOS expression, but PD98059, an inhibitor of p42/p44 MAPK activation, had no effect. These data suggest that p38 MAPK mediates iNOS expression in C6 glioma cells, but p42/p44 MAPK is not involved in this process.  相似文献   

15.
Previously, we demonstrated that rat macrophages express CD8 and that Ab to CD8 stimulates NO production. We confirm that CD8 is expressed by rat macrophages and extend understanding of its functional significance. Activation of CD8 alpha (OX8 Ab) on alveolar macrophages stimulated mRNA expression for TNF and IL-1 beta and promoted TNF and IL-1 beta secretion. Similarly, OX8 Ab (CD8 alpha) stimulated NR8383 cells to secrete TNF, IL-1 beta, and NO. Activation of CD8 beta (Ab 341) on alveolar macrophages increased mRNA expression for TNF and IL-1 beta and stimulated secretion of TNF, but not IL-1 beta. Interestingly, anti-CD8 Abs did not stimulate IFN-gamma or PGE2 production, or phagocytosis by macrophages. OX8 (CD8 alpha)-induced TNF and IL-1 beta production by macrophages was blocked by inhibitors of protein tyrosine kinase(s), PP1, and genistein, but not by phosphatidylinositol-3 kinase inhibitor, wortmannin. Moreover, OX8 stimulated protein tyrosine kinase activity in NR8383 cells. Further analysis of kinase dependence using antisense to Syk kinase demonstrated that TNF, but not IL-1 beta, stimulation by CD8 alpha is Syk dependent. By contrast, protein kinase C inhibitor Ro 31-8220 had no effect on OX8-induced TNF production, whereas OX8-induced IL-1 beta production was blocked by Ro 31-8220. Thus, there are distinct signaling mechanisms involved in CD8 alpha (OX8)-induced TNF and IL-1 beta production. In summary, macrophages express CD8 molecules that, when activated, stimulate TNF and IL-1 beta expression, probably through mechanisms that include activation of Src and Syk kinases and protein kinase C. These findings identify a previously unknown pathway of macrophage activation likely to be involved in host defense and inflammation.  相似文献   

16.
17.
Clinical and basic science data support an integral role of calcitonin gene-related peptide (CGRP) in the pathophysiology of temporomandibular joint disorders. Recently, we have shown that CGRP can stimulate the synthesis and release of nitric oxide (NO) from trigeminal ganglion glial cells. The goal of this study was to determine the role of mitogen-activated protein kinase (MAPK) signaling pathways in CGRP regulation of iNOS expression and NO release from cultured trigeminal ganglion glial cells from Sprague–Dawley rats. CGRP treatment for 2 h significantly increased activity of the MAPK reporter genes, Elk, ATF-2, and CHOP. In addition, CGRP increased nuclear staining for the active forms of the MAPKs: extracellular signal-regulated kinase, c-Jun amino-terminal kinase, and p38. This stimulatory event was not observed in cultures pre-treated with the CGRP receptor antagonist peptide CGRP8–37. Similarly, pre-treatment with selective MAPK inhibitors repressed increases in reporter gene activity as well as CGRP-induced increases in iNOS expression and NO release mediated by MAPKs. In addition, over-expression of MAPK kinase 1 (MEK1), MEK3, MEK6, and MEK kinase significantly increased iNOS expression and NO production in glial cells. Results from our study provide evidence that CGRP binding to its receptor can stimulate iNOS gene expression via activation of MAPK pathways in trigeminal ganglion glial cells.  相似文献   

18.
Tumor necrosis factor-alpha is known to upregulate the expression of surface adhesion molecules on polymorphonuclear leukocytes (PMNs). The purpose of this investigation was to study possible intracellular signaling pathways responsible for the upregulation of beta2 integrins on normal human PMNs induced by TNF. We report that treatment with TNF (10 ng/ml) for 30 min resulted in a significant increase in CD18 and MAC-1 surface expression (P < 0.001). In addition, pretreatment with 15 microM SB203580, a p38 MAP kinase inhibitor, for 10 min significantly inhibited TNF upregulation of CD18 and MAC-1 (P < 0.0001). Pretreatment with either 15 microM PD 98059, a p42/44 MAP kinase inhibitor, or 5 microM GO 6850, a protein kinase C inhibitor, had no significant inhibitory effect. These data suggest that the TNF-induced upregulation of beta2 integrins is mediated specifically through the p38 MAP kinase pathway and not through the p42/44 MAP kinase or protein kinase C pathways.  相似文献   

19.
In response to transforming growth factor beta1 (TGFbeta) stimulation, fibroblasts modify their integrin repertoire and adhesive capabilities to certain extracellular matrix proteins. Although TGFbeta has been shown to increase the expression of specific alphav integrins, the mechanisms underlying this are unknown. In this study we demonstrate that TGFbeta1 increased both beta3 integrin subunit mRNA and protein levels as well as surface expression of alphavbeta3 in human lung fibroblasts. TGFbeta1-induced alphavbeta3 expression was strongly adhesion-dependent and associated with increased focal adhesion kinase and c-Src kinase phosphorylation. Inhibition of beta3 integrin activation by the Arg-Gly-Asp tripeptide motif-specific disintegrin echistatin or alphavbeta3 blocking antibody prevented the increase in beta3 but not beta5 integrin expression. In addition, echistatin inhibited TGFbeta1-induced p38 MAPK but not Smad3 activation. Furthermore, inhibition of the Src family kinases, but not focal adhesion kinase, completely abrogated TGFbeta1-induced expression of alphavbeta3 and p38 MAPK phosphorylation but not beta5 integrin expression and Smad3 activation. The TGFbeta1-induced alphavbeta3 expression was blocked by pharmacologic and genetic inhibition of p38 MAPK- but not Smad2/3-, Sp1-, ERK-, phosphatidylinositol 3-kinase, and NF-kappaB-dependent pathways. Our results demonstrate that TGFbeta1 induces alphavbeta3 integrin expression via a beta3 integrin-, c-Src-, and p38 MAPK-dependent pathway. These data identify a novel mechanism for TGFbeta1 signaling in human lung fibroblasts by which they may contribute to normal and pathological wound healing.  相似文献   

20.
L-Arginine (L-arg) is metabolized to nitric oxide (NO) by inducible NO synthase (iNOS) or to urea and L-ornithine (L-orn) by arginase. NO is involved in the inflammatory response, whereas arginase is the first step in polyamine and proline synthesis necessary for tissue repair and wound healing. Mitogen-activated protein kinases (MAPK) mediate LPS-induced iNOS expression, and MAPK phosphatase-1 (MKP-1) plays a crucial role in limiting MAPK signaling in macrophages. We hypothesized that MKP-1, by attenuating iNOS expression, acts as a switch changing L-arg metabolism from NO production to L-orn production after endotoxin administration. To test this hypothesis, we performed studies in RAW264.7 macrophages stably transfected with an MKP-1 expression vector in thioglyollate-elicited peritoneal macrophages harvested from wild-type and Mkp-1–/– mice, as well as in vivo in wild-type and Mkp-1–/– mice. We found that overexpression of MKP-1 resulted in lower iNOS expression and NO production but greater urea production in response to LPS. Although deficiency of MKP-1 resulted in greater iNOS expression and NO production and lower urea production in response to LPS, neither the overexpression nor the deficiency of MKP-1 had any substantial effect on the expression of the arginases. lung injury; macrophage; ornithine; mitogen-activated protein kinases  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号