首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite the well-established toxicity of cadmium (Cd) to animals and the ameliorative effects of selenium (Se), some specific mechanisms in the chicken ovary are not yet clarified. To explore the mechanism by which the toxicity effect of Cd is induced and explore the effect of supranutritional Se on Cd toxicity in female bird reproduction, forty-eight 50-day-old Isa Brown female chickens were divided randomly into four groups. Group I (control group) was fed the basic diet containing 0.2 mg/kg Se. Group II (Se-treated group) was fed the basic diet supplemented with sodium selenite (Na2SeO3), and the total Se content was 2 mg/kg. Group III (Se + Cd-treated group) was fed the basic diet supplemented with Na2SeO3; the total Se content was 2 mg/kg, and it was supplemented with 150 mg/kg cadmium chloride (CdCl2). Group IV (Cd-treated group) was with the basic diet supplemented with 150 mg/kg CdCl2. The Cd, estradiol (E2), and progestogen (P4) contents changed after subchronic Cd exposure in chicken ovarian tissue; subsequently, oxidative stress occurred and activated the endoplasmic reticulum (ER) pathway to induce apoptosis. Further, Se decreased the accumulation of Cd in ovarian tissue, increased the E2 and P4 contents, alleviated oxidative stress, and reduced apoptosis via the ER stress pathway. The present results demonstrated that Cd could induce apoptosis via the ER stress pathway in chicken ovarian tissue and that Se had a significant antagonistic effect. These results are potentially valuable for finding a strategy to prevent Cd poisoning.  相似文献   

2.
Cyclophosphamide (CP) is a common anticancer drug, but its use in cancer treatment is limited due to its severe toxicities induced mainly by oxidative stress in normal cells. Reactive oxygen species (ROS) lead to multiple organ injuries, including the kidneys. Selenium (Se) is a nutritionally essential trace element with antioxidant properties. In the present study, the possible protective effect of Se on CP-induced acute nephrotoxicity was investigated. Forty-two Sprague-Dawley rats were equally divided into six groups of seven rats in each. The control group received saline, and other groups were injected with CP (150 mg/kg), Se (0.5 or 1 mg/kg), or CP + Se intraperitoneally. Total antioxidant capacity (TAC), total oxidant state (TOS), oxidative stress index (OSI), creatinine, and cystatin C (Cys C) levels were measured in the sera. In addition, kidney tissues were examined histologically. In the CP alone treated rats, creatinine, Cys C, TOS, and OSI levels increased, while TAC level decreased. CP-induced histological damages were decreased by co-treatment of Se and biochemical results supported the microscopic observations. In conclusion, our study points to the therapeutic potential of Se and indicates a significant role of ROS in CP-induced kidney toxicity.  相似文献   

3.
The present study was conducted to investigate whether the combined treatment with Se and Zn offers more beneficial effects than that provided by either of them alone in reversing Cd-induced oxidative stress in the kidney of rat. For this purpose, 30 adult male Wistar albino rats, equally divided into control and four treated groups, received either 200 ppm Cd (as CdCl2), 200 ppm Cd + 500 ppm Zn (as ZnCl2), 200 ppm Cd + 0.1 ppm Se (as Na2SeO3), or 200 ppm Cd + 500 ppm Zn + 0.1 ppm Se in their drinking water for 35 days. The results showed that Cd treatment decreased significantly the catalase (CAT) and glutathione peroxidase (GSH-Px) activities, whereas the superoxide dismutase (SOD) activity and the renal levels of lipid peroxidation (as malondialdehyde, MDA) were increased compared to control rats. The treatment of Cd-exposed rats with Se alone had no significant effect on the Cd-induced increase in the MDA concentrations but increased significantly the CAT activities and reversed Cd-induced increase in SOD activity. It also partially prevented Cd-induced decrease in GSH-Px activity. The treatment of Cd-exposed animals with Zn alone increased significantly the CAT activity and partially protected against Cd-induced increase in the MDA concentrations, whereas it had no significant effect on the Cd-induced increase in SOD activity and decrease in GSH-Px activity. The combined treatment of Cd-exposed animals with Se and Zn was more effective than that with either of them alone in reversing Cd-induced decrease in CAT and GSH-Px activities and Cd-induced increase in MDA concentrations. Results demonstrated beneficial effects of combined Se and Zn treatment in Cd-induced oxidative stress in kidney and suggest that Se and Zn can have a synergistic role against Cd toxicity. I. Messaoudi and J. El Heni have equally contributed to this work.  相似文献   

4.
To determine the negative effects of cadmium (Cd) exposure and the protective role of selenium (Se) on Cd-spiked neutrophils of chicken, forty-eight 28-day-old Isa Brown male chickens were divided randomly into four groups. Group I (control group) was fed with the basic diet containing 0.2 mg/kg Se. Group II (Se-treated group) was fed with the basic diet supplemented with Na2SeO3, and the total Se content was 2 mg/kg. Group III (Se/Cd-treated group) was fed with the basic diet supplemented with Na2SeO3; the total Se content was 2 mg/kg and supplemented with 150 mg/kg CdCl2. Group IV (Cd-treated group) was fed with the basic diet supplemented with 150 mg/kg CdCl2. Analyses of inflammatory factors, cytokines, and heat shock protein (Hsp) messenger RNA (mRNA) expression were detected by real-time PCR (RT-PCR). Additionally, we evaluated the phagocytic rate of neutrophils in peripheral blood. First, we observed that Cd significantly induced the mRNA expression levels of inflammatory factors NF-κB, iNOS, COX-2, and TNF-α, while Se/Cd treatment reduced their mRNA expression, although these expression levels remained higher than that of the control group. In addition, the mRNA expression levels of cytokines (IL-2, IL-4, and IL-10) for the Se-treated group exhibited significant differences between the Se/Cd-treated group and the Cd-treated group. Furthermore, the mRNA expression levels of Hsps demonstrated that the Se/Cd-treated group and the Cd-treated group were significantly higher (P < 0.05) than the control group and the Se-treated group. These results demonstrated that Se presented partial protection on Cd-spiked neutrophils of chicken with Hsps being involved in the process of the Cd-spiked toxic effects in chicken peripheral blood neutrophils.  相似文献   

5.
The aim of the present study was to evaluate the antioxidant effects of betaine against oxidative stress and pathological changes mediated by cadmium in the testes of rats. The adult male Wistar rats were allocated into three experimental groups as follows: the cadmium group received cadmium chloride at the dosage of 2 mg/kg intraperitoneally thereafter, the rats treated by physiological saline for 10 consecutive days. The betaine plus cadmium group received betaine at the dosage of 1.5 % w/w of the total diet orally for 10 consecutive days and cadmium chloride injected at the 2nd day of the betaine treatment. The control rats were injected physiological saline. Both testes of rats were removed for antioxidant assay and pathological changes evaluation on days 5 and 10 after cadmium toxicity. TBARS concentration (as a lipid peroxidation marker) was significantly higher in the cadmium group by day 10 compared to control and betaine plus cadmium groups, and it was significantly higher in cadmium group by day 5 in comparison with the controls. Catalase (CAT) and glutathione peroxidase activities decreased significantly by day 10 in cadmium group when compared to the controls. In contrast, CAT and superoxide dismutase activities increased significantly by day 10 in betaine plus cadmium group when compared to the cadmium group. In addition, the antioxidant effects of betaine could prevent testicular pathological changes in betaine plus cadmium group. The present data allow us to exploit the advantages of this nutrient agent in future studies.  相似文献   

6.
Cadmium (Cd) is an important industrial and environmental pollutant. In animals, the liver is the major target organ of Cd toxicity. In this study, rat hepatocytes were treated with 2.5~10 μM Cd for various durations. Studies on nuclear morphology, chromatin condensation, and apoptotic cells demonstrate that Cd concentrations ranging within 2.5~10 μM induced apoptosis. The early-stage marker of apoptosis, i.e., decreased mitochondrial membrane potential, was observed as early as 1.5 h at 5 μM Cd. Significant (P?P?2+ concentration ([Ca2+] i ) of Cd-exposed cells significantly increased (P?2+] i may play an important role in apoptosis. Overall, these results showed that oxidative stress and Ca2+ signaling were critical mediators of the Cd-induced apoptosis of rat hepatocytes.  相似文献   

7.
To date, there is no available information on the protective effect of onion (Allium cepa) extract (AcE) on cadmium (Cd)-induced cardiotoxicity. The present study was performed to assess the possible antioxidant and anti-apoptotic roles of AcE in Cd-induced cardiotoxicity in rats. A Cd group was injected subcutaneously with CdCl2 dissolved in saline at a dose of 2 ml/kg/day for 30 days, resulting in a dosage of 1 mg/kg Cd. The rats in the AcE-treated group were given 1 ml of AcE via intragastric intubation for 30 days. The rats intoxicated with Cd for 30 days showed increased tissue malondialdehyde (MDA) levels and decreased levels of the enzymatic antioxidants superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in cardiac tissue. AcE attenuated these adverse effects of Cd. After Cd exposure, histological abnormalities were observed, including myofibrillar loss, vacuolization of cytoplasm and irregularity of myofibrils. These histological alterations were effectively attenuated by the treatment with AcE. Furthermore, our data indicate a significant reduction of apoptosis in the cardiomyocytes of the Cd group treated with AcE therapy. Animal studies show antioxidant effects of AcE. But to date, no study reported the effect of AcE on biochemical and histopathological changes due to Cd induced on rat heart. Our study showed that AcE therapy reduced Cd-induced oxidative stress and apoptosis, possibly through its antioxidant and anti-apoptotic activity.  相似文献   

8.
The Effects of Flaxseed Oil on Cadmium-Induced Oxidative Stress in Rats   总被引:1,自引:0,他引:1  
In the present study, the effects of flaxseed oil on the oxidant–antioxidant system in cadmium intoxication were investigated in rats. Forty-eight male Wistar albino rats were divided into four equal groups (group 1). No treatment was applied to the control group. On the other hand, groups 2, 3, and 4 were administered with 0.1 ml/rat/day (~500 mg/kg bw) flaxseed oil by gavage into the stomach, 50 ppm of cadmium (~4 mg/kg bw) in ad libitum drinking water, and 0.1 ml/rat/day flaxseed oil plus 50 ppm of cadmium, respectively, for 30 days. At the end of the study, malondialdehyde and nitric oxide levels and catalase, superoxide dismutase, and glutathione peroxidase activities were measured in blood and tissue (liver, lung, kidney, brain, heart, and testes) samples. While malondialdehyde and nitric oxide levels increased in the group given cadmium compared to the control group; in the meantime, there were some significant changes in antioxidant enzyme activities. These changes were observed, the trends of decrease or increase compared to the control group. There were positive changes in parameters of the group given with flaxseed oil plus cadmium compared to the group receiving cadmium alone, in other words, values were seen coming close to control group. As a result, cadmium exposure caused oxidative damage to erythrocytes and organs at varying rates, while flaxseed oil reduced the severity of cadmium-induced lipid peroxidation. Therefore, it was concluded that flaxseed oil can be used among compounds as a therapeutic agent or food additive for prophylaxis in cadmium intoxication.  相似文献   

9.
10.
Xie  Wanqiu  Lv  Ai  Li  Ruyue  Tang  Zequn  Ma  Dexing  Huang  Xiaodan  Zhang  Ruili  Ge  Ming 《Biological trace element research》2018,184(1):247-258
Biological Trace Element Research - Agaricus blazei Murill polysaccharide (ABP) has exhibited antioxidant and immunoregulatory activity. The aim of this study was to investigate the effect of ABP...  相似文献   

11.
Biological Trace Element Research - Cadmium (Cd), as one of the most toxic heavy metals, has become a widespread environmental contaminant and threats the food quality and safety. The protective...  相似文献   

12.
The present study was performed to determine the protective effects of melatonin alone and vitamin E with selenium combination against cadmium-induced oxidative damage in rat liver. A total of 60 male rats were equally divided into five groups, one of which acted as control receiving subcutaneous injections of physiological saline. The remaining four groups were treated with subcutaneous injections of cadmium chloride at a dose of 1 mg/kg weight. The first study group received no treatment. The second group was treated with a combination of 60 mg/kg vitamin E and 1 mg/kg sodium selenite. Group 3 was treated with 10 mg/kg melatonin, and the four group received a combination of vitamin E, sodium selenite, and melatonin at the doses mentioned above. After 1 month, the animals were killed, and liver and kidneys were excised for histopathological inspection and determination of tissue malondialdehyde and the activity of superoxide dismutase. The animals receiving no treatment showed significantly higher malondialdehyde levels and reduced activity of superoxide dismutase (p < 0.05). Treatment with antioxidants resulted in a significant reduction in malondialdehyde when compared to nontreated animals (p < 0.05) and increase in the enzyme activity that was almost the same as the controls. The pathological findings were also in parallel with the results of the biochemical analysis. In conclusion, all the agents tested had protective effects against cadmium-induced oxidative damage.  相似文献   

13.
1. The authors compare oxidative injury to brain and kidney Na/K-ATPase using in vitro and in vivo approaches. The substrate dependence of dog kidney Na/K-ATPase was examined both before and after partial hydrogen peroxide modification. A computer simulation model was used for calculating kinetic parameters.2. The substrate dependence curve for the unmodified endogenous enzyme displayed a typical curve with an intermediate plateau, adequately described by the sum of hyperbolic and sigmoidal components.3. The modified enzyme demonstrated a dependent curve that closely approximates normal hyperbola. The estimated ATP K m value for the endogenous enzyme was about 85 M; the K h was equal to 800 M. The maximal number of protomers interacting was 8. Following oxidative modification, the enzyme substrate dependence curve did not show a significant change in the maximal protomer rate V m, while the K m was increased slightly and interprotomer interaction was abolished.4. Na/K-ATPase from an ischemic gerbil brain showed a 22% decrease in specific activity. The maximal rate of ATP hydrolysis by an enzyme protomer changed slightly, but the sigmoidal component, characterizing the enzyme's ability to form oligomers was abolished completely. The K m value was almost unchanged, but the Hill coefficient fell to 1. These data show that Na/K-ATPase molecules isolated from the ischemic brain have lost the ability to interact with one another.5. We suggest that the most important consequence of oxidative modification is Na/K-ATPase oligomeric structure formation and subsequent hydrolysis rate suppression.  相似文献   

14.
15.
Ca(2+) is well known for its role as crucial second messenger in modulating many cellular physiological functions, Ca(2+) overload is detrimental to cellular function and may present as an important cause of cellular oxidative stress generation and apoptosis. The aim of this study is to investigate the effects of selenium on lipid peroxidation, reduced glutathione (GSH), glutathione peroxidase (GSH-Px), cytosolic Ca(2+) release, cell viability (MTT) and apoptosis values in dorsal root ganglion (DRG) sensory neurons of rats. DRG cells were divided into four groups namely control, H(2)O(2) (as a model substance used as a paradigm for oxidative stress), selenium, selenium + H(2)O(2). Moderate doses and times of H(2)O(2) and selenium were determined by MTT test. Cells were preterated 200 nM selenium for 30 h before incubatation with 1 μM H(2)O(2) for 2 h. Lipid peroxidation levels were lower in the control, selenium, selenium + H(2)O(2) groups than in the H(2)O(2) group. GSH-Px activities were higher in the selenium groups than in the H(2)O(2) group. GSH levels were higher in the control, selenium, selenium + H(2)O(2) groups than in the H(2)O(2) group. Cytosolic Ca(2+) release was higher in the H(2)O(2) group than in the control, selenium, selenium + H(2)O(2) groups. Cytosolic Ca(2+) release was lower in the selenium + H(2)O(2) group than in the H(2)O(2). In conclusion, the present study demonstrates that selenium induced protective effects on oxidative stress, [Ca(2+)](c) release and apoptosis in DRG cells. Since selenium deficiency is a common feature of oxidative stress-induced neurological diseases of sensory neurons, our findings are relevant to the etiology of pathology in oxidative stress-induced neurological diseases of the DRG neurons.  相似文献   

16.
The effect of two different doses of selenium [1 and 50 μg selenium/100 g body weight (wt)] on nicotine-induced oxidative damage in liver was investigated in experimental rats. Male albino rats were maintained for 60 days as follows: (1) control group (normal diet), (2) nicotine group (0.6 mg/kg body wt)/day, (3) high-dose selenium (50 μg/100 g body wt)/day, (4) high-dose selenium (50 μg/100 g body wt) + nicotine (0.6 mg/kg body wt)/day, (5) low-dose selenium (1 μg/100 g body wt)/day, and (6) low-dose selenium (1 μg/100 g body wt) + nicotine (0.6 mg/kg body wt)/day. Nicotine administration caused a decrease in the activity of antioxidant enzymes, an increase in the concentration of lipid peroxidation products and protein carbonyls and an increase in the activity of nitric oxide synthase compared to the control group. Coadministration of nicotine and selenium reduced the concentration of lipid peroxidation products and increased the activity of antioxidant enzymes compared to the nicotine group. Selenium also enhanced the metabolism of nicotine. The antioxidant effect was more significant in the group administered a low dose of selenium.  相似文献   

17.
The protective effect of selenium (Se) on antioxidant defense and methylglyoxal (MG) detoxification systems was investigated in leaves of rapeseed (Brassica napus cv. BINA sharisha 3) seedlings under cadmium (Cd)-induced oxidative stress. Two sets of 11-day-old seedlings were pretreated with both 50 and 100???M Se (Na2SeO4, sodium selenate) for 24?h. Two concentrations of CdCl2 (0.5 and 1.0?mM) were imposed separately or on the Se-pretreated seedlings, which were grown for another 48?h. Cadmium stress at any levels resulted in the substantial increase in malondialdehyde and H2O2 levels. The ascorbate (AsA) content of the seedlings decreased significantly upon exposure to Cd stress. The amount of reduced glutathione (GSH) increased only at 0.5?mM CdCl2, while glutathione disulfide (GSSG) increased at any level of Cd, with concomitant decrease in GSH/GSSG ratio. The activities of ascorbate peroxidase (APX) and glutathione S-transferase (GST) increased significantly with increased concentration of Cd (both at 0.5 and 1.0?mM CdCl2), while the activities of glutathione reductase (GR) and glutathione peroxidase (GPX) increased only at moderate stress (0.5?mM CdCl2) and then decreased at 1.0?mM severe stress (1.0?mM CdCl2). Monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon exposure to any levels of Cd. Selenium pretreatment had little effect on the nonenzymatic and enzymatic components of seedlings grown under normal conditions; i.e., they slightly increased the GSH content and the activities of APX, GR, GST, and GPX. On the other hand, Se pretreatment of seedlings under Cd-induced stress showed a synergistic effect; it increased the AsA and GSH contents, the GSH/GSSG ratio, and the activities of APX, MDHAR, DHAR, GR, GPX, CAT, Gly I, and Gly II which ultimately reduced the MDA and H2O2 levels. However, in most cases, pretreatment with 50???M Se showed better results compared to pretreatment with 100???M Se. The results indicate that the exogenous application of Se at low concentrations increases the tolerance of plants to Cd-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.  相似文献   

18.
Selenium (Se) is an important dietary micronutrient with antioxidative roles. Cadmium (Cd), a ubiquitous environmental pollutant, is known to cause brain lesion in rats and humans. However, little is reported about the deleterious effects of subchronic Cd exposure on the brain of poultry and the protective roles on the brain by Se against Cd. The aim of this study was to investigate the protective effects of Se on Cd-induced brain damage in chickens. One hundred twenty 100-day-old chickens were randomly assigned to four groups and were fed a basal diet, or Se (as 10 mg Na2SeO3/kg dry weight of feed), Cd (as 150 mg CdCl2/kg dry weight of feed), or Cd?+?Se in their basic diets for 60 days. Then, concentrations of Cd and Se, production of nitric oxide (NO), messenger RNA (mRNA) level and activity of inducible NO synthase (iNOS), level of oxidative stress, and histological and ultrastructural changes of the cerebrum and cerebellum were examined. The results showed that Cd exposure significantly increased Cd accumulation, NO production, iNOS activities, iNOS mRNA level, and MDA content in the cerebrum and cerebellum. Cd treatment obviously decreased Se content and antioxidase activities and caused histopathological changes in the cerebrum and cerebellum. Se supplementation during dietary Cd obviously reduced Cd accumulation, NO production, mRNA level and activity of iNOS, oxidative stress, and histopathological damage in the cerebrum and cerebellum of chickens. It indicated that Se ameliorates Cd-induced brain damage in chickens by regulating iNOS-NO system changes, and oxidative stress induced by Cd and Se can serve as a potential therapeutic for Cd-induced brain lesion of chickens.  相似文献   

19.
20.
Liu  Ruohan  Jia  Tiantian  Cui  Yuan  Lin  Hongjin  Li  Shu 《Biological trace element research》2018,184(1):240-246
Biological Trace Element Research - Cadmium (Cd) is a highly toxic heavy metal that can affect human and animal health. Selenium (Se) is an essential microelement that can protect various organs...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号