首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Repeat proteins have unique elongated structures that, unlike globular proteins, are quite modular. Despite their simple one-dimensional structure, repeat proteins exhibit intricate folding behavior with a complexity similar to that of globular proteins. Therefore, repeat proteins allow one to quantify fundamental aspects of the biophysics of protein folding. One important feature of repeat proteins is the interfaces between the repeating units. In particular, the distribution of stabilities within and between the repeats was previously suggested to affect their folding characteristics. In this study, we explore how the interface affects folding kinetics and cooperativity by investigating two families of repeat proteins, namely, the Ankyrin and tetratricopeptide repeat proteins, which differ in the number of interfacial contacts that are formed between their units as well as in their folding behavior. By using simple topology-based models, we show that modulating the energetic strength of the interface relative to that of the repeat itself can drastically change the protein stability, folding rate, and cooperativity. By further dissecting the interfacial contacts into several subsets, we isolated the effects of each of these groups on folding kinetics. Our study highlights the importance of interface connectivity in determining the folding behavior.  相似文献   

2.
Repeat proteins comprise tandem arrays of a small structural motif. Their structure is defined and stabilized by interactions between residues that are close in the primary sequence. Several studies have investigated whether their structural modularity translates into modular thermodynamic properties. Tetratricopeptide repeat proteins (TPRs) are a class in which the repeated unit is a 34 amino acid helix-turn-helix motif. In this work, we use differential scanning calorimetry (DSC) to study the equilibrium stability of a series of TPR proteins with different numbers of an identical consensus repeat, from 2 to 20, CTPRa2 to CTPRa20. The DSC data provides direct evidence that the folding/unfolding transition of CTPR proteins does not fit a two-state folding model. Our results confirm and expand earlier studies on TPR proteins, which showed that apparent two-state unfolding curves are better fit by linear statistical mechanics models: 1D Ising models in which each repeat is treated as an independent folding unit.  相似文献   

3.
The ankyrin repeat as molecular architecture for protein recognition   总被引:29,自引:0,他引:29  
The ankyrin repeat is one of the most frequently observed amino acid motifs in protein databases. This protein-protein interaction module is involved in a diverse set of cellular functions, and consequently, defects in ankyrin repeat proteins have been found in a number of human diseases. Recent biophysical, crystallographic, and NMR studies have been used to measure the stability and define the various topological features of this motif in an effort to understand the structural basis of ankyrin repeat-mediated protein-protein interactions. Characterization of the folding and assembly pathways suggests that ankyrin repeat domains generally undergo a two-state folding transition despite their modular structure. Also, the large number of available sequences has allowed the ankyrin repeat to be used as a template for consensus-based protein design. Such projects have been successful in revealing positions responsible for structure and function in the ankyrin repeat as well as creating a potential universal scaffold for molecular recognition.  相似文献   

4.
Tetratricopeptide repeats (TPRs) are a class of all alpha-helical repeat proteins that are comprised of 34-aa helix-turn-helix motifs. These stack together to form nonglobular structures that are stabilized by short-range interactions from residues close in primary sequence. Unlike globular proteins, they have few, if any, long-range nonlocal stabilizing interactions. Several studies on designed TPR proteins have shown that this modular structure is reflected in their folding, that is, modular multistate folding is observed as opposed to two-state folding. Here we show that TPR multistate folding can be suppressed to approximate two-state folding through modulation of intrinsic stability or extrinsic environmental variables. This modulation was investigated by comparing the thermodynamic unfolding under differing buffer regimes of two distinct series of consensus-designed TPR proteins, which possess different intrinsic stabilities. A total of nine proteins of differing sizes and differing consensus TPR motifs were each thermally and chemically denatured and their unfolding monitored using differential scanning calorimetry (DSC) and CD/fluorescence, respectively. Analyses of both the DSC and chemical denaturation data show that reducing the total stability of each protein and repeat units leads to observable two-state unfolding. These data highlight the intimate link between global and intrinsic repeat stability that governs whether folding proceeds by an observably two-state mechanism, or whether partial unfolding yields stable intermediate structures which retain sufficient stability to be populated at equilibrium.  相似文献   

5.
Repeat proteins are ubiquitous and are involved in a myriad of essential processes. They are typically non-globular structures that act as diverse scaffolds for the mediation of protein-protein interactions. These excitingly different structures, which arise from tandem arrays of a repeated structural motif, have generated significant interest with respect to protein engineering and design. Recent advances have been made in the design and characterisation of repeat proteins. The highlights include re-engineering of binding specificity, quantitative models of repeat protein stability and kinetic studies of repeat protein folding.  相似文献   

6.
Although progress has been made to determine the native fold of a polypeptide from its primary structure, the diversity of pathways that connect the unfolded and folded states has not been adequately explored. Theoretical and computational studies predict that proteins fold through parallel pathways on funneled energy landscapes, although experimental detection of pathway diversity has been challenging. Here, we exploit the high translational symmetry and the direct length variation afforded by linear repeat proteins to directly detect folding through parallel pathways. By comparing folding rates of consensus ankyrin repeat proteins (CARPs), we find a clear increase in folding rates with increasing size and repeat number, although the size of the transition states (estimated from denaturant sensitivity) remains unchanged. The increase in folding rate with chain length, as opposed to a decrease expected from typical models for globular proteins, is a clear demonstration of parallel pathways. This conclusion is not dependent on extensive curve-fitting or structural perturbation of protein structure. By globally fitting a simple parallel-Ising pathway model, we have directly measured nucleation and propagation rates in protein folding, and have quantified the fluxes along each path, providing a detailed energy landscape for folding. This finding of parallel pathways differs from results from kinetic studies of repeat-proteins composed of sequence-variable repeats, where modest repeat-to-repeat energy variation coalesces folding into a single, dominant channel. Thus, for globular proteins, which have much higher variation in local structure and topology, parallel pathways are expected to be the exception rather than the rule.  相似文献   

7.
The folding of multisubunit proteins is of tremendous biological significance since the large majority of proteins exist as protein-protein complexes. Extensive experimental and computational studies have provided fundamental insights into the principles of folding of small monomeric proteins. Recently, important advances have been made in extending folding studies to multisubunit proteins, in particular homodimeric proteins. This review summarizes the equilibrium and kinetic theory and models underlying the quantitative analysis of dimeric protein folding using chemical denaturation, as well as the experimental results that have been obtained. Although various principles identified for monomer folding also apply to the folding of dimeric proteins, the effects of subunit association can manifest in complex ways, and are frequently overlooked. Changes in molecularity typically give rise to very different overall folding behaviour than is observed for monomeric proteins. The results obtained for dimers have provided key insights pertinent to understanding biological assembly and regulation of multisubunit proteins. These advances have set the stage for future advances in folding involving protein-protein interactions for natural multisubunit proteins and unnatural assemblies involved in disease.  相似文献   

8.
Although they are widely distributed across kingdoms and are involved in a myriad of essential processes, until recently, repeat proteins have received little attention in comparison to globular proteins. As the name indicates, repeat proteins contain strings of tandem repeats of a basic structural element. In this respect, their construction is quite different from that of globular proteins, in which sequentially distant elements coalesce to form the protein. The different families of repeat proteins use their diverse scaffolds to present highly specific binding surfaces through which protein-protein interactions are mediated. Recent studies seek to understand the stability, folding and design of this important class of proteins.  相似文献   

9.
Repeat proteins are tandem arrays of a small structural motif, in which tertiary structure is stabilized by interactions within a repeat and between neighboring repeats. Several studies have shown that this modular structure is manifest in modular thermodynamic properties. Specifically, the global stability of a repeat protein can be described by simple linear models, considering only two parameters: the stability of the individual repeated units (H) and the coupling interaction between the units (J). If the repeat units are identical, single values of H and J, together with the number of repeated units, is sufficient to completely describe the thermodynamic behavior of any protein within a series. In this work, we demonstrate how the global stability of a repeat protein can be changed, in a predictable fashion, by modifying only the H parameter. Taking a previously characterized series of consensus tetratricopeptide repeats (TPR) (CTPRa) proteins, we introduced mutations into the basic repeating unit, such that the stability of the individual repeat unit was increased, but its interaction with neighboring units was unchanged. In other words, we increased H but kept J constant. We demonstrated that the denaturation curves for a series of such repeat proteins can be fit and additional curves can be predicted by the one-dimensional Ising model in which only H has changed from the original fit for the CTPRa series. Our results show that we can significantly increase the stability of a repeat protein by rationally increasing the stability of the units (H), whereas the interaction between repeats (J) remains unchanged.  相似文献   

10.
Although the folding of alpha-helical repeat proteins has been well characterized, much less is known about the folding of repeat proteins containing beta-sheets. Here we investigate the folding thermodynamics and kinetics of the leucine-rich repeat (LRR) domain of Internalin B (InlB), an extracellular virulence factor from the bacterium Lysteria monocytogenes. This domain contains seven tandem leucine-rich repeats, of which each contribute a single beta-strand that forms a continuous beta-sheet with neighboring repeats, and an N-terminal alpha-helical capping motif. Despite its modular structure, InlB folds in an equilibrium two-state manner, as reflected by the identical thermodynamic parameters obtained by monitoring its sigmoidal urea-induced unfolding transition by different spectroscopic probes. Although equilibrium two-state folding is common in alpha-helical repeat proteins, to date, InlB is the only beta-sheet-containing repeat protein for which this behavior is observed. Surprisingly, unlike other repeat proteins exhibiting equilibrium two-state folding, InlB also folds by a simple two-state kinetic mechanism lacking intermediates, aside from the effects of prolyl isomerization on the denatured state. However, like other repeat proteins, InlB also folds significantly more slowly than expected from contact order. When plotted against urea, the rate constants for the fast refolding and single unfolding phases constitute a linear chevron that, when fitted with a kinetic two-state model, yields thermodynamic parameters matching those observed for equilibrium folding. Based on these kinetic parameters, the transition state is estimated to comprise 40% of the total surface area buried upon folding, indicating that a large fraction of the native contacts are formed in the rate-limiting step to folding.  相似文献   

11.
Small globular proteins have many contacts between residues that are distant in primary sequence. These contacts create a complex network between sequence-distant segments of secondary structure, which may be expected to promote the cooperative folding of globular proteins. Although repeat proteins, which are composed of tandem modular units, lack sequence-distant contacts, several of considerable length have been shown to undergo cooperative two-state folding. To explore the limits of cooperativity in repeat proteins, we have studied the unfolding of YopM, a leucine-rich repeat (LRR) protein of over 400 residues. Despite its large size and modular architecture (15 repeats), YopM equilibrium unfolding is highly cooperative, and shows a very strong dependence on the concentration of urea. In contrast, kinetic studies of YopM folding indicate a mechanism that includes one or more transient intermediates. The urea dependence of the folding and unfolding rates suggests a relatively small transition state ensemble. As with the urea dependence, we have found an extreme dependence of the free energy of unfolding on the concentration of salt. This salt dependence likely results from general screening of a large number of unfavorable columbic interactions in the folded state, rather than from specific cation binding.  相似文献   

12.
Recent advances in computational protein design have allowed exciting new insights into the sequence dependence of protein folding free energy landscapes. Whereas most previous studies have examined the sequence dependence of protein stability and folding kinetics by characterizing naturally occurring proteins and variants of these proteins that contain a small number of mutations, it is now possible to generate and characterize computationally designed proteins that differ significantly from naturally occurring proteins in sequence and/or structure. These computer-generated proteins provide insights into the determinants of protein structure, stability and folding, and make it possible to disentangle the properties of proteins that are the consequence of natural selection from those that reflect the fundamental physical chemistry of polypeptide chains.  相似文献   

13.
TPR proteins: the versatile helix   总被引:32,自引:0,他引:32  
Tetratrico peptide repeat (TPR) proteins have several interesting properties, including their folding characteristics, modular architecture and range of binding specificities. In the past five years, many 3D structures of TPR domains have been solved, revealing at a molecular level the versatility of this basic fold. Here, we discuss the structure of TPRs and highlight the diversity of arrangements and functions that are associated with these ubiquitous domains. Genomic analyses of the distribution of TPR domains are presented along with implications for protein engineering.  相似文献   

14.
In the last decade many advances have been made on molecular dynamics simulations and different force fields were developed from the combination of differentiable functions of the atomic coordinates to represent the system energy and of parameters that describe the geometric and energetic properties of inter-particle interactions. However, it has been shown that very subtle modifications to commonly used molecular mechanical potentials can significantly alter the behavior of those potentials inducing stabilizing or destabilizing effects in the patterns of peptides or proteins. In this article we describe the behavior of polyalanine peptides under the influence of various “force fields”. The polyalanines were chosen as study model since their structural features were already studied experimentally and thus our computational results were easily comparable with the experimental ones. In particular, three peptides composed of 8, 10 and 12 alanine residues were subjected to molecular dynamics simulations using 12 different force fields to understand what is the most appropriate force field to properly simulate their folding. Our results showed that Amber99? is the best force field able to generate helical conformations in agreement with experimental data.  相似文献   

15.
Proteins containing stretches of repeating amino acid sequences are prevalent throughout nature, yet little is known about the general folding and assembly mechanisms of these systems. Here we propose myotrophin as a model system to study the folding of ankyrin repeat proteins. Myotrophin is folded over a large pH range and is soluble at high concentrations. Thermal and urea denaturation studies show that the protein displays cooperative two-state folding properties despite its modular nature. Taken together with previous studies on other ankyrin repeat proteins, our data suggest that the two-state folding pathway may be characteristic of ankyrin repeat proteins and other integrated alpha-helical repeat proteins in general.  相似文献   

16.
It is becoming increasingly clear that many proteins start to fold cotranslationally before the entire polypeptide chain has been synthesized on the ribosome. One class of proteins that a priori would seem particularly prone to cotranslational folding is repeat proteins, that is, proteins that are built from an array of nearly identical sequence repeats. However, while the folding of repeat proteins has been studied extensively in vitro with purified proteins, only a handful of studies have addressed the issue of cotranslational folding of repeat proteins. Here, we have determined the structure and studied the cotranslational folding of a β-helix pentarepeat protein from the human pathogen Clostridium botulinum—a homolog of the fluoroquinolone resistance protein MfpA—using an assay in which the SecM translational arrest peptide serves as a force sensor to detect folding events. We find that cotranslational folding of a segment corresponding to the first four of the eight β-helix coils in the protein produces enough force to release ribosome stalling and that folding starts when this unit is ~ 35 residues away from the P-site, near the distal end of the ribosome exit tunnel. An additional folding transition is seen when the whole PENT moiety emerges from the exit tunnel. The early cotranslational formation of a folded unit may be important to avoid misfolding events in vivo and may reflect the minimal size of a stable β-helix since it is structurally homologous to the smallest known β-helix protein, a four-coil protein that is stable in solution.  相似文献   

17.
Prediction of protein tertiary structures from amino acid sequence and understanding the mechanisms of how proteins fold, collectively known as “the protein folding problem,” has been a grand challenge in molecular biology for over half a century. Theories have been developed that provide us with an unprecedented understanding of protein folding mechanisms. However, computational simulation of protein folding is still difficult, and prediction of protein tertiary structure from amino acid sequence is an unsolved problem. Progress toward a satisfying solution has been slow due to challenges in sampling the vast conformational space and deriving sufficiently accurate energy functions. Nevertheless, several techniques and algorithms have been adopted to overcome these challenges, and the last two decades have seen exciting advances in enhanced sampling algorithms, computational power and tertiary structure prediction methodologies. This review aims at summarizing these computational techniques, specifically conformational sampling algorithms and energy approximations that have been frequently used to study protein-folding mechanisms or to de novo predict protein tertiary structures. We hope that this review can serve as an overview on how the protein-folding problem can be studied computationally and, in cases where experimental approaches are prohibitive, help the researcher choose the most relevant computational approach for the problem at hand. We conclude with a summary of current challenges faced and an outlook on potential future directions.  相似文献   

18.
The roles of unfolded states of proteins in normal folding and in diseases involving aggregation, as well as the prevalence and regulatory functions of intrinsically disordered proteins, have become increasingly recognized. The structural representation of these disordered states as ensembles of interconverting conformers can therefore provide critical insights. Experimental methods can be used to probe ensemble-averaged structural properties of disordered states and computational approaches generate representative ensembles of conformers using experimental restraints. In particular, NMR and small-angle X-ray scattering provide quantitative data that can readily be incorporated into calculations. These techniques have gleaned structural information about denatured, unfolded and intrinsically disordered proteins. The use of experimental data in different computational approaches, including ensemble molecular dynamics simulations and algorithms that assign populations to pregenerated conformers, has highlighted the presence of both local and long-range structure, and the occurrence of native-like and non-native interactions in unfolded and denatured states. Analysis of the resulting ensembles has suggested important implications of this fluctuating structure for folding, aggregation and binding.  相似文献   

19.
Many eukaryotic signal transduction proteins have component-based architectures: they are built from combinations of protein interaction domains and catalytic domains. Intact, these proteins display the sophisticated allosteric behavior required for cellular regulation; the protein's output activity is tightly repressed under basal conditions, but can be robustly activated by a specific set of input effector ligands. A combination of structural, biophysical and computational studies is beginning to shed light on the fundamental principles governing this type of modular allostery.  相似文献   

20.
The 36 residue villin headpiece helical subdomain (HP36) is one of the fastest cooperatively folding proteins, folding on the microsecond timescale. HP36's simple three helix topology, fast folding and small size have made it an attractive model system for computational and experimental studies of protein folding. Recent experimental studies have explored the denatured state of HP36 using fragment analysis coupled with relatively low-resolution spectroscopic techniques. These studies have shown that there is apparently only a small tendency to form locally stabilized secondary structure. Here, we complement the experimental studies by using replica exchange molecular dynamics with explicit solvent to investigate the structural features of these peptide models of unfolded HP36. To ensure convergence, two sets of simulations for each fragment were performed with different initial structures, and simulations were continued until these generated very similar final ensembles. These simulations reveal low populations of native-like structure and early folding events that cannot be resolved by experiment. For each fragment, calculated J-coupling constants and helical propensities are in good agreement with experimental trends. HP-1, corresponding to residues 41 to 53 and including the first alpha-helix, contains the highest helical population. HP-3, corresponding to residues 62 through 75 and including the third alpha-helix, contains a small population of helical turn residing at the N terminus while HP-2, corresponding to residues 52 through 61 and including the second alpha-helix, formed little to no structure in isolation. Overall, HP-1 was the only fragment to adopt a native-like conformation, but the low population suggests that formation of significant structure only occurs after formation of specific tertiary interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号