首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
A. Nock 《Chromosoma》1981,83(2):209-220
Nuclear and cytoplasmic RNA of Stylonychia mytilus were analyzed on denaturing polyacrylamide gels. The molecular weight of rRNA precursor molecules is within a range of 2.1×106 daltons. A comparison between the electrophoretic pattern of nuclear non-ribosomal RNA and cytoplasmic mRNA indicates that a considerable amount of nuclear RNA sequences is of higher molecular weight than cytoplasmic RNA sequences. The molecular weight distribution of cytoplasmic RNA supports the assumption that also in Stylonychia an average sized mRNA molecule contains 1,200–1,500 nucleotides according to a molecular weight of 4×105 to 5×105 daltons. The size of the polyadenylic acid fragment of poly-A+ RNA molecules is about 120 nucleotides. The total mass of cytoplasmic RNA is around 7.5/1010 g/cell, corresponding to 1.2×107 average sized mRNA molecules per cell. RNA excess hybridization experiments show that 60% of the DNA sequences are transcribed into nuclear RNA and that the cytoplasmic mRNA sequences are homologous to about 40% of macronuclear DNA sequences. There is no indication of different frequency classes within the mRNA. The number of different mRNA species in a Stylonychia cell is 1.2–1.5×104. On the average each of them is present about 1,000 times in every cell.  相似文献   

5.
Vacuolar Ca2+-transporters could play an important role for salt tolerance in rice (Oryza sativa L.) root. Here, we compared the expression profiles of putative vacuolar cation/H+ exchanger (CAX) and calmodulin-regulated autoinhibited Ca2+-ATPase (ACA) in rice roots of salt tolerant cv. Pokkali and salt sensitive cv. IR29. In addition to five putative vacuolar CAX genes in the rice genome, a new CAX gene (OsCAX4) has been annotated. In the present study, we isolated the OsCAX4 gene and showed that its encoded protein possesses a unique transmembrane structure and is potentially involved in transporting not only Ca2+ but also Mn2+ and Cu2+. These six OsCAX genes differed in their mRNA expression pattern in roots of tolerant versus sensitive rice cultivars exposed to salt stress. For example, OsCAX4 showed abundant expression in IR29 (sensitive) upon prolonged salt stress. The mRNA expression profile of four putative vacuolar Ca2+-ATPases (OsACA4-7) was also examined. Under control conditions, the mRNA levels of OsACA4, OsACA5, and OsACA7 were relatively high and similar among IR29 and Pokkali. Upon salt stress, only OsACA4 showed first a decrease in its expression in Pokkali (tolerant), followed by a significant increase. Based on these results, a role of vacuolar Ca2+ transporter for salt tolerance in rice root was discussed.  相似文献   

6.
7.
8.
To investigate the effects of dietary manganese (Mn) supplementation on iron (Fe) metabolism, a total of 480 50-week-old hens were fed the basal diet (control, 24.35 mg Mn/kg) without Mn supplementation for 6 weeks to reduce Mn storage in the body. Hens were then randomly assigned to one of three treatments, which included the control and control added with 60 or 300 mg Mn/kg diet (M-Mn or H-Mn). Duodenum, heart, liver, and tibia were collected in hens after 12-week feeding period. No significant differences were observed in egg production, feed/egg ratio, shell breaking strength, and shell thickness among different treatments. Compared with control or M-Mn, H-Mn decreased (P?P?P?P?P?>?0.10) Fe concentration in the heart and tibia. In conjunction with reduced Fe retention, DMT1 mRNA expression decreased (P?mRNA level was higher (P?mRNA expression was lower (P?相似文献   

9.
The masou salmon Δ5-desaturase-like gene (D5D) driven by the common carp β-actin promoter was transferred into common carp (Cyprinus carpio) that were fed two diets. For P1 transgenic fish fed a commercial diet, Δ6-desaturase-like gene (D6D) and stearoyl-CoA desaturase (SCD) mRNA levels in muscle were up-regulated (P < 0.05) 12.7- and 17.9-fold, respectively, and the D6D mRNA level in the gonad of transgenic fish was up-regulated 6.9-fold (P < 0.05) compared to that of non-transgenic fish. In contrast, D6D and SCD mRNA levels in transgenic fish were dramatically down-regulated (P < 0.05), 50.2- and 16.7-fold in brain, and 5.4- and 2.4-fold in liver, respectively, in comparison with those of non-transgenic fish. When fed a specially formulated diet, D6D and SCD mRNA levels in muscle of transgenic fish were up-regulated (P < 0.05) 41.5- and 8.9-fold, respectively, and in liver 6.0- and 3.3-fold, respectively, compared to those of non-transgenic fish. In contrast, D6D and SCD mRNA levels in the gonad of transgenic fish were down-regulated (P < 0.05) 5.5- and 12.4-fold, respectively, and D6D and SCD mRNA levels in the brain were down-regulated 14.9- and 1.4-fold (P < 0.05), respectively, compared to those of non-transgenic fish. The transgenic common carp fed the commercial diet had 1.07-fold EPA, 1.12-fold DPA, 1.07-fold DHA, and 1.07-fold higher observed total omega-3 fatty acid levels than non-transgenic common carp. Although these differences were not statistically different (P > 0.05), there were significantly (P < 0.10) higher omega-3 fatty acid levels when considering the differences for all of the individual omega-3 fatty acids. The genotype × diet interactions observed indicated that the potential of desaturase transgenesis cannot be realized without using a well-designed diet with the needed amount of substrates.  相似文献   

10.
PGC-1α has been implicated as an important mediator of functional capacity of skeletal muscle. However, the role of PGC-1α in myoblast differentiation remains unexplored. In the present study, we observed a significant up-regulation of PGC-1α expression during the differentiation of murine C2C12 myoblast. To understand the biological significance of PGC-1α up-regulation in myoblast differentiation, C2C12 cells were transfected with murine PGC-1α cDNA and siRNA targeting PGC-1α, respectively. PGC-1α over-expressing clones fused to form typical myotubes with higher mRNA level of myosin heavy chain isoform I (MyHCI) and lower MyHCIIX. No obvious differentiation was observed in PGC-1α-targeted siRNA-transfected cells with marked decrement of mRNA levels of MyHCI and MyHCIIX. Furthermore, PGC-1α increased the expression of MyoD and MyoG in C2C12 cells, which controlled the commitment of precursor cells to myotubes. These results indicate that PGC-1α is associated with myoblast differentiation and elevates MyoD and MyoG expression levels in C2C12 cells.  相似文献   

11.
The objective of this study was to investigate the expression of adiponectin receptors (AdipoR1, R2, and T-cadherin) in both normal subjects and patients with knee osteoarthritis (OA). We used immunofluorescence to assess expression of adiponectin receptors in the chondrocytes of normal subjects (n = 3) and OA patients (n = 3). We also studied mRNA expression of adiponectin receptors in both groups by real-time polymerase chain reaction (real-time PCR). Finally, we utilized Western blotting to confirm the presence of adiponectin receptors. As compared with osteoarthritic chondrocytes, normal chondrocytes showed stronger immunoreactivity for AdipoR1, AdipoR2, and T-cadherin. The expression levels of both AdipoR1 and AdipoR2 mRNA were significantly lower in the osteoarthritic chondrocytes compared with those in the normal chondrocytes, 19 ± 2 and 36 ± 3 % of normal chondrocytes, respectively (P < 0.001). T-cadherin mRNA expression levels of the osteoarthritic chondrocytes were also lower than those in the normal chondrocytes, but not statistical significant (P = 0.072). The expression levels of AdipoR1 and AdipoR2 protein were significantly higher in the normal chondrocytes compared with those in the osteoarthritic chondrocytes (P < 0.001, P < 0.01, respectively). T-cadherin protein expression level of the normal chondrocytes was also higher than those in the osteoarthritic chondrocytes, but the difference is not statistical significant (P = 0.114). Expression of adiponectin receptors protein in normal and osteoarthritic chondrocytes is consistent with its mRNA expression levels. In conclusion, we report for the first time down-regulation of adiponectin receptors (AdipoR1, R2, and T-cadherin) in osteoarthritic chondrocytes. Decreased adiponectin receptors in OA may reduce the tissue sensitivity to adiponectin, thus lost the protection from adiponectin in the progression of OA.  相似文献   

12.
Erythropoietin-producing hepatocyte (Eph) receptor family constitutes the largest family of tyrosine kinase receptors in the human genome. Loss of EphB6, a kinase-deficient receptor, correlated with a negative outcome in several carcinomas. This study aimed to investigate the expression of EphB6 protein and mRNA levels in colorectal cancers (CRCs) and possible correlations with clinicopathological variables and prognosis. To assess protein expression level, 124 CRCs and 57 colorectal adenomas samples were examined by immunostaining, the mRNA level of 43 paired CRC and the adjacent normal tissues were detected by using SYBR Green real-time PCR method. Decreased expression of EphB6 protein was found in CRC as compared with adenoma and normal tissues (χ2 = 10.146, P = 0.001 and χ2 = 45.333, P < 0.001, respectively). Low EphB6 mRNA expression was detected in 83.8 % of cancers with negative or low EphB6 protein expression. The loss of EphB6 protein in CRC was positively associated with poorly differentiation (P < 0.001), lymph node metastasis (P = 0.006), Dukes stage (P = 0.002) and depth of invasion (P = 0.016). The patients with lymph node metastasis had a worse prognosis independently of gender, age, tumor site, stage and differentiation (RR = 0.404, CI 0.267–0.213, P < 0.001). Low levels of EphB6 protein expression are associated with a shorter mean duration of survival in colorectal cancer. Our results demonstrated that EphB6 may represent a novel, useful tissue biomarker for the prediction of survival rate in CRC.  相似文献   

13.
Translationally controlled tumor protein (TCTP) is an important immune regulator that has been implicated in a number of cellular processes, including cell growth, cell cycle progression, apoptosis regulation and protection of cells against various environmental stresses. In this study, we cloned and characterised TCTP from rock bream (Oplegnathus fasciatus), which is an economically important species in the Korean aquaculture industry. The full-length rock bream TCTP (RbTCTP) cDNA was of 1,041 bp and contained an open reading frame of 513 bp, which encoded 170 amino acids. The 5′ untranslated region (UTR) was 90 bp, while the 3′ UTR was 438 bp, containing a polyadenylation signal. RbTCTP showed 76, 75 and 74 % amino acid sequence identities to those of tilapia (Oreochromis niloticus), orange-spotted grouper (Epinephelus coioides) and Japanese sea perch (Lateolabrax japonicus), respectively. The positions of microtubule binding region, Ca+ binding region and TCTP signature regions in RbTCTP were similar to other fish species and mammals. RbTCTP mRNA expression level was highest in the gill compared to other tissues. The level of RbTCTP mRNA expression was significantly regulated by injection of red seabream iridovirus, Streptococcus iniae and Edwardsiella tarda.  相似文献   

14.
15.
16.
The aim of the study was to successfully construct three plasmids, which include the GALV.fus gene plasmid regulated by the herpes simplex virus type 1 (HSV-1) late expression gene-UL38 promoter and induced by HSV-1 (HSV-UL38P-GALV.fus), the cytomegalovirus promoter without tumor specificity (CMVP) GALV.fus plasmid (HSV-CMVP-GALV.fus), and the control plasmid in which the GALV.fus gene fragment was replaced by the enhanced green fluorescent protein (EGFP) gene fragment (HSV-CMVP-EGFP). The three constructed plasmids were all packaged and named as Synco-2, Synco-1, and Baco-1. The plasmids were amplified in coliform bacterium and transfected into Vero cells using lipofectamine. These recombinant HSV-1 were amplified in Vero cells and purified by conventional methods of cesium chloride, TCID50 method is used to measure virus titers. The total RNA was then extracted from the HepG2 cells transfected by Synco-1 and Synco-2, and the expression of GALV.fus mRNA was detected by RT-PCR. The three recombinant HSV-1 vectors were propagated in Vero cells and purified by cesium chloride density gradient centrifugation, titrated by TCID50 method, and packaged. The titers of Baco-1, Synco-1, and Synco-2 were 3 × 1010, 1 × 1011, and 4 × 1010 pfu/ml. The GALV.fus gene was identified in the infected HepG2 cells by RT-PCR method.  相似文献   

17.
Several Frankia strains have been shown to be copper-tolerant. The mechanism of their copper tolerance was investigated for Frankia sp. strain EuI1c. Copper binding was shown by binding studies. Unusual globular structures were observed on the surface of the bacterium. These globular structures were composed of aggregates containing many relatively smaller “leaf-like” structures. Scanning electron microscopy with energy-dispersive X-ray (SEM-EDAX) analysis of these structures indicated elevated copper and phosphate levels compared to the control cells. Fourier transform infrared spectroscopy (FTIR) analysis indicated an increase in extracellular phosphate on the cell surface of copper-stressed cells. Bioinformatics’ analysis of the Frankia sp. strain EuI1c genome revealed five potential cop genes: copA, copZ, copC, copCD, and copD. Experiments with Frankia sp. strain EuI1c using qRT-PCR indicated an increase in messenger RNA (mRNA) levels of the five cop genes upon Cu2+ stress. After 5 days of Cu2+ stress, the copA, copZ, copC, copCD, and copD mRNA levels increased 25-, 8-, 18-, 18-, and 25-fold, respectively. The protein profile of Cu2+-stressed Frankia sp. strain EuI1c cells revealed the upregulation of a 36.7 kDa protein that was identified as FraEuI1c_1092 (sulfate-binding periplasmic transport protein). Homologues of this gene were only present in the genomes of the Cu2+-resistant Frankia strains (EuI1c, DC12, and CN3). These data indicate that copper tolerance by Frankia sp. strain EuI1c involved the binding of copper to the cell surface and transport proteins.  相似文献   

18.
Continuous exposure of Chinook salmon embryo cells to an elevated incubation temperature of 24°C induces the transient expression of a set of heat-shock or stress proteins whereas maintenance of the cells at a higher incubation temperature of 28°C produces a continuous synthesis of these stress proteins. In vitro translation studies suggest that the temperature-dependent temporal pattern of stress-protein synthesis is correlated with the levels of stress-protein mRNA. This was verified using a recombinant-DNA probe complementary to the 70K heat-shock-protein mRNA. A transient increase in the level of the fish heat-shock 70K mRNA was observed in RNA samples isolated from cells continuously exposed at 24°C However, a constant increase in the level of this specific mRNA was found in RNA preparations obtained from cells maintained at 28°C Therefore, the temperature-dependent pattern of fish heat-shockprotein synthesis appears to be directly related to the level of heat-shock-protein mRNA.  相似文献   

19.
The antiatherogenic role of high-density lipoproteins (HDL) was demonstrated by numerous experimental, clinical and epidemiological studies. The mechanism underlying the antiatherogenic potential of HDL is based on their involvement in reverse cholesterol transport (RCT) from peripheral tissues into the liver. Transmembrane transporter ABCG1 is a key RCT protein. Its function is to remove cholesterol from cells and transfer it to HDL. The role of ABCG1 transporter in the development of atherosclerosis in humans remains unexplored. The goal of our study was to investigate the expression of ABCG1 gene in patients with atherosclerosis. Real-time PCR was applied to study ABCG1 mRNA content in leukocytes, monocytes, and macrophages activated with macrophage colony-stimulating factor (M-CSF) from patients with atherosclerosis and healthy people. The amount of ABCG1 protein in monocytes and macrophages of patients and healthy donors was assayed by immunoblotting. It was found that the level of ABCG1 mRNA (p < 0.001) and ABCG1 protein (p < 0.05) was lower in macrophages of patients with atherosclerosis. The level of ABCG1 mRNA in monocytes of patients with artery occlusion was lower than in patients with features of lesser stenosis and the control group (p < 0.05). No correlation was found between ABCG1 gene expression and total and HDL cholesterol levels in the blood plasma. It can be concluded that reduced ABCG1 gene expression in monocytes and macrophages may be critical for the atherosclerosis progression.  相似文献   

20.
To understand adenosylmethionine decarboxylase 1 (AMD1)-mediated mRNA processing and cell adhesion activated & inhibited transition mechanisms between chimpanzee and human left hemisphere, AMD1-activated different complete (all no positive correlation, Pearson correlation coefficient < 0.25) and uncomplete (partly no positive correlation except AMD1, Pearson < 0.25) networks were identified in higher human compared with lower chimpanzee left hemisphere from the corresponding AMD1-stimulated (Pearson ≥ 0.25) or inhibited (Pearson ≤ ?0.25) overlapping molecules of Pearson and GRNInfer, respectively. This result was verified by the corresponding scatter matrix. As visualized by GO, KEGG, GenMAPP, BioCarta, and disease database integration, we proposed mainly that AMD1-stimulated different complete network was involved in AMD1 activation with cytoplasm ubiquitin specific peptidase (tRNA-guanine transglycosylase) to nucleus paired box-induced mRNA processing, whereas the corresponding inhibited network participated in AMD1 repression with cytoplasm protocadherin gamma and adaptor-related protein complex 3-induced cell adhesion in lower chimpanzee left hemisphere. However, AMD1-stimulated network contained AMD1 activation with plakophilin and phosphodiesterase to SH3 binding glutamic acid-rich protein to dynein and zinc finger-induced cell adhesion, whereas the corresponding inhibited different complete network included AMD1 repression with mitochondrial denine nucleotide translocator, brain protein, and ADH dehydrogenase to ribonucleoprotein-induced mRNA processing in higher human left hemisphere. Our AMD1 different networks were verified by AMD1-activated or -inhibited complete and uncomplete networks within and between chimpanzee left hemisphere or (and) human left hemisphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号