首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effect of melatonin on bone metabolism in ovariectomized rats.   总被引:4,自引:0,他引:4  
To assess the effect of pharmacological dose of melatonin on bone metabolism in ovariectomized rats, urinary deoxypyridinoline (a marker of bone resorption) and calcium excretion, circulating levels of calcium, phosphorus and bone alkaline phosphatase activity (a marker of bone formation), and bone mineral density (BMD), mineral content (BMC) and bone area (BA) of total body, were measured in adult rats for up to 60 days after surgery. Rats received melatonin in the drinking water (25 microg/ml water) or drinking water alone. Urinary deoxypyridinoline increased significantly after ovariectomy by 51% (30 days after surgery) and by 47% (60 days after surgery). The increase in urinary deoxypyridinoline found 30 days after ovariectomy was not observed in melatonin-treated rats. Urinary calcium concentration was similar in the 4 experimental groups studied, as was the circulating calcium concentration at every time interval examined. Fifteen days after surgery, a significant increase in serum phosphorus and bone alkaline phosphatase levels occurred in ovariectomized rats receiving melatonin as compared to their controls. Sixty days after surgery BMD, BMC and BA decreased significantly in ovariectomized rats, an effect not modified by melatonin. Serum estradiol decreased significantly by 30 days after ovariectomy to attain values close to the limit of detection of the assay by 60 days after ovariectomy. The results support the conclusion that a pharmacological amount of melatonin modifies bone remodeling after ovariectomy and that the effect may need adequate concentrations of estradiol.  相似文献   

2.
The aim of the project was to assess the relationship between zinc status and bone mineralisation in pre-menarcheal adolescent girls. One hundred and thirty-nine healthy pre-menarcheal girls (Tanner pubic hair stage < or = 4), aged 12.4 +/- 1.0 years, had two visits at an interval of 2 years. Serum and urine zinc concentrations (Zn S; Zn U; Zn U/ creatinine), insulin-like growth factor 1 (IGF-I), and markers of bone turn-over, i.e. osteocalcin and parathormone (PTH), concentrations were measured at the first visit. Lumbar (L2-L4) bone mineral content and density (BMC, BMD) were measured at both visits. BMC and BMD and their increase at the follow-up after 2 years were compared with biochemical data by multiple regression. The stage of puberty was added as a covariable in the analysis. At the first visit, a significant correlation was found between sexual maturity and initial BMC, BMD, height, weight, and IGF-I. Zn S was negatively correlated with osteocalcin. Zn U showed a positive correlation with BMC, BMD, IGF-I, height, weight, and PTH. At the second visit, sexual maturity showed a positive correlation with BMD and weight increments and a negative one with BMC and height gains. Zn S was significantly related with BMD increase. These correlations suggest that zinc plays a role in normal growth and bone mineralisation during puberty onset.  相似文献   

3.
This study was performed to evaluate the effect of concomitant supplementation of genistein and silicon on bone mineral density and bone metabolism-related markers in ovariectomized rat. Three-month-old Sprague Dawley female rats were subjected to bilateral ovariectomy (OVX) or sham surgery, and then the OVX rats were randomly divided into four groups: OVX-GEN, OVX-Si, OVX-GEN-Si, and OVX. Genistein and silicon supplementation was started immediately after OVX and continued for 10 weeks. In the OVX-GEN group, 5 mg genistein per gram body weight was injected subcutaneously. The OVX-Si group was given soluble silicon daily in demineralized water (Si 20 mg/kg body weight/day). The OVX-GEN-Si group was given subcutaneous injections of 5 mg genistein per gram body weight, at the same time, given soluble silicon daily (Si 20 mg/kg body weight/day). The results showed that the genistein supplementation in the OVX rats significantly prevented the loss of uterus weight; however, the silicon supplementation showed no effect on the uterus weight loss. The lumbar spine and femur bone mineral density was significantly decreased after OVX surgery; however, this decrease was inhibited by the genistein and/or silicon, and the BMD of the lumbar spine and femur was the highest in the OVX-GEN-Si-treated group. Histomorphometric analyses showed that the supplementation of genistein and/or silicon restored bone volume and trabecular thickness of femoral trabecular bone in the OVX group. Besides, the treatment with genistein and silicon for 10 weeks increased the serum levels of calcium and phosphorus in the OVX rats; serum calcium and serum phosphorus in the OVX-GEN-Si group were higher than those in the OVX-GEN and OVX-Si group (P < 0.05). At the same time, the treatment with genistein and/or silicon decreased serum alkaline phosphatase (ALP) and osteocalcin, which were increased by ovariectomy; serum ALP and osteocalcin in the OVX-GEN-Si group were lower than those in the OVX-GEN and OVX-Si groups (P < 0.05). The results above indicate that genistein and silicon have synergistic effects on bone formation in ovariectomized rats.  相似文献   

4.
Neonatal treatment with allylestrenol or diethylstilbestrol (DES) reduced the bone mineral content (BMC/bw) of the adult (four months old) female rats, without influencing bone mineral density (BMD/bw). In males these neonatal treatments elevated BMC and BMD alike. Ovariectomy alone decreased BMC and BMD alike; however the neonatal hormone treatments did not influence this reduced value. Ovariectomy of two months old animals increased body weight without the influence of neonatal hormone treatments. In adult males, the body weight was reduced significantly by neonatal DES and non-significantly by neonatal allylestrenol treatment. The experiments call attention to the possible human bone-effects of allylestrenol, which was used in the last decades as medication protecting endangered pregnancies.  相似文献   

5.
Whether post-natal long chain polyunsaturated fatty acids (LCPUFA) elevates bone mineral content (BMC) of small and normal neonates was studied using pregnant rats and guinea pigs fed a control (C) diet or low protein (LP) diet to induce small neonates followed by C or LCPUFA diets during lactation. Measurements (days 3 and 21 post-partum) included BMC and density (BMD) plus bone metabolism. In rats LP reduced birth weight but at day 21 elevated weight and whole body BMC; LCPUFA enhanced spine BMC, tibia BMC and BMD and whole body BMD. In guinea pig pups, at days 3 and 21, LP reduced weight, whole body and regional BMC and BMD whereas LCPUFA reduced day 3 osteocalcin and elevated day 21 spine BMD. LCPUFA minimized loss of whole body BMC in dams and elevated osteocalcin in sows. LCPUFA during lactation enhances bone in normal and small neonates without compromising maternal bone.  相似文献   

6.
Intermittent hypoxia is the most common pattern of hypoxic exposure in humans. The effect of chronic long-term intermittent hypobaric hypoxia (CLTIHH) on bone metabolism is not investigated. We examined the effect of CLTIHH on bone metabolism and the role of nitric oxide (NO) in this process. The rats were divided into three groups in this study. The animals in groups I and II have been exposed to CLTIHH. The animals in group II were also treated with nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester. To obtain CLTIHH, rats were placed in a hypobaric chamber (430 mm Hg; 5 h/day, 5 days/week, 5 weeks). The group III (control) rats breathed room air in the same environment. At the begining of the experiments, bone mineral density (BMD) of the animals were measured, and blood samples were collected from the tail vein. After the 5-week CLTIHH period, the same measurements were repeated. Parathyroid hormone, calcium, phosphate, bone alkaline phosphatase (b-ALP), NO, interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha levels were determined. The cytokines, NO levels, and BMD in CLTIHH-induced rats were higher compared with baseline and control values. The cytokines, b-ALP, and BMD increased while NO levels decreased in the group II compared with baseline values. BMD values of group II were lower than group I but higher than control group. Our results suggested that CLTIHH has positive effects on bone density. Intermittent hypoxia protocols may be developed for treatment and prevention of osteopenia and osteoporosis.  相似文献   

7.
Sixteen female piglets (58 d of age, 16.8 ± 0.8 kg body weight [BW]) were assigned to two groups (n = 8) and received until day 100 of age (50.3 ± 1.2 kg BW) ad libitum either a diet with a standard (diet C) or low (diet L) total phosphorus (P) content (5.38 and 4.23 g/kg, respectively). Diet C was supplemented with mineral P (1.15 g/kg) and did not contain microbial phytase. Diet L did not contain any inorganic P but 750 FTU/kg of microbial phytase. Despite these treatments, both diets were composed with the same ingredients. Body mineralisation of each gilt was assessed by determining the bone mineral content (BMC), area bone mineral density (BMD) by the dual-energy X-ray absorptiometry (DXA) at days 58, 72, 86 and 100 of age. Feeding diet L caused a higher P digestibility (p = 0.008) measured from days 72 to 86 of age and at 100 days of age a higher BMC and BMD (p ≤ 0.01). Furthermore, the gilts of group L deposited more minerals in the body than control pigs (by 2.4 g/d, p = 0.008). It was found that BMD and BMC were positively correlated with body lean mass and digestible P intake. The results indicated that, even for very young pigs, the addition of microbial phytase instead of inorganic P increases the amount of digestible P covering the requirements of piglets for proper bone mineralisation. Furthermore, it was proved that the DXA method can be successfully applied to measure body fat and lean mass contents as well as bone mineralisation of growing pigs using the same animals.  相似文献   

8.
To guide development of novel nutritional strategies aimed at reducing the incidence of stress fractures, we observed the effects of manipulating dietary zinc (Zn) content on bone integrity in Sprague–Dawley rats fed either a severely Zn-deficient (ZnD; 1 ppm), a moderately Zn-deficient (MZnD; 5 ppm) or a Zn-adequate (ZnAD; 30 ppm) diet for 6 weeks. At the completion of the diet period, body composition, bone mineral content (BMC), bone area (BA) and bone mineral density (BMD) were determined in vivo by using dual-energy X-ray absorptiometry. Following euthanasia, long bones were collected for determination of Zn content and biomechanical strength testing. Despite significant positive correlations between dietary Zn and both body weight (BW) and bone Zn content for the entire cohort (r=.77 and r=.83, respectively), rats fed MZnD or ZnAD diets did not differ in feed intakes, body composition, BMC, BA, BMD or BW. Tibial bones, but not femur bones, appear to be more responsive to dietary Zn manipulation, as all bone biomechanical strength indices in the ZnAD-fed rats were significantly greater than in rats fed the ZnD diets. Rats fed either MZnD or ZnAD diets had stronger tibiae (129% increase in maximum load and stress at maximum load, P<.01) compared with those fed ZnD diets. The load at breakage for the tibial bones of rats fed MZnD diets was not different from the ZnD rats, but lower (P<.05) than that of the ZnAD rats. These results suggest that since feed intakes, body composition, BMC, BA, BMD and BW were not significantly different between the MZnD- and ZnAD-fed animals, the reduced bone integrity observed in the MZnD-fed rats resulted from dietary Zn inadequacy, and not as a result of the reduced growth that is typically associated with Zn deficiency.  相似文献   

9.
Parathyroid hormone (PTH) has attracted considerable interest as a bone anabolic agent. PTH plays a central role in regulating calcium phosphate metabolism and its increases in production in response to low serum calcium levels. A continuous hypersecretion of PTH, as occurs in primary hyperparathyroidism, leads to bone resorption. In this study, the effect of different doses of parathyroid hormone (PTH) on bone mineral content (BMC) in rats was investigated by particle-induced X-ray emission (PIXE). This study will help in investigating further the toxicity of extremely high doses of PTH on BMC. For this study, PTH at doses of 15, 45, or 135 μg/kg/day were applied to 9-month-old male and female Sprague Dawley (SD) rats. The concentrations of calcium (Ca), phosphorus (P), strontium (Sr), and zinc (Zn) were measured for bone treatment of PTH. From the results of the research, it was revealed that the biomechanical characteristics of the bone as well as the bone mass were enhanced after the treatment. It was further found that the concentrations of other elements also increased, excluding Zn. This research proved that PTH assists in the treatment of osteoporosis as revealed by the characteristics of different elements. PIXE can be used to determine the concentrations of bone mineral content.  相似文献   

10.
BACKGROUND/AIMS: Since GH plays an important role in bone mineralization, and several studies demonstrated the positive influence of a higher calcium intake on bone mass, we studied the effect of calcium supplementation in GHD children during GH therapy. METHODS: 28 prepubertal GHD children, 5.0-9.9 years old, were assigned to two groups: group A (n = 14; 7 females) treated with GH, and group B (n = 14; 7 females) treated with GH + calcium gluconolactate and carbonate (1 g calcium/day per os). Auxological parameters, total bone mineral content (TBMC) and density (TBMD), leg BMC and BMD, lumbar BMD, fat mass (FM) and lean tissue mass (LTM), blood 25-hydroxyvitamin D (25-OHD), parathyroid hormone (PTH), osteocalcin (OC) and urinary N-terminal telopeptide of type I collagen (NTx) were determined at the start of therapy and after 1 and 2 years of treatment. RESULTS: During the 2 years of the study, TBMC, TBMD, leg BMC and BMD (but not lumbar BMD) increased in both groups of patients, however after 2 years of treatment they were significantly higher in the calcium-supplemented group B than in group A (p < 0.05, for all parameters). At the start of therapy, in both groups of patients percentage FM was higher and total and leg LTM lower than in controls (p < 0.05 for each parameter). Thereafter, FM decreased and LTM increased and after 2 years they were both different from baseline (p < 0.05). After 2 years of treatment, leg BMC and BMD were more positively correlated with regional leg LTM in patients of group B (r = 0.834 and r = 0.827, respectively; p < 0.001) than in patients of group A (r = 0.617 and r = 0.637, respectively; p < 0.05). 25-OHD and PTH levels were in the normal range in all patients at the start and during treatment. OC levels were lower and urinary NTx levels higher in patients than in controls (p < 0.05 for both parameters), either at the start and after 1 year of treatment. After 2 years of treatment, OC levels were significantly higher than at the start of the study (p < 0.05) in both groups of patients, but they were higher in group B than in group A (p < 0.05); on the contrary, urinary Ntx levels were lower in group B than in group A (p < 0.05). CONCLUSION: In GHD children, treated with GH, calcium supplementation improved bone mass; it may aid in reaching better peak bone mass and in protecting weight-bearing bones, usually completed in childhood to maximum levels, from risk of osteoporosis and fractures later in life.  相似文献   

11.
The purpose of the study was to investigate the effects of aluminum (Al) exposure on bone mineral elements, trace elements, and bone mineral density (BMD) in rats. One hundred Wistar rats were divided randomly into two groups. Experimental rats were given drinking water containing aluminum chloride (AlCl3, 430 mg Al3+/L), whereas control rats were given distilled water for up to 150 days. Ten rats were sacrificed in each group every 30 days. The levels of Al, calcium (Ca), phosphorus (P), magnesium (Mg), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), selenium (Se), boron (B), and strontium (Sr) in bone and the BMD of femur were measured. Al-treated rats showed lower deposition of Ca, P, and Mg compared with control rats. Levels of trace elements (Zn, Fe, Cu, Mn, Se, B, and Sr) were significantly lower in the Al-treated group than in the control group from day 60, and the BMD of the femur metaphysis in the Al-treated group was significantly lower than in the control group on days 120 and 150. These findings indicate that long-term Al exposure reduces the levels of mineral and trace elements in bone. As a result, bone loss was induced (particularly in cancellous bone).  相似文献   

12.
Silicon (Si) is important for the growth and development of bone and connective tissues. Several studies have reported that Si supplementation improved bone mineral density (BMD) in female ovarectomized rats. However, few studies have investigated the effects of Si supplementation on bone status and bone metabolism in male animals. The purpose of this study was to investigate the effects of Si supplementation on BMD and balance of calcium (Ca) and magnesium (Mg) in adult male mice. Si was administrated orally through demineralized water containing different contents of Si as a form of sodium metasilicate (0 %, control; 0.025 %, Si50; 0.050 %, Si100; and 0.075 %, Si150) to 9-week-old male mice for 4 weeks. Si supplementation did not alter weight gain or BMD of femur and tibia in male mice. However, a high level of Si (0.05 and 0.075 %) supplementation significantly decreased Mg retention without changing Ca retention. Serum alkaline phosphatase of Si-supplemented groups significantly decreased compared with that of the control. According to these results, short-term Si supplementation did not affect BMD but showed a possible effect on increasing the need for Mg in adult male mice.  相似文献   

13.
Bone mineral density (BMD) of the whole body and hind limb of young adult rats, with and without a sham-operated stifle joint was studied, using dual energy x-ray absorptiometry (DEXA) at three time points. Data from the whole body scan were used for analyses of BMD, bone mineral content (BMC), fat, lean, body weight (BW), percentage of BMC (%BMC), percentage of fat (%fat), and percentage of lean (%lean), none of which were significantly different between the groups at any time point. Significant (P < 0.05) differences in BMD, BMC, %BMC, BW, fat, %fat, and %lean were apparent at the second and third scans, compared with the initial scan, within both groups. Changes in whole body BMD, BMC, and %BMC as well as BW were highly correlated with time in both groups. In the hind limb scans, regions of interest (ROIs) were created to obtain values of BMD and BMC from the whole femur, whole tibia including the fibula, distal portion of the femur, and proximal portion of the tibia. Significant differences were not found between the groups for any ROIs. However, significant BMD and BMC increases were evident in all ROIs at the second and third scans, compared with the initial scan. Similar to those in the whole body scan, BMD and BMC obtained from ROIs were highly correlated with time. The positioning technique for the whole body and appendicular scans was analyzed by calculating percentage of the coefficient of variation (%CV) at the beginning of the study. The %CV was low and acceptable in ROIs for the hind limb and for all parameters of the whole body scan, except fat. The results suggest that in vivo DEXA scanning of the rat whole body and appendicular skeleton is highly reproducible and useful to study the whole skeleton, as well as a region of a long bone of the rat. Values for the sham-operated rats were not significantly different from those for the untreated controls, which suggests that soft tissue damage around the stifle joint did not alter BMD in the subchondral bone of the distal portion of the femur and proximal portion of the tibia.  相似文献   

14.
OBJECTIVE: The present investigation was aimed to evaluate the effect of subclinical hypothyroidism and obesity on bone mineral content (BMC) in different body segments. METHODS: Thirty-two premenopausal women (age: 37 +/- 9.9 years), with a wide range in body mass index (BMI), were studied. Subclinical hypothyroidism was defined by a basal TSH > or = 4 microU/l and/or a TRH-stimulated peak > or = 30 microU/l. For each subject, weight, height, BMI (weight/height(2)) and the waist/hip ratio were measured. Total BMC, total bone mineral density (BMD), leg BMC, leg BMD, trunk BMC, trunk BMD, arm BMC and arm BMD were determined using dual-energy X-ray absorptiometry. Thyroid function (basal and TRH-stimulated TSH, free T(3) and free T(4)) were determined from fasting blood samples for all subjects. RESULTS: Anova was conducted within all the groups to observe the effect of thyroid status and/or obesity on BMC and BMD. There was no statistical difference for age. Total BMC was affected by obesity (p < 0.05) but not by thyroid status, BMD of the legs was significantly influenced both by thyroid function and obesity (p < 0.01); total BMD was affected by hypothyroid status (p < 0.05). A direct relationship between leg BMD and TSH was demonstrated. CONCLUSION: Subclinical thyroid hypofunction and obesity seem to affect BMD differently in the body segments. An influence of gravitational force seems necessary in order to make evident the effect of subclinical hypothyroidism on bone. A condition of subclinical hypothyroidism should be considered when evaluating subjects for osteoporosis, since a BMD measured at the femoral neck may induce underestimation of initial osteoporosis.  相似文献   

15.
《Bone and mineral》1994,24(3):189-200
The present study was performed to measure appendicular bone mass of Japanese infants and children, and to assess the influence of age, sex and body size on bone mass during the period of bone growth. The bone mineral content (BMC) and bone width (BW) at the distal third of the radius were measured by single photon absorptiometry (SPA) in 229 healthy Japanese infants and children aged 0–12 years, and the BMC/BW ratio was calculated to give the bone mineral density (BMD). BMC and BW increased with age until 2 years, while BMD did not obviously change until 2 years. After 2 years of age, the overall effect of aging appeared more prominent in BMC and BMD than in BW. There were no significant differences in BMC, BW and BMD between males and females aged 0–12 years. Age, body height, and body weight were strongly correlated with three parameters of bone mass (BMC, BW, and BMD). Among the three parameters of bone mass, BMC showed the highest Pearson coefficient of correlation with age (r = 0.955), body height (r = 0.957) and body weight (r = 0.966), as compared with BW and BMD. The present cross-sectional study provides normative data of the appendicular bone mass in healthy Japanese children, which may serve as a standard for assessment of bone mineralization in Japanese infants and children with medical problems.  相似文献   

16.
Phytic acid forms insoluble complexes with nutritionally essential minerals, including zinc (Zn). Animal studies show that addition of microbial phytase (P) to low-Zn diets improves Zn status and bone strength. The present study determined the effects of phytase supplementation on bone mineral density (BMD), body composition and voluntary running activity of male rats fed a high phytic acid, low-Zn diet. In a factorial design, rats were assigned to ZnLO (5 mg/kg diet), ZnLO+P (ZnLO diet with 1500 U phytase/kg) or ZnAD (30 mg/kg diet) groups and were divided into voluntary exercise (EX) or sedentary (SED) groups, for 9 weeks. SED rats were significantly heavier from the second week, and no catch-up growth occurred in EX rats. Feed intakes were not different between groups throughout the study. ZnLO animals had decreased food efficiency ratios compared to both phytase-supplemented (ZnLO+P) and Zn-adequate (ZnAD) animals (P<.01 compared to ZnLO). The ZnLO+P and ZnAD rats ran 56–75 km more total distance than ZnLO rats (P<.05), with the ZnLO+P rats running more kilometers per week than the ZnLO rats by Week 6. In vivo DEXA analyses indicate that rats fed phytase-supplemented diets had higher lean body mass (LBM) than those fed ZnLO diets; and that rats fed the Zn-adequate diets had the highest LBM. Body fat (%) was significantly lower in EX rats and was both Zn- and phytase insensitive. Rats fed phytase-supplemented diets had higher bone mineral content (BMC), bone area (BA) and BMD than rats fed ZnLO diets; and in rats fed ZnAD diets these indices were the highest. The dietary effects on BMC, BA and BMD were independent of activity level.We conclude that consuming supplemental dietary phytase or dietary Zn additively enhances Zn status to increase BMD, LBM and voluntary physical activity in rats fed a low-Zn diet. While the findings confirm that bone health is vulnerable to disruption by moderate Zn deficiency in rats, this new data suggests that if dietary Zn is limiting, supplemental phytase may have beneficial effects on LBM and performance activity.  相似文献   

17.
This study aimed to investigate effects of restricted calcium intake on cortical and trabecular bone density in white rats. Low Ca diet was fed for six weeks, and bone density and bone metabolism parameters were assessed in blood. This study was carried out on 12 male white rats aged 12 weeks (Sprague-Dawley; SD). These rats were bred for 1 week and randomly assigned to the standard calcium diet group (SCa group, n = 6) and the low calcium diet group (LCa group; n = 6). The SCa group was given a modified AIN-93M mineral mix (with 0.5% Ca), which was made by adding calcium to a standard AIN93 diet, and the LCa Group was fed a modified AIN-93 Mineral mix (with 0.1% Ca). Femoral BMD and BMC were measured by DEXA in each rat. After trabecular bone was separated from cortical bone, volumetric bone mineral density (vBMD) was measured using pQCT. Serum Ca and P levels were measured as parameters of bone metabolism, and S-ALP, S-TrACP and-Dpd levels were also measured. The results revealed no significant differences in weight, growth rate, feed consumption and feed efficiency between the two groups before and after calcium-restricted diet (p > .05). No significant differences were also observed in bone length and bone mass between the two groups (p > .05). Although bilateral femoral BMDs were not significantly different between the two groups, bilateral femoral BMCs significantly decreased in the LCa group, compared with the SCa group (p = .023, p = .047). Bilateral cortical MDs were not significantly different between the two groups, either. However, trabecular BMD significantly decreased in the LCa group, compared with the SCa group (p = .041). U-Dpd and S-TrACP levels significantly declined in the LCa group, compared to the SCa group (p = .039, p = .010). There were no significant differences in serum Ca and P levels between the two groups (p > .05). However, a significant decrease in urinary Ca level (p = .001) and a significant increase in urinary P (p = .001) were observed in the LCa group, compared to the Sca group. These findings described that six-week low calcium diet led to decreased trabecular bone density, reduced urinary excretion of Ca and increased urinary excretion of P. As a result, Ca hemeostasis can be maintained.  相似文献   

18.
Hypophysectomy (HX) arrests bone growth and induces osteopenia in the long bones of rats. The present study investigated the combined effect of vitamin K(2) and risedronate on long bone mass in HX rats, in order to determine whether treatment with these two agents had an additive effect. Forty female Sprague-Dawley rats were hypophysectomized at 6 weeks of age by the supplier, and were shipped to our laboratory at three days after surgery along with ten intact rats that served as age-matched controls. The study was started on the day when the rats were received. Three HX rats were excluded from the study because of the failure of HX. Forty-seven rats (6 weeks old) were assigned to the following 5 groups by the stratified weight randomization method: intact controls, HX alone, HX + vitamin K(2) (30 mg/kg, p.o., daily), HX + risedronate (2.5 microg/kg, s.c., 5 days a week), and HX + vitamin K(2) + risedronate. The dosing period was 4 weeks. HX resulted in a decrease of the femoral bone area, bone mineral content (BMC) and bone mineral density (BMD), as well as a decrease in the cancellous bone mass of the proximal tibial metaphysis and the total tissue and cortical areas of the tibial diaphysis. These changes were associated with a marked reduction in the serum level of insulin like growth factor (IGF)-I and with elevation of serum alkaline phosphatase (ALP) and pyridinoline. Administration of vitamin K(2) increased the serum ALP level in HX rats, but did not affect any of the other parameters. On the other hand, risedronate ameliorated the decrease of femoral BMD and cancellous bone mass at the proximal tibial metaphysis in HX rats without affecting the serum IGF-I level, as a result of not causing a significant elevation of serum pyridinoline. Vitamin K(2) and risedronate combined had an additive effect on the femoral bone area, BMC and BMD, and the combined treatment group did not show any significant reduction of the total tissue and cortical areas at the tibial diaphysis, as well as a reduced serum pyridinoline level compared with untreated rats and an increased serum ALP level compared with untreated or risedronate-treated rats. These results suggest that risedronate had a positive effect on the BMD and cancellous bone mass of long bones in HX rats. Despite the lack of a significant effect of vitamin K(2) on bone mass parameters, it had an additive effect with risedronate on the BMC, BMD and cortical bone mass of long bones in HX rats.  相似文献   

19.
[Purpose] Dehydroepiandrosterone (DHEA) administration reportedly recovers osteoporosis, a bone disorder associated with bone deficiency in postmenopausal women. However, the physiological mechanism of DHEA in osteoporosis remains elusive, especially in terms of intestinal calcium absorption. Therefore, we investigated the effect of DHEA administration on calcium absorption in ovariectomized (OVX) female rats using an estrogen receptor antagonist.[Methods] Female Sprague-Dawley rats (n=23, 6 weeks old) were randomized into three groups: OVX control group (OC, n=7), OVX with DHEA treatment group (OD, n=8), and OVX with DHEA inhibitor group (ODI, n=8) for 8 weeks.[Results] Intestinal calcium accumulation, as well as the rate of absorption, demonstrated no significant differences during the experimental period among investigated groups. The bone mineral density (BMD) of the tibia at the proximal metaphysis was higher in the OD group than that in the OC group (p<0.05); however, BMD of the ODI group showed no significant difference from investigated groups. Furthermore, the BMD of the tibia at the diaphysis did not significantly differ among these groups.[Conclusion] We revealed that DHEA administration does not involve intestinal Ca absorption, although this treatment improves BMD levels in OVX rats. These observations indicate that the effect of DHEA on the bone in postmenopausal women is solely due to its influence on bone metabolism and not intestinal calcium absorption.  相似文献   

20.
The purpose of this study was to explore the bioavailability, efficacy and molecular mechanisms of green tea polyphenols (GTP) related to preventing bone loss in rats with chronic inflammation. A 2 [placebo vs. lipopolysaccharide (LPS)]×2 (no GTP vs. 0.5% GTP in drinking water) factorial design enabled the evaluation of effects of LPS administration, GTP levels, and LPS×GTP interaction. Urinary GTP components and 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels were determined by high-pressure liquid chromatography for bioavailability and molecular mechanism, respectively. Efficacy was evaluated by examining changes in femoral mineral content (BMC) and density (BMD) using dual-energy X-ray absorptiometry, and bone turnover biomarkers [osteocalcin (OC) and tartrate-resistant acid phosphatase (TRAP)] using respective ELISA kits. The mRNA expression of tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2) in spleen was determined by real-time RT-PCR. Neither LPS administration nor GTP levels affected body weight and femoral bone area throughout the study period. Only GTP supplementation resulted in increased urinary epigallocatechin and epicatechin concentrations. LPS administration led to a decrease in femur BMC and BMD, and serum OC levels, but an increase in serum TRAP, urinary 8-OHdG and spleen mRNA expression of TNF-α and COX-2 levels. GTP supplementation resulted in higher values for femur BMC, BMD and serum OC, but lower values for serum TRAP, urinary 8-OHdG and spleen mRNA expression of TNF-α and COX-2 levels. We conclude that GTP mitigates bone loss in a chronic inflammation-induced bone loss model by reducing oxidative stress-induced damage and inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号