首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elsholtzia splendens is a Cu-tolerant plant growing in copper mine areas in the south of China. In this study, X-ray absorption spectroscopy (XAS) was used to investigate the Cu speciation and biotransformation in E. splendens with 300 μM Cu treatment from 10 days to 60 days. The results showed that 300 μM Cu was phytotoxic to E. spendens. The Cu K-edge X-ray absorption near edge structure (XANES) revealed that most copper in roots, stems and leaves exists as divalent Cu. Cu speciation changed depending on the treatment time, but there was no unidirectional trend in roots, stems, and leaves. The percentages of potential Cu ligands in all samples were estimated by fitting the XANES spectra with linear combinations. Most Cu in roots, stems and leaves was bound with cell wall and histidine (His)-like ligands, while a minor proportion of the Cu was bound to oxalate and glutathione-like ligands. The fitting results of Cu K-edge extended X-ray absorption fine structure (EAXFS) showed that nitrogen/oxygen (N/O) ligands were dominant in roots, stems and leaves of the plant, while S ligands were rare. All these results suggest that Cu bound by N/O ligands plays a key role in Cu detoxification of E. splendens, and a role for classical metal-detoxifying S ligands, such as metallothioneins and phytochelatins, in Cu detoxification of E. splendens is not supported in the present study. Due to the phytotoxicity of 300 μM Cu to E. splendens, the question of whether S ligands play a significant role in Cu detoxification in E. splendens exposed to lower levels of Cu should be further studied.  相似文献   

2.
3.
Sesbania rostrata, an annual tropical legume, has been found to be tolerant to heavy metals, with an unknown mechanism. It is a promising candidate species for revegetation at mine tailings. In this study, sequential extractions with five buffers and strong acids were used to extract various chemical forms of cadmium and copper in S. rostrata, with or without Cd or Cu treatments, so that the mechanisms of tolerance and detoxification could be inferred. Both metals had low transition rates from roots to the aboveground of S. rostrata. The transition ratio of Cd (4.00%) was higher than that of Cu (1.46%). The proportion of NaCl extracted Cd (mostly in protein-binding forms) increased drastically in Cd treated plants from being undetectable in untreated plants. This suggests that Cd induced biochemical processes producing protein-like phytochelatins that served as a major mechanism for the high Cd tolerance of S. rostrata. The case for Cu was quite different, indicating that the mechanism for metal tolerance in S. rostrata is metal-specific. The proportion of water-insoluble Cu (e.g. oxalate and phosphate) in roots increased significantly with Cu treatment, which partially explains the tolerance of S. rostrata to Cu. However, how S. rostrata copes with the high biotic activity of inorganic salts of Cu, which increased in all parts of the plant under Cu stress, is a question for future studies. Sesbania rostrata is among the very few N-fixing plants tolerant to heavy metals. This study provides evidence for the detoxification mechanism of metals in Sesbania rostrata.  相似文献   

4.
A study quantifying the effects of different copper (Cu) concentrations (50, 200, 800 and 1,000 mg kg?1 Cu) on Cu bioaccumulation and physiological responses of Spartina alterniflora was conducted. Plant biomass and Cu accumulation were determined. Plant height, tiller number, chlorophyll, leaf electrolyte leakage rate (ELR), malondialdehyde (MDA), proline, soluble sugar, and organic acids were also measured. The results showed that S. alterniflora mainly accumulated Cu in fine roots. No significant changes of biomass of fine roots were detected except for obvious reduction under 1,000 mg kg?1 Cu. In leaves, rhizomes and fine roots, the highest Cu accumulations were detected under 800 mg kg?1 Cu. The highest Cu accumulation in stem was revealed under 200 mg kg?1 Cu. Plant height decreased under 1,000 mg kg?1 Cu; chlorophyll content reduced under >50 mg kg?1 Cu; levels of ELR and MDA increased under >200 mg kg?1 Cu. However, osmotic components such as proline and soluble sugar were accumulated to cope with higher Cu stresses (800 and 1,000 mg kg?1). Further, oxalic and citric acids were positively related with Cu contents in leaves and stems, suggesting that oxalic and citric acids may be related to Cu detoxification in aboveground parts of S. alterniflora. However, in above and belowground parts, no detoxification function of ascorbic and fumaric acids was observed due to unchanged or decreased trend under Cu stress.  相似文献   

5.
Sesbania rostrata,an annual tropical legume,has been found to be tolerant to heavy metals,with an unknown mechanism.It is a promising candidate species for revegetation at mine tailings.In this study,sequential extractions with five buffers and strong acids were used to extract various chemical forms of cadmium and copper in S.rostrata,with or without Cd or Cu treatments,so that the mechanisms of tolerance and detoxification could be inferred.Both metals had low transition rates from roots to the aboveground of S.rostrata.The transition ratio of Cd (4.00%) was higher than that of Cu (1.46%).The proportion of NaCl extracted Cd (mostly in proteinbinding forms) increased drastically in Cd treated plants from being undetectable in untreated plants.This suggests that Cd induced biochemical processes producing proteinlike phytochelatins that served as a major mechanism for the high Cd tolerance of S.rostrata.The case for Cu was quite different,indicating that the mechanism for metal tolerance in S.rostrata is metal-specific.The proportion of water-insoluble Cu (e.g.oxalate and phosphate) in roots increased significantly with Cu treatment,which partially explains the tolerance of S.rostrata to Cu.However,how S.rostrata copes with the high biotic activity of inorganic salts of Cu,which increased in all parts of the plant under Cu stress,is a question for future studies.Sesbania rostrata is among the very few N-fixing plants tolerant to heavy metals.This study provides evidence for the detoxification mechanism of metals in Sesbania rostrata.  相似文献   

6.
Phytolacca acinosa Roxb. is a Mn hyperaccumulating plant. In the present study, the chemical forms of Mn in the leaves of P. acinosa were investigated using chemical analyses and X-ray absorption spectroscopy (XAS). P. acinosa plants were grown hydroponically with 2 mM Mn for 28 days. About 80% of the Mn in the leaves of P. acinosa was found in the supernatant fraction after centrifugation at 20,000g for 45 min. The supernatant fraction was then used to identify the chemical forms of Mn. Gel filtration analysis (Sephadex G-10) showed that oxalate and Mn appeared in the same fraction of the supernatant and the molar ratio of oxalic acid to Mn was 1.12, indicating that there was sufficient oxalic acid in P. acinosa leaves to complex Mn. XAS was employed to investigate the chemical species of Mn in leaves of P. acinosa. Results showed that Mn in leaves was bivalent and almost 90% of the total Mn was Mn-oxalate. The oxalate concentration in the leaves of P. acinosa was not affected by increasing Mn concentration in the solution, suggesting that oxalate biosynthesis was not induced by Mn.  相似文献   

7.
王穗子  金则新  李月灵  谷银芳 《生态学报》2015,35(23):7699-7708
以盆栽海州香薷为研究对象,模拟Cu胁迫条件下,接种丛枝菌根真菌(AMF)对海州香薷叶片光合色素含量、抗氧化酶活性、抗氧化剂含量、膜脂过氧化程度的影响。结果表明:(1)与对照相比,Cu胁迫使海州香薷叶片叶绿素a(Chl a)、叶绿素b(Chl b)、总叶绿素(Chl(a+b))、类胡萝卜素(Car)含量以及叶绿素a/b(Chl a/b)均显著降低,抗氧化酶活性和抗氧化剂含量也显著下降,质膜相对透性(MRP)和丙二醛(MDA)含量显著增大。(2)与Cu胁迫相比,Cu胁迫下接种AMF可使海州香薷叶片叶绿素含量显著增加;超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)活性显著提高;还原型谷胱甘肽(GSH)、抗坏血酸(As A)含量显著增加;MDA含量、MRP显著下降。总之,接种AMF可提高Cu胁迫下海州香薷叶片光合色素含量和抗氧化能力,降低膜脂过氧化水平,从而缓解Cu胁迫对植株造成的伤害,增强海州香薷对Cu胁迫的适应性,提高了植株的生物量。  相似文献   

8.
Although Platycodon grandiflorum (Jacq.) A.DC. is a renowned medicine food homology plant, reports of excessive cadmium (Cd) levels are common, which affects its safety for clinical use and food consumption. To enable its Cd levels to be regulated or reduced, it is necessary to first elucidate the mechanism of Cd uptake and accumulation in the plant, in addition to its detoxification mechanisms. This present study used inductively couple plasma-mass-spectrometry to analyze the subcellular distribution and chemical forms of Cd in different tissues of P. grandiflorum. The experimental results showed that Cd was mainly accumulated in the roots [predominantly in the cell wall (50.96%–61.42%)], and it was found primarily in hypomobile and hypotoxic forms. The proportion of Cd in the soluble fraction increased after Cd exposure, and the proportion of insoluble phosphate Cd and oxalate Cd increased in roots and leaves, with a higher increase in oxalate Cd. Therefore, it is likely that root retention mechanisms, cell wall deposition, vacuole sequestration, and the formation of low mobility and low toxicity forms are tolerance strategies for Cd detoxification used by P. grandiflorum. The results of this study provide a theoretical grounding for the study of Cd accumulation and detoxification mechanisms in P. grandiflorum, and they can be used as a reference for developing Cd limits and standards for other medicine food homology plants.  相似文献   

9.
Copper (Cu) accumulation, subcellular distribution and the chemical forms of Cu, and amino acids metabolism were investigated in castor bean (Ricinus communis L.) callus via in vitro culture. The castor bean callus was obtained from the embryo cultured in Murashige and Skoog (MS) medium and then transferred to MS medium with different Cu doses (0, 20, 40, and 60 mg L?1; Cu0, Cu20, etc.) for 28-days cultivation. The stress from Cu inhibited the growth of the castor bean callus, and the Cu content in the castor bean callus increased with the increasing Cu dose, reaching a maximum value of 293.2 mg kg?1 fresh weight (FW) in the 60 mg L?1 Cu treatment. Concentrations of Cu in the cell wall, organelles, and cytoplasm increased significantly with the elevated Cu dose, with the cell wall containing 50.2?% of the total Cu in the 60 mg L?1 Cu treatment. The major Cu fractions were C (bound to the exchangeable polar compounds) (28.1?%) and E (bound to the structural polar compounds and nucleic acids) (27.5?%) in the control treatment, and the main fraction was C (51.2?%) in the treatment with 60 mg L?1 Cu. The concentration of free amino acids in the cytoplasm was closely related to the Cu content in the castor bean callus. In addition, most of the Cu in the cell wall bound with functional groups of the cell chemical components, hydroxyl (–OH), acylamino (–CONH2), and carboxylate ion (–COO?). The castor bean exhibited a strong tolerance to Cu, which accumulated mainly in the cell wall.  相似文献   

10.
The effects of inoculation with two metal-resistant and plant growth-promoting endophytic bacteria (Burkholderia sp. GL12 and Bacillus megaterium JL35) were evaluated on the plant growth and Cu uptake in their host Elsholtzia splendens and non-host Brassica napus plants grown in natural Cu-contaminated soil. The two strains showed a high level of ACC deaminase activities. In pot experiments, inoculation with strain GL12 significantly increased root and above-ground tissue dry weights of both plants, consequently increasing the total Cu uptake of E. splendens and Brassica napus by 132% and 48.2% respectively. Inoculation with strain JL35 was found to significantly increase not only the biomass of B. napus, consequently increasing the total Cu uptake of B. napus by 31.3%, but Cu concentration of E. splendens for above-ground tissues by 318% and roots by 69.7%, consequently increasing the total Cu uptake of E. splendens by 223%. The two strains could colonize the rhizosphere soils and root interiors of both plants. Notably, strain JL35 could colonize the shoot tissues and significantly increase the translocation factors and bioaccumulation factors of E. splendens. These results suggested that Burkholderia sp. GL12 and B. megaterium JL35 were valuable bacterial resource which had the potential in improving the efficiency of Cu phytoextraction by E. splendens and B. napus in a natural Cu-contaminated soil.  相似文献   

11.
Pot experiments were carried out to examine the responses of growth, physiological properties, copper (Cu) absorption and translocation in two bamboo species, Phyllostachys auresulcata ‘Spectabilis’ and Pleioblastus chino ‘Hisauchii’ Two-year old plants with similar size were exposed to excess Cu treatments, in order to demonstrate their Cu tolerance and potential ability of phytoremediation under Cu-polluted soil as biofuel feedstock. Pots were irrigated with aqueous solutions of Cu in concentrations of 500, 1000 and 2000 mg CuSO4·5H2O kg?1, against the control (tap water). Plant growth, chlorophyll contents, photosynthesis rate, malondialdehyde (MDA) content, Cu concentrations in leave, stem and root, and Cu contents in shoot per pot were measured after transplanted plants were grown under excess Cu treatments for 60 days. Two bamboo species had different responses to tolerance and allocation of supplied Cu. As Cu treatments rose, the percentage of senescent shoot and MDA content increased, and the chlorophyll content and photosynthetic capacity decreased. Such changes in Hisauchii were more obvious than in Spectabilis. However, number of emerged shoots did not differ between the two species across four Cu treatments. In the efficiency of decontamination, Hisauchii was more effective than Spectabilis, since either the Cu concentrations in leaves, stems and roots or Cu contents in shoot per pot in Cu treatments from 500 to 2000 mg?kg?1 were higher in Hisauchii than in Spectabilis It is suggested that the potential capability of absorbing Cu might cause the different response to cu stress between the two bamboo species. Both bamboo species can be considered to exhibit enough potential to develop in Cu-polluted areas of China as bioenergy resources and phytoremediation plants.  相似文献   

12.
We used Populus cathayana, a native species with an extensive distribution in northern, central, and southwestern China, as a model species to detect the sex-specific differences in photosynthetic capacity, ultrastructure, nitrogen (N) metabolism, and nickel (Ni) accumulation and distribution in response to Ni stress. Exposure to 100 μM Ni2+ in a hydroponic system for 1 month significantly decreased the pigment content and the photosynthetic rate, caused visible impairment in cellular organelle structure, and induced obvious disturbance and imbalance in the N content of female plants, while male plants suffered a lower negative influence on all the above measured parameters. However, males accumulated a higher Ni concentration in both leaves and roots than females, while the transportation ratio of Ni from roots to shoots in males was slightly lower than that in females. Our results, therefore, suggest that males have a better tolerance capacity and a greater ability to remediate Ni-polluted soil than females. This greater tolerance capacity in males might be highly correlated with the better maintenance of N balance and more effective physiological detoxification responses (such as the response to proline) under Ni stress. The differences between the sexes in tolerance capacity to heavy metals should be verified after performing a field investigation using adult trees as materials in the future study.  相似文献   

13.
Siegesbeckia orientalis L. is a promising species for cadmium (Cd) phytoextraction with large biomass and fast growth rate, while little information about their intracellular mechanisms involved in Cd tolerance and detoxification has been explored. A soil pot experiment with total target Cd concentrations of 0, 10, 50, 100, and 150 mg kg?1 were designed to investigate the subcellular distribution, chemical forms and thiol synthesis characteristics of Cd in S. orientalis. More than 90% of Cd was bound to the soluble fractions (48.4–76.5%) and cell walls (19.9–46.3%). Increasing soil Cd concentrations enhanced Cd sequestration into the cell walls. Most of the Cd (69.8–82.7%) in the plant organ was mainly in the forms of pectate and protein integrated Cd and undissolved Cd phosphate, while a minor portion (6.8–20.9%) was in the forms of the inorganic Cd and the water soluble Cd. Nonprotein thiols and phytochelatins significantly increased with increasing soil Cd treatment levels, while glutathione concentrations had no obvious change trends. Therefore, intracellular detoxification mechanisms of Cd in S. orientalis mainly rely on formation of less toxic Cd chemical forms, store of a large amount of Cd in cell wall and synthesis of thiol compounds.  相似文献   

14.
Abstract

Sugarcane is a promising species for lead (Pb) phytoextraction due to its large biomass and high tolerance toward Pb content. To understand the mechanisms involved in Pb tolerance and detoxification and its potential for phytoremediation in sugarcane, the bioaccumulation, subcellular distribution, and chemical forms of Pb in different tissues were investigated through pot cultivation sugarcane with increasing Pb concentrations in the present study. Results showed that sugarcane could tolerate high concentrations of Pb (up to 1250.0–1750.0?mg/kg); the Pb content in roots and shoots increased with increasing Pb concentration. A large amount of Pb content was stored in roots. The subcellular distribution of Pb in sugarcane revealed that the majority of Pb was bound to the cell wall. Meanwhile, the greatest amount of Pb was extracted by 2.0% acetic acid and 0.6?mol/L HCl, which indicated that most of Pb was combined with undissolved phosphate and oxalate. These results implied that the Pb formation of undissolved salts and compartmentalization in the cell wall may be a key strategy for Pb detoxicity and tolerance in sugarcane.  相似文献   

15.

Background and aims

Close regulation of cellular Ca in roots is required in the face of marked changes in soil solution Ca over time and space. This study’s aims were to quantify and gain insights into the ways in which roots respond to changes in solution Ca.

Methods

Root elongation rate (RER) of cowpea (Vigna unguiculata (L.) Walp.) seedlings was determined at 0.05 to 15 mM Ca for up to 24 h both without and with added K, Mg, or Na. Root tip concentrations of Ca, K, Mg, and Na were determined and binding of cations by root tips estimated by subsequent Cu sorption.

Results

Transfer from higher to lower Ca solutions (and with added K at high Ca) resulted in RER?≥?2 mm h?1 within minutes. This was attributed to greater cell wall relaxation through lower Ca binding aided by a decrease to pH?≤?5.1 in solution. Transfer to higher Ca solutions, which remained at ~pH 5.6, led to an equally rapid decrease in RER to ~0.5 mm h?1, an effect ascribed to greater cell wall binding of Ca. Thereafter, a gradual increase in RER to ~1.8 mm h?1 occurred over 24 h, an effect likely due to reduced cell wall Ca binding as shown by decreasing Cu sorption at a rate of 0.027 mmol Cu kg?1 FM h?1 over 24 h.

Conclusion

The kinetics of changes in RER and cations in root tips suggest that roots respond to changes in solution Ca through effects on cell wall relaxation of the rhizodermis and outer cortex in the elongation zone.  相似文献   

16.
Ricinus communis L. is a hyperaccumulation plant newly discovered in an abandoned land of Cu mine in China. A hydroponic experiment was then carried out to determine the root exudates in the Cu-tolerant castor (Ricinus communis L.). Plants were grown in nutrient solution with increasing level of Cu doses (0, 100, 250, 500, and 750 μmol/L Cu) in the form of CuSO4. Cu accumulation in the roots and shoots of castor, and root exudates collected from the castor were measured. The results indicated that the castor had a high Cu accumulation capacity and the Cu concentrations in the shoots and roots of the castor treated with 750 μmol/L Cu were 177.1, 14586.7 mg/kg, respectively. Tartaric was the largest in the root exudates in terms of concentrations, which reached up to 329.13 μmol/g (dry plant) in the level of 750 μmol/L Cu. There was a significantly positive linear relationship between the Cu concentration in root and the concentration of succinic (R = 0.92, P < 0.05), tartaric (R = 0.96, P < 0.01), and citric (R = 0.89, P < 0.05). These results indicated that the difference in root exudation from castor could affect their Cu tolerance. What is more, significant is that the high tartaric and citric, the low oxalic and cysteine in the root exudation of castor contributed to toleration of high Cu concentrations.  相似文献   

17.
Seedlings of two Indica rice (Oryza sativa L.) cvs. HUR-105 and Vandana, differing in Al-tolerance were used to identify the key mechanisms involved in their differential behaviour towards Al toxicity. Cv. HUR-105 appeared to be Al sensitive by showing significant reduction (p ≤ 0.01) in root/shoot length, fresh weight, dry weight and water content in presence of 421 μM Al3+ in growth medium whereas cv. Vandana appeared to be fairly Al3+ tolerant. A conspicuous and significant reduction in dry weight of root and shoot was observed in Al sensitive cv. HUR-105 with 178 μM Al3+ treatment for 3 days. Al was readily taken up by the roots and transported to shoots in both the rice cultivars. Localization of absorbed Al was always greater in roots than in shoots. Our results of the production of reactive oxygen species (ROS) H2O2 and O2 .? and activities of major antioxidant enzymes such as total superoxide dismutase (SOD), Cu/Zn SOD, Mn SOD, Fe SOD, catalase (CAT) and guaiacol peroxidase revealed Al induced higher oxidative stress, greater production of ROS and lesser capacity to scavenge ROS in cv. HUR-105 than Vandana. With Al treatment, higher oxidative stress was noted in shoots than in roots. Greatly enhanced activities of SOD (especially Fe and Mn SOD) and CAT in Al treated seedlings of cv. Vandana suggest the role of these enzymes in Al tolerance. Furthermore, a marked presence of Fe SOD in roots and shoots of the seedlings of Al tolerant cv. Vandana and its significant (p ≤ 0.01) increase in activity due to Al-treatment, appears to be the unique feature of this cultivar and indicates a vital role of Fe SOD in Al-tolerance in rice.  相似文献   

18.
To explore the copper uptake mechanisms by the Cu-tolerant plant Commelina communis, the contents of Cu and other metals (including Fe, Zn, and Mn) in roots were detected using atomic absorption spectrometer under transporter inhibitors, partial element deficiency, or Cu excess treatments, while distribution characters of Cu and other metals in root growth zones were investigated by synchrotron radiation X-ray fluorescence spectroscopy (SRXRF). Cu uptake was inhibited by the uncoupler DNP and P-type ATPase inhibitor Na3VO4, not by the Ca2+ ion channel inhibitor LaCl3, suggesting that Cu could probably be assimilated actively by root and be related with P-type ATPase, but not through Ca2+ ion channel. Fe or Zn deficiency could enhance Cu uptake, while 100 μM Cu inhibited Fe, Zn, and Mn accumulation in roots significantly. Metal distribution under 100 μM Cu treatment was investigated by SRXRF. High level of Cu was found in the root meristem, and higher Cu concentrations were observed in the vascular cylinder than those in the endodermis, further demonstrating the initiative Cu transport in the root of C. communis. Under excess Cu stress, most Fe was located in the epidermis, and Fe concentrations in the endodermis were higher than those in the vascular cylinder, suggesting Cu and Fe competition not only in the epidermal cells but also for the intercellular and intracellular transport in roots. Zn was present in the meristem and the vascular cylinder similar to Cu. Cu and Zn showed a similar pattern. Mn behaves as Zn does, but not like Fe.  相似文献   

19.
Salinity is one of the major constraints in oilseed rape (Brassica napus L.) production. One of the means to overcome this constraint is the use of plant growth regulators to induce plant tolerance. To study the plant response to salinity in combination with a growth regulator, 5-aminolevulinic acid (ALA), oilseed rape plants were grown hydroponically in greenhouse conditions under three levels of salinity (0, 100, and 200 mM NaCl) and foliar application of ALA (30 mg/l). Salinity depressed the growth of shoots and roots, and decreased leaf water potential and chlorophyll concentration. Addition of ALA partially improved the growth of shoots and roots, and increased the leaf chlorophyll concentrations of stressed plants. Foliar application of ALA also maintained leaf water potential of plants growing in 100 mM salinity at the same level as that of the control plants, and there was also an improvement in the water relations of ALA-treated plants growing in 200 mM. Net photosynthetic rate and gas exchange parameters were also reduced significantly with increasing salinity; these effects were partially reversed upon foliar application with ALA. Sodium accumulation increased with increasing NaCl concentration which induced a complex response in the macro-and micronutrients uptake and accumulation in both roots and leaves. Generally, analyses of macro- (N, P, K, S, Ca, and Mg) and micronutrients (Mn, Zn, Fe, and Cu) showed no increased accumulation of these ions in the leaves and roots (on dry weight basis) under increasing salinity except for zinc (Zn). Foliar application of ALA enhanced the concentrations of all nutrients other than Mn and Cu. These results suggest that under short-term salinity-induced stress (10 days), exogenous application of ALA helped the plants improve growth, photosynthetic gas exchange capacity, water potential, chlorophyll content, and mineral nutrition by manipulating the uptake of Na+.  相似文献   

20.
We investigated the roles of Al-binding ligands in Al exclusion from roots and in internal Al detoxification in roots as Al resistance mechanisms in two Al-resistant Myrtaceae trees, Eucalyptus camaldulensis Dehnh. and Melaleuca cajuputi Powell. The amounts of ligands secreted from roots and contained in root tips of these species were compared with those of an Al-sensitive species, Melaleuca bracteata F. Muell., after the roots were exposed to 0 or 1 mM AlCl3 solution. Secretion of well-known ligands (citrate, oxalate, and malate) from roots under Al treatment was low in all species. However, in E. camaldulensis, the Al-binding capacity of root exudates under Al treatment was considerable and was higher than that in M. bracteata. Gel filtration chromatography revealed that a low-molecular-weight Al-binding ligand was secreted from roots in response to Al only in E. camaldulensis. On the other hand, the Al-binding capacity of cell sap in root tips under Al treatment was similar for the resistant and sensitive species. These results suggest that Al exclusion by secretion of the unknown low-molecular-weight Al-binding ligand from roots contributes to the Al resistance of E. camaldulensis, whereas M. cajuputi has developed Al-resistance mechanisms other than secretion of ligands from roots or concentration of internal ligands in root tips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号