首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suppression of myostatin (MSTN) is associated with skeletal muscle atrophy and insulin resistance. However, the mechanisms by which MSTN regulates insulin resistance are not well known. We have explored the signaling pathways through which MSTN regulates insulin resistance in diet-induced obese rats using a polyclonal antibody for MSTN. The anti-MSTN polyclonal antibody significantly improved insulin resistance and whole-body insulin sensitivity, decreased MSTN protein expression in muscle samples by 39 % in diet-induced obese rats. Furthermore, the anti-MSTN polyclonal antibody significantly enhanced PI3K activity (140 %), Akt phosphorylation (86 %), GLUT4 protein expression (23 %), the phosphorylation of mTOR (21 %), and inhibited the phosphorylation of FoxO1 (57 %), but did not affect the phosphorylation of GSK-3β. Thus, suppression of MSTN by the anti-MSTN polyclonal antibody reverses insulin resistance of diet-induced obesity via MSTN/PI3K/Akt/mTOR and MSTN/PI3K/Akt/FoxO1 signaling pathways.  相似文献   

2.
LYR motif-containing 1 (LYRM1) was recently discovered to be involved in adipose tissue homeostasis and obesity-associated insulin resistance. We previously demonstrated that LYRM1 overexpression might contribute to insulin resistance and mitochondrial dysfunction. Additionally, knockdown of LYRM1 enhanced insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. We investigated whether knockdown of LYRM1 in 3T3-L1 adipocytes could rescue insulin resistance and mitochondrial dysfunction induced by the cyanide p-trifluoromethoxyphenyl-hydrazone (FCCP), a mitochondrion uncoupler, to further ascertain the mechanism by which LYRM1 is involved in obesity-associated insulin resistance. Incubation of 3T3-L1 adipocytes with 1 µM FCCP for 12 h decreased insulin-stimulated glucose uptake, reduced intracellular ATP synthesis, increased intracellular reactive oxygen species (ROS) production, impaired insulin-stimulated Glucose transporter type 4 (GLUT4) translocation, and diminished insulin-stimulated tyrosine phosphorylation of Insulin receptor substrate-1 (IRS-1) and serine phosphorylation of Protein Kinase B (Akt). Knockdown of LYRM1 restored insulin-stimulated glucose uptake, rescued intracellular ATP synthesis, reduced intracellular ROS production, restored insulin-stimulated GLUT4 translocation, and rescued insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt in FCCP-treated 3T3-L1 adipocytes. This study indicates that FCCP-induced mitochondrial dysfunction and insulin resistance are ameliorated by knockdown of LYRM1.  相似文献   

3.
Incretins, such as glucagon-like peptide-1 (GLP)-1, have been shown to elevate plasma insulin concentration. The purpose of this study is to investigate the cellular and molecular basis of the beneficial effects of GLP-1. Normal and diabetic male Wistar rats were treated with GLP-1 (50 ng/kg body weight) for 10 weeks. At the end of the experiment, pancreatic tissues were taken for immunohistochemistry, immunoelectron microscopy and real-time polymerase chain reaction studies. Samples of blood were retrieved from the animals for the measurement of enzymes and insulin. The results show that treatment of diabetic rats with GLP-1 caused significant (P?GLP-1 (10?12–10?6 M) induced significant (P?GLP-1-treated rats compared to controls. GLP-1 treatment induced significant (P?GLP-1-receptor genes in diabetic animals compared to controls. GLP-1 is present in pancreatic beta cells and significantly (P?GLP-1 is co-localized with insulin and seems to exert its beneficial effects by increasing cellular concentrations of endogenous antioxidant genes and other genes involved in the maintenance of pancreatic beta cell structure and function.  相似文献   

4.
Decreased GLUT4 expression and impaired GLUT4 cell membrane translocation are involved in type 2 diabetes mellitus (T2DM) pathogenesis so the factors impacting GLUT4 expression may be associated with T2DM. In this study, we identified four miRNAs: miR-31, miR-93, miR-146a, and miR-199a which suppress GLUT4 expression in HEK293T cells. Subsequently, we determined expression of these four miRNAs in plasma samples of T2DM patients, T2DM susceptible individuals, and healthy controls and found miR-199a was overexpressed in patients’ plasma compared with healthy control. Because the miR-199a binding site in GLUT4 3′UTR is highly conserved among vertebrates, we detected the glucose uptake in rat L6 myoblast cells through gain- and loss-of-function of miR-199a. We found that miR-199a can repress glucose uptake in L6 cells, which was rescued by GLUT4 overexpression. These results indicate that T2DM patients may have a high level miR-199a that reduce GLUT4 expression and contribute to the insulin resistance. Hence, miR-199a may be a novel biomarker for risk estimation and classification in T2DM patients.  相似文献   

5.
Glycogen synthase kinase-3β (GSK-3β) is involved in the pathogenesis of various kidney diseases. This study was undertaken to examine the changes in GSK-3β activity in podocytes under diabetic conditions and to elucidate the functional role of GSK-3β in podocyte apoptosis. In vivo, 32 rats were injected with either diluent (n = 16, C) or with streptozotocin intraperitoneally (n = 16, DM), and 8 rats from each group were treated with 6-bromoindirubin-3′-oxime (BIO) for 3 months. In vitro, immortalized mouse podocytes were exposed to 5.6 mM glucose or 30 mM glucose (HG) with or without 10 μM BIO. Western blot analysis and TUNEL or Hoechst 33342 staining were performed to identify apoptosis. Urinary albumin excretion was significantly higher in DM rats, and this increase was significantly abrogated in DM rats by BIO treatment. The protein expression of Tyr216-phospho-GSK-3β was significantly increased in DM glomeruli and in cultured podocytes exposed to HG. Western blot analysis revealed that the protein expression of Bax and active fragments of caspase-3 were significantly increased, whereas phospho-Akt, β-catenin, and Bcl-2 protein expression were significantly decreased in DM glomeruli and HG-stimulated podocytes. Apoptosis, determined by TUNEL assay and Hoechst 33342 staining, was also significantly increased in podocytes under diabetic conditions. The changes in the expression of apoptosis-related molecules and the increase in the number of apoptotic cells in DM glomeruli as well as in HG-stimulated podocytes were significantly ameliorated by BIO. These findings suggest that enhanced GSK-3β activity within podocytes under diabetic conditions is associated with podocyte loss in diabetic nephropathy.  相似文献   

6.
Bone disease as a consequence of diabetes mellitus (DM) is not fully understood. The effects of high glucose (30 mM), high insulin (50 nM), or mannitol (30 mM; osmotic control) were evaluated on MC3T3-E1 cells (osteoblasts) in vitro. The mRNA and protein levels of parathyroid hormone (PTH) receptor (PTH1R), collagen I, RANKL, osteoprotegerin (OPG), alkaline phosphatase (ALP), and glucose transporter (GLUT1) were estimated by real-time polymerase chain reaction or Western blotting. The mineralization capacity was analyzed by von Kossa staining. High glucose induced overexpression of RANKL (2×) and OPG (30×), suggesting that RANKL-induced osteoclast activity might not be a dominant mechanism of bone disease in DM, since this increase was followed by increased OPG. Collagen I increased by 12×, indicating an excess of organic matrix production. The expression of ALP decreased by 50 %, indicating a deficit in mineralization capacity, confirmed by von Kossa staining. Mannitol induced similar effects as glucose suggesting that extracellular hyperosmolarity was able to stimulate organic matrix production. GLUT1 expression was not altered, and insulin did not reverse most of the effects of glucose, suggesting that glucose uptake by osteoblasts was not altered by high glucose. The data suggest that the bone fragility typical of DM is not a consequence of excessive bone reabsorption but is instead attributable to a defect in organic matrix mineralization. The heightened increase in OPG versus RANKL might cause a decrease in the bone-remodeling cycle. Osteoblasts appear to be more sensitive to extracellular hypertonicity than to the intracellular metabolic effects of hyperglycemia.  相似文献   

7.

Background

The present study was aimed at isolating an antidiabetic molecule from a herbal source and assessing its mechanism of action.

Methods

Embelin, isolated from Embelia ribes Burm. (Myrsinaceae) fruit, was evaluated for its potential to regulate insulin resistance, alter β-cell dysfunction and modulate key markers involved in insulin sensitivity and glucose transport using high-fat diet (HFD) fed-streptozotocin (STZ) (40 mg/kg)-induced type 2 diabetic rats. Molecular-dockings were performed to investigate the binding modes of embelin into PPARγ, PI3K, p-Akt and GLUT4 active sites.

Results

Embelin (50 mg/kg b wt.) reduced body weight gain, blood glucose and plasma insulin in treated diabetic rats. It further modulated the altered lipid profiles and antioxidant enzymes with cytoprotective action on β-cell. Embelin significantly increased the PPARγ expression in epididymal adipose tissue compared to diabetic control group; it also inhibited adipogenic activity; it mildly activated PPARγ levels in the liver and skeletal muscle. It also regulated insulin mediated glucose uptake in epididymal adipose tissue through translocation and activation of GLUT4 in PI3K/p-Akt signaling cascade. Embelin bound to PPARγ; it disclosed stable binding affinities to the active sites of PI3K, p-Akt and GLUT4.

Conclusions

These findings show that embelin could improve adipose tissue insulin sensitivity without increasing weight gain, enhance glycemic control, protect β-cell from damage and maintain glucose homeostasis in adipose tissue.

General significance

Embelin can be used in the prevention and treatment of type 2 diabetes mellitus caused due to obesity.  相似文献   

8.

Aims

Subgroups of patients with type 2 diabetes mellitus demand large insulin doses to maintain euglycemia. These patients are characterized by severe skeletal muscle insulin resistance and the underlying pathology remains unclear. The purpose of this study was to examine protein expression of the principal glucose transporter, GLUT4, and associated proteins in skeletal muscle from type 2 diabetic patients characterized by severe insulin resistance.

Methods

Seven type 2 diabetic patients with severe insulin resistance (mean insulin dose 195 IU/day) were compared with seven age matched type 2 diabetic patients who did not require insulin treatment, and with an age matched healthy control group. Protein expression of GLUT4 and associated proteins was assessed in muscle and fat biopsies using standard western blotting techniques.

Results

GLUT4 protein expression was significantly reduced by ∼30 pct in skeletal muscle tissue from severely insulin resistant type 2 diabetic subjects, compared with both healthy controls and type 2 diabetic subjects that did not require insulin treatment. In fat tissue, GLUT4 protein expression was reduced in both diabetic groups. In skeletal muscle, the reduced GLUT4 expression in severe insulin resistance was associated with decreased ubiquitin-conjugating enzyme 9 (UBC9) expression while expression of GLUT1, TBC1D1 and AS160 was not significantly different among type 2 diabetic patients and matched controls.

Conclusions

Type 2 diabetic patients with severe insulin resistance have reduced expression of GLUT4 in skeletal muscle compared to patients treated with oral antidiabetic drugs alone. GLUT4 protein levels may therefore play a role in the pathology behind type 2 diabetes mellitus among subgroups of patients, and this may explain the heterogeneous response to insulin treatment. This new finding contributes to the understanding of the underlying mechanisms for the development of extreme insulin resistance.  相似文献   

9.
Integrins are ubiquitous transmembrane receptors with adhesion and signaling properties. The influence of insulin receptor and insulin signaling on αPS2CβPS integrins’ lateral diffusion was studied using single particle tracking in S2 cells before and after reducing the insulin receptor expression or insulin stimulation. Insulin signaling was monitored by Western blotting for phospho-Akt expression. The expression of the insulin receptor was reduced using RNA interference (RNAi). After insulin receptor RNAi, four significant changes were measured in integrin diffusion properties: (1) there was a 24 % increase in the mobile integrin population, (2) 14 % of the increase was represented by integrins with Brownian diffusion, (3) for integrins that reside in confined zones of diffusion, there was a 45 % increase in the diameter of the confined zone, and (4) there was a 29 % increase in the duration integrins spend in confined zones of diffusion. In contrast to reduced expression of the insulin receptor, which alters integrin diffusion properties, insulin stimulation alone or insulin stimulation under conditions of reduced insulin receptor expression have minimal effects on altering the measured integrin diffusion properties. The differences in integrin diffusion measured after insulin receptor RNAi in the presence or absence of insulin stimulation may be the result of other insulin signaling pathways that are activated at reduced insulin receptor conditions. No change in the average integrin diffusion coefficient was measured for any conditions included in this study.  相似文献   

10.
Insulin stimulates the translocation of the glucose transporter GLUT4 from intracellular locations to the plasma membrane in adipose and muscle cells. Prior studies have shown that Akt phosphorylation of the Rab GTPase-activating protein, AS160 (160-kDa Akt substrate; also known as TBC1D4), triggers GLUT4 translocation, most likely by suppressing its Rab GTPase-activating protein activity. However, the regulation of a very similar protein, TBC1D1 (TBC domain family, member 1), which is mainly found in muscle, in insulin-stimulated GLUT4 translocation has been unclear. In the present study, we have identified likely Akt sites of insulin-stimulated phosphorylation of TBC1D1 in C2C12 myotubes. We show that a mutant of TBC1D1, in which several Akt sites have been converted to alanine, is considerably more inhibitory to insulin-stimulated GLUT4 translocation than wild-type TBC1D1. This result thus indicates that similar to AS160, Akt phosphorylation of TBC1D1 enables GLUT4 translocation. We also show that in addition to Akt activation, activation of the AMP-dependent protein kinase partially relieves the inhibition of GLUT4 translocation by TBC1D1. Finally, we show that the R125W variant of TBC1D1, which has been genetically associated with obesity, is equally inhibitory to insulin-stimulated GLUT4 translocation, as is wild-type TBC1D1, and that healthy and type 2 diabetic individuals express approximately the same level of TBC1D1 in biopsies of vastus lateralis muscle. In conclusion, phosphorylation of TBC1D1 is required for GLUT4 translocation. Thus, the regulation of TBC1D1 resembles that of its paralog, AS160.Insulin stimulates glucose transport into adipose and muscle cells by increasing the amount of the GLUT4 glucose transporter at the cell surface by a process termed GLUT4 translocation (1, 2). Unstimulated adipocytes and myotubes sequester GLUT4 in intracellular compartments. Insulin activates signaling cascades that lead to the trafficking of specialized GLUT4 vesicles to the cell membrane and fusion of the vesicles therewith. A key signaling pathway for GLUT4 translocation proceeds from the insulin receptor through the activation of the protein kinase Akt. One Akt substrate that connects signaling to GLUT4 trafficking is the Rab GTPase-activating protein (GAP)3 known as AS160. There is now considerable evidence for the following scheme (2, 3): under basal conditions, AS160 acts as a brake on GLUT4 translocation by maintaining one or more Rab proteins required for translocation in their inactive GDP state; in response to insulin, Akt phosphorylates AS160 and thereby suppresses its GAP activity; as a consequence, the elevation of the GTP form of the Rab proteins occurs, leading to the increased docking and subsequent fusion of the GLUT4 vesicles at the plasma membrane.More recently, we and others have characterized a paralog of AS160 known as TBC1D1 (47). Overall, TBC1D1 is 47% identical to AS160, with the GAP domain being 79% identical (4). Its GAP domain has the same Rab specificity as the GAP domain of AS160 (4). TBC1D1 is predominantly expressed in skeletal muscle; its expression in adipocytes is very low (5, 6). Nevertheless, 3T3-L1 adipocytes are a convenient cell type in which to examine the role of proteins in GLUT4 translocation, because insulin causes an ∼10-fold increase in GLUT4 at the cell surface. Previously, we examined the role of TBC1D1 in GLUT4 translocation by overexpressing it in 3T3-L1 adipocytes. Surprisingly, even though insulin led to phosphorylation of TBC1D1 on Akt site(s), ectopic TBC1D1 potently inhibited GLUT4 translocation (4, 5). By contrast, overexpression of AS160 did not inhibit GLUT4 translocation (8). This difference suggested that the regulation of TBC1D1 might be fundamentally different from that of AS160. In the present study, we show that this is not the case. By reducing the level of ectopic TBC1D1, we have obtained evidence that phosphorylation of TBC1D1 on several likely Akt sites relieves the inhibitory effect on GLUT4 translocation. In addition, we have examined the effect of a variant of TBC1D1 genetically associated with obesity on GLUT4 translocation and determined the relative levels of TBC1D1 in muscle biopsies from healthy and type 2 diabetic individuals.  相似文献   

11.

Aims

Ischemic preconditioning (IPC) is a potent form of endogenous protection. However, IPC-induced cardioprotective effect is significantly blunted in insulin resistance-related diseases and the underlying mechanism is unclear. This study aimed to determine the role of glucose metabolism in IPC-reduced reperfusion injury.

Methods

Normal or streptozotocin (STZ)-treated diabetic rats subjected to 2 cycles of 5 min ischemia/5 min reperfusion prior to myocardial ischemia (30 min)/reperfusion (3 h). Myocardial glucose uptake was determined by 18F-fluorodeoxyglucose-positron emission tomography (PET) scan and gamma-counter biodistribution assay.

Results

IPC exerted significant cardioprotection and markedly improved myocardial glucose uptake 1 h after reperfusion (P<0.01) as evidenced by PET images and gamma-counter biodistribution assay in ischemia/reperfused rats. Meanwhile, myocardial translocation of glucose transporter 4 (GLUT4) to plasma membrane together with myocardial Akt and AMPK phosphorylation were significantly enhanced in preconditioned hearts. Intramyocardial injection of GLUT4 siRNA markedly decreased GLUT4 expression and blocked the cardioprotection of IPC as evidence by increased myocardial infarct size. Moreover, the PI3K inhibitor wortmannin significantly inhibited activation of Akt and AMPK, reduced GLUT4 translocation, glucose uptake and ultimately, depressed IPC-induced cardioprotection. Furthermore, IPC-afforded antiapoptotic effect was markedly blunted in STZ-treated diabetic rats. Exogenous insulin supplementation significantly improved glucose uptake via co-activation of myocardial AMPK and Akt and alleviated ischemia/reperfusion injury as evidenced by reduced myocardial apoptosis and infarction size in STZ-treated rats (P<0.05).

Conclusions

The present study firstly examined the role of myocardial glucose metabolism during reperfusion in IPC using direct genetic modulation in vivo. Augmented glucose uptake via co-activation of myocardial AMPK and Akt in reperfused myocardium is essential to IPC-alleviated reperfusion injury. This intrinsic metabolic modulation and cardioprotective capacity are present in STZ-treated hearts and can be triggered by insulin.  相似文献   

12.
This study examined the hypothesis that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) upregulates the insulin-independent signaling cascade of glucose metabolism. C2C12 myotubes were treated with high glucose (HG, 25 mM) and 1,25(OH)2D3 (0–50 nM). 1,25(OH)2D3 supplementation upregulated both insulin-independent (SIRT1) and insulin-dependent (p-IRS) signaling molecules, and stimulated the GLUT4 translocation, and glucose uptake in HG-treated myotubes. The effect of 1,25(OH)2D3 on IRS1 phosphorylation, GLUT4 translocation, and glucose uptake was attenuated in SIRT1-knockdown myotubes. Treatment with 1,25(OH)2D3, coupled with insulin, enhanced GLUT4 translocation and glucose uptake compared to treatment with either insulin or 1,25(OH)2D3 alone in HG-treated myotubes, which suggests that insulin-independent signaling molecules can contribute to the higher glucose metabolism observed in 1,25(OH)2D3 and insulin-treated cells. The data, therefore, suggest that 1,25(OH)2D3 increases glucose consumption by inducing SIRT1 activation, which in turn increases IRS1 phosphorylation and GLUT4 translocation in myotubes.  相似文献   

13.
We have recently reported that male rats given liquid fructose ingestion exhibit features of cardiometabolic abnormalities including non-obese insulin resistance with impaired insulin signaling transduction in skeletal muscle (Rattanavichit Y et al. Am J Physiol Regul Integr Comp Physiol 311: R1200-R1212, 2016). While exercise can attenuate obesity-related risks of cardiometabolic syndrome, the effectiveness and potential mechanism by which exercise modulates non-obese insulin resistance have not been fully studied. The present investigation evaluated whether regular exercise by voluntary wheel running (VWR) can reduce cardiometabolic risks induced by fructose ingestion. Moreover, the potential cellular adaptations following VWR on key signaling proteins known to influence insulin-induced glucose transport in skeletal muscle of fructose-ingested rats were investigated. Male Sprague-Dawley rats were given either water or liquid fructose (10% wt/vol) without or with access to running wheel for 6 weeks. We demonstrated that VWR restored insulin-stimulated glucose transport in the soleus muscle by improving the functionality of several signaling proteins, including insulin-stimulated IRβ Tyr1158/Tyr1162/Tyr1163 (82%), IRS-1 Tyr989 (112%), Akt Ser473 (56%), AS160 Thr642 (76%), and AS160 Ser588 (82%). These effects were accompanied by lower insulin-stimulated phosphorylation of IRS-1 Ser307 (37%) and JNK Thr183/Tyr185 (49%), without significant changes in expression of proteins in the renin-angiotensin system. Intriguingly, multiple cardiometabolic abnormalities were not observed in fructose-ingested rats with access to VWR. Collectively, this study demonstrates that the development of cardiometabolic abnormalities as well as insulin resistance of skeletal muscle and defective signaling molecules in rats induced by fructose ingestion could be opposed by VWR.  相似文献   

14.
Increasing studies have shown protective effects of intermittent hypoxia on brain injury and heart ischemia. However, the effect of intermittent hypoxia on blood glucose metabolism, especially in diabetic conditions, is rarely observed. The aim of this study was to investigate whether intermittent hypoxia influences blood glucose metabolism in type 1 diabetic rats. Streptozotocin-induced diabetic adult rats and age-matched control rats were treated with intermittent hypoxia (at an altitude of 3 km, 4 h per day for 3 weeks) or normoxia as control. Fasting blood glucose, body weight, plasma fructosamine, plasma insulin, homeostasis model assessment of insulin resistance (HOMA-IR), pancreas β-cell mass, and hepatic and soleus glycogen were measured. Compared with diabetic rats before treatment, the level of fasting blood glucose in diabetic rats after normoxic treatment was increased (19.88?±?5.69 mmol/L vs. 14.79?±?5.84 mmol/L, p?<?0.05), while it was not different in diabetic rats after hypoxic treatment (13.14?±?5.77 mmol/L vs. 14.79?±?5.84 mmol/L, p?>?0.05). Meanwhile, fasting blood glucose in diabetic rats after hypoxic treatment was also lower than that in diabetic rats after normoxic treatment (13.14 ± 5.77 mmol/L vs. 19.88 ± 5.69 mmol/L, p<0.05). Plasma fructosamine in diabetic rats receiving intermittent hypoxia was significantly lower than that in diabetic rats receiving normoxia (1.28?±?0.11 vs. 1.39?±?0.11, p?<?0.05), while there were no significant changes in body weight, plasma insulin and β-cell mass. HOMA-IR in diabetic rats after hypoxic treatment was also lower compared with diabetic rats after normoxic treatment (3.48?±?0.48 vs. 3.86?±?0.42, p?<?0.05). Moreover, intermittent hypoxia showed effect on the increase of soleus glycogen but not hepatic glycogen. We conclude that intermittent hypoxia maintains glycemia in streptozotocin-induced diabetic rats and its regulation on muscular glycogenesis may play a role in the underlying mechanism.  相似文献   

15.
The aim of this study was to determine if insulin is transferred to mitoplasts by insulin-degrading enzyme (IDE). Hepatic mitochondria were isolated and controlled by electron microscopy. IDE was obtained from rats muscle by successive chromatography steps. Insulin accumulation in mitoplasts and outer membrane + intermembrane space (OM + IMS) was studied with 125I-insulin. Mitochondrial insulin accumulation and degradation was assayed with Sephadex G50 chromatography, insulin antibody and 5 % TCA. Mitoplasts and OM + IMS were isolated with digitonin. Insulin accumulation was studied at 25 °C at different times, without or with IDE, Bacitracin, 2,4-dinitrophenol, apyrase or sodium succinate + adenosine diphosphate. Insulin accumulation in mitoplasts and OM + IMS after mitochondrial cross-linking was studied with electrophoresis in SDS-PAGE, immunoblots of IDE, insulin or TIM23 (inner mitochondrial transporter) and autoradiography. The studies showed that addition of IDE increased insulin transfer from OM + IMS to mitoplasts, and the insulin accumulation in mitoplast was IDE dependent. Bacitracin and 2,4-dinitrophenol decreased this transfer. The [Insulin-IDE] complex and [Mitoplasts] was studied as a bimolecular reaction following a second order reaction. The constant “k” (liter.mol?1 s?1) showed that IDE increased and Bacitracin or 2,4-dinitrophenol decreased the velocity of insulin transfer. SDS-PAGE and immunoblots studies showed bands and radioactivity coincident with IDE, insulin and TIM23. Non degraded insulin was demonstrated in immunoblot after IDE immunoprecipitation from mitoplasts. Confocal studies showed mitochondrial colocalization of IDE and insulin. The results showed that insulin at 25 °C were transferred from OM + IMS to mitoplasts by IDE or that the enzyme facilitates this transfer, and they reach the matrix together.  相似文献   

16.
Superoxide (O 2 ·? ) overproduction, by decreasing the nitric oxide (·NO) bioavailability, contributes to vascular complications in type 1 diabetes. In this disease, the vascular O 2 ·? can be produced by the NADPH oxidase (NOX), nitric oxide synthase (NOS), and xanthine oxidase (XO). This study aimed to determine the contribution of each enzymatic pathway in hyperglycemia-induced O 2 ·? overproduction, and the effects of an endurance training program and insulin therapy, associated or not, on the O 2 ·? production (amount and related enzymes) in diabetic rats. Forty male Wistar rats were divided into diabetic (D), diabetic treated with insulin (D-Ins), diabetic trained (D-Tr), or diabetic insulin-treated and trained (D-Ins + Tr) groups. An additional healthy group was used as control. Insulin therapy (Glargine Lantus, Sanofi) and endurance training (treadmill run: 60 min/day, 25 m/min, 5 days/week) started 1 week after diabetes induction by streptozotocin (45 mg/kg), and lasted for 8 weeks. At the end of the protocol, the O 2 ·? production in aorta rings was evaluated by histochemical analyses (DHE staining). Each production pathway was studied by inhibiting NOX (apocynin), NOS (L-Name), or XO (allopurinol) before DHE staining. Diabetic rats exhibited hyperglycemia-induced O 2 ·? overproduction, resulting from NOX, NOS, and XO activation. Insulin therapy and endurance training, associated or not, decreased efficiently and similarly the O 2 ·? overproduction. Insulin therapy reduced the hyperglycemia and decreased the three enzymatic pathways implicated in the O 2 ·? production. Endurance training decreased directly the NOS and XO activity. While both therapeutic strategies activated different pathways, their association did not reduce the O 2 ·? overproduction more significantly.  相似文献   

17.
  • 1.1. The mechanism of action of glyburide (a sulfonylurea) on muscle has been investigated by measuring glucose uptake and glucose transporter (GLUT4) protein levels after chronic glyburide treatment.
  • 2.2. A dietary induced insulin resistant rat model (4 wk of high-fat, high-sucrose feeding) was given glyburide (2mg/kg/day) for 10 days and glucose uptake was measured in a perfused hindquarter preparation.
  • 3.3. Protein levels of the GLUT4 glucose transporter were determined by Western analysis.
  • 4.4. After 7 days of treatment, rats fed glyburide had lower blood glucose concentrations 2 hr (72 ± 5 vs 103 ± 12 mg/dl) and 24 hr (97 ± 7 vs 123 ± 7 mg/dl) after glyburide administration with no difference in serum insulin levels compared to vehicle treated animals.
  • 5.5. Glucose uptake was approx doubled in basal state (0 insulin) in response to glyburide (2.8 + 0.4 vs 1.7 ± 0.2μ mol/g per hr).
  • 6.6. Maximal insulin (100 nM) stimulated glucose uptake tended to be higher in the glyburide treated group, but did not reach statistical significance (8.0 ± 0.7 vs 7.0 ± 0.6 μmol/g per hr).
  • 7.7. Western analysis revealed no significant effect of glyburide on the GLUT4 protein level in skeletal muscle.
  • 8.8. These results suggest that glyburide alters glucose uptake through some mechanism other than alterations in the level of the GLUT4 glucose transporter protein.
  相似文献   

18.

Introduction

GH induces acute insulin resistance in skeletal muscle in vivo, which in rodent models has been attributed to crosstalk between GH and insulin signaling pathways. Our objective was to characterize time course changes in signaling pathways for GH and insulin in human skeletal muscle in vivo following GH exposure in the presence and absence of an oral glucose load.

Methods

Eight young men were studied in a single-blinded randomized crossover design on 3 occasions: 1) after an intravenous GH bolus 2) after an intravenous GH bolus plus an oral glucose load (OGTT), and 3) after intravenous saline plus OGTT. Muscle biopsies were taken at t = 0, 30, 60, and 120. Blood was sampled at frequent intervals for assessment of GH, insulin, glucose, and free fatty acids (FFA).

Results

GH increased AUCglucose after an OGTT (p<0.05) without significant changes in serum insulin levels. GH induced phosphorylation of STAT5 independently of the OGTT. Conversely, the OGTT induced acute phosphorylation of the insulin signaling proteins Akt (ser473 and thr308), and AS160.The combination of OGTT and GH suppressed Akt activation, whereas the downstream expression of AS160 was amplified by GH.

We Concluded the Following

1) A physiological GH bolus activates STAT5 signaling pathways in skeletal muscle irrespective of ambient glucose and insulin levels 2) Insulin resistance induced by GH occurs without a distinct suppression of insulin signaling proteins 3) The accentuation of the glucose-stimulated activation of AS 160 by GH does however indicate a potential crosstalk between insulin and GH.

Trial Registration

ClinicalTrials.gov NCT00477997  相似文献   

19.
Lactate produced by Sertoli cells plays an important role in spermatogenesis, and heat stress induces lactate production in immature boar Sertoli cells. Extracellular signaling regulated kinase 1 and 2 (ERK1/2) participates in heat stress response. However, the effect of ERK1/2 on heat stress-induced lactate production is unclear. In the present study, Sertoli cells were isolated from immature boar testis and cultured at 32 °C. Heat stress was induced in a 43 °C incubator for 30 min. Proteins and RNAs were detected by western blotting and RT-PCR, respectively. Lactate production and lactate dehydrogenase (LDH) activity were detected using commercial kits. Heat stress promoted ERK1/2 phosphorylation, showing a reducing trend with increasing recovery time. In addition, heat stress increased heat shock protein 70 (HSP70), glucose transporter 3 (GLUT3), and lactate dehydrogenase A (LDHA) expressions, enhanced LDH activity and lactate production at 2-h post-heat stress. Pretreatment with U0126 (1?×?10?6 mol/L), a highly selective inhibitor of ERK1/2 phosphorylation, reduced HSP70, GLUT3, and LDHA expressions and decreased LDH activity and lactate production. Meanwhile, ERK2 siRNA1 reduced the mRNA level of ERK2 and weakened ERK1/2 phosphorylation. Additionally, ERK2 siRNA1 reduced HSP70, GLUT3, and LHDA expressions decreased LDH activity and lactate production. Furthermore, HSP70 siRNA3 downregulated GLUT3 and LDHA expressions and decreased LDH activity and lactate production. These results show that activated ERK1/2 increases heat stress-induced lactate production by enhancing HSP70 expression to promote the expressions of molecules related to lactate production (GLUT3 and LDHA). Our study reveals a new insight in reducing the negative effect of heat stress in boars.  相似文献   

20.

Background and aims

Phosphatase and tensin homolog (PTEN) is a phosphoinositide phosphatase that regulates crucial cellular functions, including insulin signaling, lipid and glucose metabolism, as well as survival and apoptosis. Silymarin is the active ingredient in milk thistle and exerts numerous effects through the activation of PTEN. However, the effect of silymarin on the development of insulin resistance remains unknown.

Methods

Wistar rats fed fructose-rich chow or normal chow were administered oral silymarin to identify the development of insulin resistance using the homeostasis model assessment of insulin resistance and hyperinsulinemic- euglycemic clamping. Changes in PTEN expression in skeletal muscle and liver were compared using western blotting analysis. Further investigation was performed in L6 cells to check the expression of PTEN and insulin-related signals. PTEN deletion in L6 cells was achieved by small interfering ribonucleic acid transfection.

Results

Oral administration of silymarin at a dose of 200 mg/kg once daily induced insulin resistance in normal rats and enhanced insulin resistance in fructose-rich chow-fed rats. An increase of PTEN expression was observed in the skeletal muscle and liver of rats with insulin resistance. A decrease in the phosphorylation of Akt in L6 myotube cells, which was maintained in a high-glucose condition, was also observed. Treatment with silymarin aggravated high-glucose-induced insulin resistance. Deletion of PTEN in L6 cells reversed silymarin-induced impaired insulin signaling and glucose uptake.

Conclusions

Silymarin has the ability to disrupt insulin signaling through increased PTEN expression. Therefore, silymarin should be used carefully in type-2 diabetic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号