首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ornithine decarboxylase (ODC) is a pyridoxal 5'-phosphate dependent enzyme that catalyzes the first committed step in the biosynthesis of polyamines. ODC is a proven drug target for the treatment of African sleeping sickness. The enzyme is an obligate homodimer, and the two identical active sites are formed at the dimer interface. Alanine scanning mutagenesis of dimer interface residues in Trypanosoma brucei ODC was undertaken to determine the energetic contribution of these residues to subunit association. Twenty-three mutant enzymes were analyzed by analytical ultracentrifugation, and none of the mutations were found to cause a greater than 1 kcal/mol decrease in dimer stability. These data suggest that the energetics of the interaction may be distributed across the interface. Most significantly, many of the mutations had large effects (DeltaDeltaG kcat/Km > 2.5 kcal/mol) on the catalytic efficiency of the enzyme. Residues that affected activity included those in or near the substrate binding site but also a number of residues that are distant (15-20 A) from this site. These data provide evidence that long-range energetic coupling of interface residues to the active site is essential for enzyme function, even though structural changes upon ligand binding to wild-type ODC are limited to local conformational changes in the active site. The ODC dimer interface appears to be optimized for catalytic function and not for dimer stability. Thus, small molecules directed to the ODC interfaces could impact biological function without having to overcome the difficult energetic barrier of dissociating the interacting partners.  相似文献   

2.
Xylanases produce xylooligosaccharides from xylan and have thus attracted increasing attention for their usefulness in industrial applications. Previously, we demonstrated that the GH11 xylanase XynLC9 from Bacillus subtilis formed xylobiose and xylotriose as the major products with negligible production of xylose when digesting corncob-extracted xylan. Here, we aimed to improve the catalytic performance of XynLC9 via protein engineering. Based on the sequence and structural comparisons of XynLC9 with the xylanases Xyn2 from Trichoderma reesei and Xyn11A from Thermobifida fusca, we identified the N-terminal residues 5-YWQN-8 in XynLC9 as engineering hotspots and subjected this sequence to site saturation and iterative mutagenesis. The mutants W6F/Q7H and N8Y possessed a 2.6- and 1.8-fold higher catalytic activity than XynLC9, respectively, and both mutants were also more thermostable. Kinetic measurements suggested that W6F/Q7H and N8Y had lower substrate affinity, but a higher turnover rate (kcat), which resulted in increased catalytic efficiency than WT XynLC9. Furthermore, the W6F/Q7H mutant displayed a 160% increase in the yield of xylooligosaccharides from corncob-extracted xylan. Molecular dynamics simulations revealed that the W6F/Q7H and N8Y mutations led to an enlarged volume and surface area of the active site cleft, which provided more space for substrate entry and product release and thus accelerated the catalytic activity of the enzyme. The molecular evolution approach adopted in this study provides the design of a library of sequences that captures functional diversity in a limited number of protein variants.  相似文献   

3.
V-type nerve agents, known as VX, are organophosphate (OP) compounds, and show extremely toxic effects on human and animals by causing cholinergic overstimulation of synapses. The bacterial organophosphorus hydrolase (OPH) has attracted much attention for detoxifying V-type agents through hydrolysis of the P–S bond. However, low catalytic efficiency of OPH has limited the practical use of the enzyme. Here we present rational design of OPH with high catalytic efficiency for a V-type nerve agent. Based on the model structure of the enzyme and substrate docking simulation, we predicted the key residues that appear to enhance the access of the substrate to the active site of the enzyme, and constructed numerous OPH mutants. Of them, double mutant, L271/Y309A, was shown to exhibit a 150-fold higher catalytic efficiency for VX than the wild-type.  相似文献   

4.
Plant glutathione transferases (GSTs) play a key role in the metabolism of various xenobiotics. In this report, the catalytic mechanism of the tau class GSTU4-4 isoenzyme from Glycine max (GmGSTU4-4) was investigated by site-directed mutagenesis and steady-state kinetic analysis. The catalytic properties of the wild-type enzyme and three mutants of strictly conserved residues (Ser13Ala, Asn48Ala and Pro49Ala) were studied in 1-chloro-2,4-dinitrobenzene (CDNB) conjugation reaction. The results showed that the mutations significantly affect substrate binding and specificity. The effect of Ser13Ala mutation on the catalytic efficiency of the enzyme could be explained by assuming the direct involvement of Ser13 to the reaction chemistry and the correct positioning of GSH and CDNB in the ternary catalytic complex. Asn48 and Pro49 were found to have a direct role on the structural integrity of the GSH-binding site (G-site). Moreover, mutation of Asn48 and Pro49 residues may bring about secondary effects altering the thermal stability and the catalytic activity (kcat) of the enzyme without affecting the nature of the rate-limiting step of the catalytic reaction.  相似文献   

5.
Sucrose is an important storage form of assimilated carbon in many plant species. Unlike other sucrose biosynthetic enzymes, Sucrose Phosphate Phosphatase (SPP), the terminal enzyme in sucrose biosynthetic pathway, is the least understood. SPPs from different organisms have different kinetic properties. The current study focuses on the structural differences among SPP homologues and unveils the probable structural basis of kinetic variations. We have employed computational methods of molecular modeling and structure comparisons and identified structural variations in some of the substrate binding residues, amino acid substitutions in regions that are lining the active site and minute structural differences that can enhance the nucleophilicity of a catalytic nucleophile (Asp 9 ). We report a structurally and hence functionally important amino acid substitution (Asp 159 by Alanine) in one of the rice SPP isoforms, which can result in the disruption of a H-bond that helps in binding of sucrose at the active site of the enzyme. In this paper we discuss the structural basis of enhanced catalytic efficiency of rice SPP in comparison with a cyanobacterium (Anabaena variabilis). The natural mutations identified in our analysis of the SPP catalytic domain would be useful in re-designing the enzyme for enhanced catalytic efficiency and higher sucrose production.  相似文献   

6.
We report the cocrystal structures of a computationally designed and experimentally optimized retro-aldol enzyme with covalently bound substrate analogs. The structure with a covalently bound mechanism-based inhibitor is similar to, but not identical with, the design model, with an RMSD of 1.4 Å over active-site residues and equivalent substrate atoms. As in the design model, the binding pocket orients the substrate through hydrophobic interactions with the naphthyl moiety such that the oxygen atoms analogous to the carbinolamine and β-hydroxyl oxygens are positioned near a network of bound waters. However, there are differences between the design model and the structure: the orientation of the naphthyl group and the conformation of the catalytic lysine are slightly different; the bound water network appears to be more extensive; and the bound substrate analog exhibits more conformational heterogeneity than typical native enzyme–inhibitor complexes. Alanine scanning of the active-site residues shows that both the catalytic lysine and the residues around the binding pocket for the substrate naphthyl group make critical contributions to catalysis. Mutating the set of water-coordinating residues also significantly reduces catalytic activity. The crystal structure of the enzyme with a smaller substrate analog that lacks naphthyl ring shows the catalytic lysine to be more flexible than in the naphthyl–substrate complex; increased preorganization of the active site would likely improve catalysis. The covalently bound complex structures and mutagenesis data highlight the strengths and weaknesses of the de novo enzyme design strategy.  相似文献   

7.
The substrate specificity of 3-hydroxybutyrate dehydrogenase from Alcaligenes faecalis with a non-native substrate, levulinic acid, was studied by analysis of the enzyme-substrate molecular interactions. The relation between structural and kinetic parameters was investigated considering the catalytic mechanism of the enzyme. The effects of key positive mutations (H144L, H144L/W187F) on the catalytic activity of the enzyme were studied by employing a surface analysis of its interatomic contacts between the enzyme and substrate atoms. The results revealed that the alteration of hydrogen bond network and rearrangement of the hydrophobic interactions between the active site and substrate molecule are the key structural basis for the change of the substrate specificity of 3-hydroxybutyrate dehydrogenase toward levulinic acid. With this approach, the structural basis for the substrate specificity of the enzyme could be elucidated in a quantitative manner.  相似文献   

8.
Ornithine decarboxylase (ODC) is an obligate homodimer that catalyzes the pyridoxal 5'-phosphate-dependent decarboxylation of l-ornithine to putrescine, a vital step in polyamine biosynthesis. A previous mutagenic analysis of the ODC dimer interface identified several residues that were distant from the active site yet had a greater impact on catalytic activity than on dimer stability [Myers, D. P., et al. (2001) Biochemistry 40, 13230-13236]. To better understand the basis of this phenomenon, the structure of the Trypanosoma brucei ODC mutant K294A was determined to 2.15 A resolution in complex with the substrate analogue d-ornithine. This residue is distant from the reactive center (>10 A from the PLP Schiff base), and its mutation reduced catalytic efficiency by 3 kcal/mol. The X-ray structure demonstrates that the mutation increases the disorder of residues Leu-166-Ala-172 (Lys-169 loop), which normally form interactions with Lys-294 across the dimer interface. In turn, the Lys-169 loop forms interactions with the active site, suggesting that the reduced catalytic efficiency is mediated by the decreased stability of this loop. The extent of disorder varies in the four Lys-169 loops in the asymmetric unit, suggesting that the mutation has led to an increase in the population of inactive conformations. The structure also reveals that the mutation has affected the nature of the ligand-bound species. Each of the four active sites contains unusual ligands. The electron density suggests one active site contains a gem-diamine intermediate with d-ornithine; the second has density consistent with a tetrahedral adduct with glycine, and the remaining two contain tetrahedral adducts of PLP, Lys-69, and water (or hydroxide). These data also suggest that the structure is less constrained in the mutant enzyme. The observation of a gem-diamine intermediate provides insight into the conformational changes that occur during the ODC catalytic cycle.  相似文献   

9.
Gamper M  Hilvert D  Kast P 《Biochemistry》2000,39(46):14087-14094
A novel strategy combining random protein truncation and genetic selection has been developed to identify dispensable C-terminal segments of an enzyme. This approach, which entails the random introduction of premature termination codons, was applied to the last 17 residues of chorismate mutase from Bacillus subtilis (BsCM). Although structurally ill-defined, the C-terminus of BsCM has been proposed to cap the active site upon substrate binding and affect catalysis. However, sequence patterns of 178 selected gene variants show that the final 11 residues of the protein can be mutated and even removed without significantly impairing activity in vivo. In fact, none of the randomized residues is absolutely required, but a preference for wild-type Lys111, Ala112, Leu115, and Arg116 is apparent. These residues are part of a C-terminal 3(10)-helix and provide contacts with the rest of the protein or its ligands. The kinetic parameters of selected enzyme variants show that truncations and mutations do not significantly impair catalytic turnover (k(cat)) but substantially decrease k(cat)/K(m). Thus, while the 17 C-terminal residues of BsCM do not participate directly in the chemical rearrangement, they appear to contribute to enzymatic efficiency via uniform binding of the substrate and transition state.  相似文献   

10.
BACKGROUND: Aldolases are carbon bond-forming enzymes that have long been identified as useful tools for the organic chemist. However, their utility is limited in part by their narrow substrate utilization. Site-directed mutagenesis of various enzymes to alter their specificity has been performed for many years, typically without the desired effect. More recently directed evolution has been employed to engineer new activities onto existing scaffoldings. This approach allows random mutation of the gene and then selects for fitness to purpose those proteins with the desired activity. To date such approaches have furnished novel activities through multiple mutations of residues involved in recognition; in no instance has a key catalytic residue been altered while activity is retained. RESULTS: We report a double mutant of E. coli 2-keto-3-deoxy-6-phosphogluconate aldolase with reduced but measurable enzyme activity and a synthetically useful substrate profile. The mutant was identified from directed-evolution experiments. Modification of substrate specificity is achieved by altering the position of the active site lysine from one beta strand to a neighboring strand rather than by modification of the substrate recognition site. The new enzyme is different to all other existing aldolases with respect to the location of its active site to secondary structure. The new enzyme still displays enantiofacial discrimination during aldol addition. We have determined the crystal structure of the wild-type enzyme (by multiple wavelength methods) to 2.17 A and the double mutant enzyme to 2.7 A resolution. CONCLUSIONS: These results suggest that the scope of directed evolution is substantially larger than previously envisioned in that it is possible to perturb the active site residues themselves as well as surrounding loops to alter specificity. The structure of the double mutant shows how catalytic competency is maintained despite spatial reorganization of the active site with respect to substrate.  相似文献   

11.
Understanding enzyme catalysis through the analysis of natural enzymes is a daunting challenge—their active sites are complex and combine numerous interactions and catalytic forces that are finely coordinated. Study of more rudimentary (wo)man-made enzymes provides a unique opportunity for better understanding of enzymatic catalysis. KE07, a computationally designed Kemp eliminase that employs a glutamate side chain as the catalytic base for the critical proton abstraction step and an apolar binding site to guide substrate binding, was optimized by seven rounds of random mutagenesis and selection, resulting in a > 200-fold increase in catalytic efficiency. Here, we describe the directed evolution process in detail and the biophysical and crystallographic studies of the designed KE07 and its evolved variants. The optimization of KE07's activity to give a kcat/KM value of ∼ 2600 s− 1 M− 1 and an ∼ 106-fold rate acceleration (kcat/kuncat) involved the incorporation of up to eight mutations. These mutations led to a marked decrease in the overall thermodynamic stability of the evolved KE07s and in the configurational stability of their active sites. We identified two primary contributions of the mutations to KE07's improved activity: (i) the introduction of new salt bridges to correct a mistake in the original design that placed a lysine for leaving-group protonation without consideration of its “quenching” interactions with the catalytic glutamate, and (ii) the tuning of the environment, the pKa of the catalytic base, and its interactions with the substrate through the evolution of a network of hydrogen bonds consisting of several charged residues surrounding the active site.  相似文献   

12.
A subtilisin-like serine proteinase from a psychrotrophic Vibrio species (VPR) shows distinct cold adapted traits regarding stability and catalytic properties, while sharing high sequence homology with enzymes adapted to higher temperatures. Based on comparisons of sequences and examination of 3D structural models of VPR and related enzymes of higher temperature origin, five sites were chosen to be subject to site directed mutagenesis. Three serine residues were substituted with alanine and two residues in loops were substituted with proline. The single mutations were combined to make double and triple mutants. The single Ser/Ala mutations had a moderately stabilizing effect and concomitantly decreased catalytic efficiency. Introducing a second Ser/Ala mutation did not have additive effect on stability; on the contrary a double Ser/Ala mutant had reduced stability with regard to both wild type and single mutants. The Xaa/Pro mutations stabilized the enzyme and did also tend to decrease the catalytic efficiency more than the Ser/Ala mutations.  相似文献   

13.
Otten LG  Sio CF  Reis CR  Koch G  Cool RH  Quax WJ 《The FEBS journal》2007,274(21):5600-5610
There is strong interest in creating an enzyme that can deacylate natural cephalosporins such as cephalosporin C in order to efficiently acquire the starting compound for the industrial production of semisynthetic cephalosporin antibiotics. In this study, the active site of the glutaryl acylase from Pseudomonas SY-77 was randomized rationally. Several mutations that were found in previous studies to enhance the activity of the enzyme towards adipyl-7-aminodesacetoxycephalosporanic acid (ADCA) and cephalosporin C have now been combined, and libraries have been made in which random amino acid substitutions at these positions are joined. The mutants were expressed in a leucine-deficient Escherichia coli strain and subjected to growth selection with adipyl-leucine or amino-adipyl-leucine as sole leucine source. The mutants growing on these media were selected and purified, and their hydrolysis activities towards adipyl-7-ADCA and cephalosporin C were tested. Several mutants with highly improved activities towards the desired substrates were found in these rationally randomized libraries. The best mutant was selected from a library of totally randomized residues: 178, 266, and 375. This mutant comprises two mutations, Y178F + F375H, which synergistically improve the catalytic efficiency towards adipyl-7-ADCA 36-fold. The activity of this mutant towards adipyl-7-ADCA is 50% of the activity of the wild-type enzyme towards the preferred substrate glutaryl-7-aminocephalosporanic acid, and therefore the characteristics of this mutant approach those needed for industrial application.  相似文献   

14.
Birkholtz L  Joubert F  Neitz AW  Louw AI 《Proteins》2003,50(3):464-473
The ornithine decarboxylase (ODC) component of the bifunctional S-adenosylmethionine decarboxylase/ornithine decarboxylase enzyme (PfAdoMetDC-ODC) of Plasmodium falciparum was modeled on the crystal structure of the Trypanosoma brucei enzyme. The homology model predicts a doughnut-shaped active homodimer that associates in a head-to-tail manner. The monomers contain two distinct domains, an N-terminal alpha/beta-barrel and a C-terminal modified Greek-key domain. These domains are structurally conserved between eukaryotic ODC enzymes and are preserved in distant analogs such as alanine racemase and triosephosphate isomerase-like proteins. Superimposition of the PfODC model on the crystal structure of the human enzyme indicates a significant degree of deviation in the carbon alpha-backbone of the solvent accessible loops. The surface locality of the ab initio modeled 38 amino acid parasite-specific insert suggests a role in the stabilization of the large bifunctional protein complex. The active site pockets of PfODC at the interface between the monomers appear to be conserved regarding the binding sites of the cofactor and substrate, but each contains five additional malaria-specific residues. The predicted PfODC homology model is consistent with mutagenesis results and biochemical studies concerning the active site residues and areas involved in stabilizing the dimeric form of the protein. Two competitive inhibitors of PfODC could be shown to interact with several parasite-specific residues in comparison with their interaction with the human ODC. The PfODC homology model contributes toward a structure-based approach for the design of novel malaria-specific inhibitors.  相似文献   

15.
为了解析胆盐水解酶催化中心中关键氨基酸位点与其底物特异性的关系,以大肠杆菌pET-20b(+)表达系统为分子改造平台,采用理性设计,结合氨基酸定点突变的方法,成功构建了唾液乳杆菌Lactobacillus salivarius胆盐水解酶BSH1的7种突变体。通过对比L.salivarius BSH1及其突变体对6种结合胆盐的底物特异性表明,7种突变体对不同的结合胆盐的水解活性有所改变。结果说明,Cys2和Thr264分别是BSH1催化TCA和GCA的关键残基,且对酶的催化活性的保持具有关键作用。其中,高保守性的氨基酸位点Cys2不是BSH1唯一的活性位点,而其他突变的氨基酸位点可能作为BSH1的结合位点参与了底物的结合,也可能影响了底物进入BSH1活性中心的通道或底物结合口袋的体积与形状,进而影响了BSH1对不同结合胆盐的水解活性。  相似文献   

16.
Lassila JK  Keeffe JR  Kast P  Mayo SL 《Biochemistry》2007,46(23):6883-6891
Secondary active-site residues in enzymes, including hydrophobic amino acids, may contribute to catalysis through critical interactions that position the reacting molecule, organize hydrogen-bonding residues, and define the electrostatic environment of the active site. To ascertain the tolerance of an important model enzyme to mutation of active-site residues that do not directly hydrogen bond with the reacting molecule, all 19 possible amino acid substitutions were investigated in six positions of the engineered chorismate mutase domain of the Escherichia coli chorismate mutase-prephenate dehydratase. The six secondary active-site residues were selected to clarify results of a previous test of computational enzyme design procedures. Five of the positions encode hydrophobic side chains in the wild-type enzyme, and one forms a helix N-capping interaction as well as a salt bridge with a catalytically essential residue. Each mutant was evaluated for its ability to complement an auxotrophic chorismate mutase deletion strain. Kinetic parameters and thermal stabilities were measured for variants with in vivo activity. Altogether, we find that the enzyme tolerated 34% of the 114 possible substitutions, with a few mutations leading to increases in the catalytic efficiency of the enzyme. The results show the importance of secondary amino acid residues in determining enzymatic activity, and they point to strengths and weaknesses in current computational enzyme design procedures.  相似文献   

17.
Glycine oxidase from Bacillus subtilis is a homotetrameric flavoprotein of great potential biotechnological use because it catalyzes the oxidative deamination of various amines and d-isomer of amino acids to yield the corresponding α-keto acids, ammonia/amine, and hydrogen peroxide. Glyphosate (N-phosphonomethylglycine), a broad spectrum herbicide, is an interesting synthetic amino acid: this compound inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, which is essential for the biosynthesis of aromatic amino acids in plants and certain bacteria. In recent years, transgenic crops resistant to glyphosate were mainly generated by overproducing the plant enzyme or by introducing a 5-enolpyruvylshikimate-3-phosphate synthase insensitive to this herbicide. In this work, we propose that the enzymatic oxidation of glyphosate could be an effective alternative to this important biotechnological process. To reach this goal, we used a rational design approach (together with site saturation mutagenesis) to generate a glycine oxidase variant more active on glyphosate than on the physiological substrate glycine. The glycine oxidase containing three point mutations (G51S/A54R/H244A) reaches an up to a 210-fold increase in catalytic efficiency and a 15,000-fold increase in the specificity constant (the kcat/Km ratio between glyphosate and glycine) as compared with wild-type glycine oxidase. The inspection of its three-dimensional structure shows that the α2-α3 loop (comprising residues 50–60 and containing two of the mutated residues) assumes a novel conformation and that the newly introduced residue Arg54 could be the key residue in stabilizing glyphosate binding and destabilizing glycine positioning in the binding site, thus increasing efficiency on the herbicide.  相似文献   

18.
L-Arabinose isomerase isolated from Geobacillus stearothermophilus (GSAI) was modified to improve its substrate specificity for D-galactose for the production of D-tagatose, a potential reduced-energy sweetener. Among the selected residues, mutation at residue 18 produced a mutant strain, H18T, which exhibited increased activity for D-galactose compared with the wild-type (WT) enzyme. Analysis of the substrate specificity of H18T showed a 45.4% improvement for D-galactose. Replacing histidine with threonine at residue 18 resulted in approximately 2.7-fold and 1.8-fold higher substrate binding and catalytic efficiency, respectively, for D-galactose. Further enhancement of the specific activity and catalytic efficiency of H18T for D-galactose by up to 2.7-fold and 4.3-fold, respectively, was achieved by adding borate during L-arabinose isomerase catalysis. Moreover, H18T showed thermostability and no destabilization was detected, which is promising for the industrial production of D-tagatose.  相似文献   

19.
AIM: To determine if and how a loop region in the peptide deformylase (PDF) of Chlamydia trachomatis regulates enzyme function.METHODS: Molecular dynamics simulation was used to study a structural model of the chlamydial PDF (cPDF) and predict the temperature factor per residue for the protein backbone atoms. Site-directed mutagenesis was performed to construct cPDF variants. Catalytic properties of the resulting variants were determined by an enzyme assay using formyl-Met-Ala-Ser as a substrate.RESULTS: In silico analysis predicted a significant increase in atomic motion in the DGELV sequence (residues 68-72) of a loop region in a cPDF mutant, which is resistant to PDF inhibitors due to two amino acid substitutions near the active site, as compared to wild-type cPDF. The D68R and D68R/E70R cPDF variants demonstrated significantly increased catalytic efficiency. The E70R mutant showed only slightly decreased efficiency. Although deletion of residues 68-72 resulted in a nearly threefold loss in substrate binding, this deficiency was compensated for by increased catalytic efficiency.CONCLUSION: Movement of the DGELV loop region is involved in a rate-limiting conformational change of the enzyme during catalysis. However, there is no stringent sequence requirement for this region for cPDF enzyme activity.  相似文献   

20.
ω-Transaminase (ω-TA) is the only naturally occurring enzyme allowing asymmetric amination of ketones for production of chiral amines. The active site of the enzyme was proposed to consist of two differently sized substrate binding pockets and the stringent steric constraint in the small pocket has presented a significant challenge to production of structurally diverse chiral amines. To provide a mechanistic understanding of how the (S)-specific ω-TA from Paracoccus denitrificans achieves the steric constraint in the small pocket, we developed a free energy analysis enabling quantification of individual contributions of binding and catalytic steps to changes in the total activation energy caused by structural differences in the substrate moiety that is to be accommodated by the small pocket. The analysis exploited kinetic and thermodynamic investigations using structurally similar substrates and the structural differences among substrates were regarded as probes to assess how much relative destabilizations of the reaction intermediates, i.e. the Michaelis complex and the transition state, were induced by the slight change of the substrate moiety inside the small pocket. We found that ≈80% of changes in the total activation energy resulted from changes in the enzyme-substrate binding energy, indicating that substrate selectivity in the small pocket is controlled predominantly by the binding step (KM) rather than the catalytic step (kcat). In addition, we examined the pH dependence of the kinetic parameters and the pH profiles of the KM and kcat values suggested that key active site residues involved in the binding and catalytic steps are decoupled. Taken together, these findings suggest that the active site residues forming the small pocket are mainly engaged in the binding step but not significantly involved in the catalytic step, which may provide insights into how to design a rational strategy for engineering of the small pocket to relieve the steric constraint toward bulky substituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号