首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a major root-knot nematode (RKN), Meloidogyne incognita causes serious losses in the yield of sweet potato (Ipomoea batatas L.). To successfully colonize the host plant, RKNs elicit changes of dramatic physiological and morphological features in the plants. The expression of several genes is regulated as the nematode establishes its feeding site. Therefore, in this study, we analyzed the proteomes in the fibrous roots of sweet potato plants by an infection of RKN to understand the effect of the infection on the plant root regions. This study revealed differences in proteomes of the RKN-resistant sweet potato cultivar Juhwangmi and RKN-sensitive cultivar Yulmi. During plant growth, Juhwangmi plants were shown to be more resistant to M. incognita than Yulmi plants. No M. incognita egg formation was observed in Juhwangmi plants, whereas 587 egg masses were formed in Yulmi plants. Differentially expressed 64 spots were confirmed by proteomic analysis using 2-D gel electrophoresis with three spots up-regulated in the two cultivars during RKN infection. Of these 64 protein spots, 20 were identified as belonging to such different functional categories as the defense response, cell structure, and energy metabolism. This study provides insight into the molecular and biochemical mechanics of the defense response and metabolism of sweet potato plant during nematode invasion. We anticipate that this study will also provide a molecular basis for useful crop breeding and the development of nematode-tolerant plants.  相似文献   

2.
Among fungi, species of the genus Pochonia Batista & O.M. Fonseca are considered as promising biological control agents with high potential to reduce root-knot nematode (RKN) and nematode populations. In this research we investigated Fars province of Iran for the presence of Pochonia spp., compared pathogenicity of different Pochonia species on eggs of RKN in vitro, and selected the best isolates for further studies. During 2004-2006, 128 soil samples of fields infested with cyst nematodes and 18 soil samples infested with RKN were collected from Fars province of Iran. In vitro pathogenicity tests were carried out on 36 isolates of Pochonia spp. obtained from CBS and IRAN culture collections. The seven best isolates of this experiment were selected for greenhouse test and their ability in controlling RKN was examined in natural soil. In greenhouse test fresh weight of plant’s tops and roots, gall index, nematode multiplication, second-stage juveniles’ population in soil, reproduction rate (Pf/Pi), proportion of infected eggs, control efficacy, root colonization and soil colony forming units were determined. In vitro pathogenicity of Pochonia on RKN eggs varied between 39% and 95% eggs infected. In greenhouse experiment, three isolates are promising for control of RKN and selected isolates are subjected to more extensive testing to determine their effectiveness in a range of conditions before being developed as commercial biological control agents.  相似文献   

3.
Sturz  A.V.  Kimpinski  J. 《Plant and Soil》2004,262(1-2):241-249
Single isolates of bacterial endophytes, isolated from the nematode antagonistic plant species African (Tagetes erecta L.) and French (T. patula L.) marigold, were introduced into potatoes (Solanum tuberosum L.). Several bacterial species possessed activity against root-lesion nematodes (Pratylenchus penetrans) in soils around the root zone of potatoes, namely: Microbacterium esteraromaticum, Tsukamurella paurometabolum, isolate TP6, Pseudomonas chlororaphis, Kocuria varians and K. kristinae. Of these, M. esteraromaticum and K. varians depressed the population densities of root-lesion nematodes without incurring any yield penalty (tuber wet weight). No significant differences were found in the total numbers of P. penetrans nematodes, rhabditid nematodes or `other' parasitic nematode species within the root tissues of bacterized potato plants compared to the unbacterized check. Overall, tuber fresh weights and tuber number were equal to or significantly lower (P\le0.05) in bacterized plants than their unbacterized counterpart. We conclude that endoroot bacteria from Tagetes spp. can play a role in nematode suppression through the attenuation of nematode proliferation. We propose that these nematode control properties are capable of transfer to other crops in a rotation as a beneficial `residual' microflora – a form of beneficial microbial allelopathy.  相似文献   

4.
The soil fumigant 1,3-dichloropropene gave good to excellent control of the Columbia root-knot nematode, Meloidogyne chitwoodi, on potato, Solanum tuberosum L. Nonfumigant nematicides (aldicarb, fensulfothion, carbofuran, ethoprop, and phenamiphos) were less effective in controlling M. chitwoodi, since the nematode affects tuber quality more than quantity. Soil temperature during the growing season affected parasitism of M. chitwoodi on potato more than did the initial nematode population. There were positive linear correlations between degree-days and infected and galled tubers (r = 0.92), degree-days and nematode generations (r = 1.00), and infected and galled tubers and nematode generations (r = 0.91). Differences in degree-days and resultant nematode reproduction caused great variability in infection and galling of potato tubers during four growing seasons: 89% for 1979, 0% for 1980, 13% for 1981, and 18% for 1982, giving positive linear correlation (r = 0.99) between final nematode soil population (Pf) and percentage of infected and galled tubers. Corresponding increases in the soil populations of second-stage juveniles (J2) during the growing season were 9,700% in 1979, 170% in 1980,552% in 1981, and 326% in 1982. There was a negative linear correlation (r = -0.87) between initial soil J2 populations (Pi) and the degree of parasitism (infection and galling) of potato tubers, Pi being of secondary importance to degree-days.  相似文献   

5.
The RMia gene, which confers resistance (R) to the root-knot nematodes (RKN) Meloidogyne incognita and Meloidogyne arenaria, has been shown to segregate in the peach rootstocks Nemared, Shalil, and Juseitou on LG2 of the Prunus map. Here, we report the high-resolution mapping of RMia in Nemared, using the peach genome sequence and 790 individuals from two segregating peach populations, the F2 cross Montclar x Nemared and the four-way cross [(Pamirskij × Rubira) × (Montclar × Nemared)], in which Montclar, Pamirskij, and Rubira are susceptible (S) to RKN. Among the simple sequence repeat (SSR) markers designed for an initial flanking region of more than 1 Mb, five SSR markers specific for Nemared were characterized. The genotyping and phenotyping of recombinant individuals in this interval narrowed the gene’s location to a 300 kb physical distance between the SSR markers AMPP117 and AMPP116. In this interval, SNP polymorphisms were recovered from 1-kb-sequenced DNA fragments that were selected at 20 kb intervals. Two SNP markers (A20SNP and SNP_APP91) were shown to flank the gene in a final 92-kb region, containing four candidate genes from the TIR–NBS–LRR family. Finally, we studied the polymorphism of three closely linked markers, SNP_APP92, SNP_APP91, and AMPP117, on 28 R or S accessions from diverse Prunus species or hybrids. These markers discriminated between most R and S accessions, suggesting that at least the R sources of Nemared, Nemaguard, and Shalil share a common resistant ancestor.  相似文献   

6.
7.
Root-knot nematodes (Meloidogyne spp.) are a significant problem in potato (Solanum tuberosum) production. There is no potato cultivar with Meloidogyne resistance, even though resistance genes have been identified in wild potato species and were introgressed into breeding lines. The objectives of this study were to generate stable transgenic potato lines in a cv. Russet Burbank background that carry an RNA interference (RNAi) transgene capable of silencing the 16D10 Meloidogyne effector gene, and test for resistance against some of the most important root-knot nematode species affecting potato, i.e., M. arenaria, M. chitwoodi, M. hapla, M. incognita, and M. javanica. At 35 days after inoculation (DAI), the number of egg masses per plant was significantly reduced by 65% to 97% (P < 0.05) in the RNAi line compared to wild type and empty vector controls. The largest reduction was observed in M. hapla, whereas the smallest reduction occurred in M. javanica. Likewise, the number of eggs per plant was significantly reduced by 66% to 87% in M. arenaria and M. hapla, respectively, compared to wild type and empty vector controls (P < 0.05). Plant-mediated RNAi silencing of the 16D10 effector gene resulted in significant resistance against all of the root-knot nematode species tested, whereas RMc1(blb), the only known Meloidogyne resistance gene in potato, did not have a broad resistance effect. Silencing of 16D10 did not interfere with the attraction of M. incognita second-stage juveniles to roots, nor did it reduce root invasion.  相似文献   

8.
Potato virus Y (PVY) is one of the most important viruses affecting potato (Solanum tuberosum) production. In this study, a novel hypersensitive response (HR) gene, Ny-2, conferring resistance to PVY was mapped on potato chromosome XI in cultivar Romula. In cultivars Albatros and Sekwana, the Ny-1 gene was mapped on chromosome IX. In cv. Romula, the local lesions appeared in leaves inoculated with the PVYN-Wi isolate at 20 and 28 °C; PVY systemic infections were only occasionally observed at the higher temperature. In cvs. Albatros and Sekwana, expression of the necrotic reaction to virus infection was temperature-dependent. PVYN-Wi was localized at 20 °C; at 28 °C, the systemic, symptomless infection was observed. We developed the B11.61600 marker co-segregating with Ny-2 and the S1d11 marker specific for the Ny-1 gene. Fifty potato cultivars were tested with markers B11.6 and S1d11 and marker SC895 linked to the Ny-1 gene in cv. Rywal. These results indicated the utility of these markers for marker-assisted selection of HR-like PVY resistance in potato breeding programs.  相似文献   

9.

Key message

We report a second major QTL for root-knot nematode resistance in the highly resistant Upland cotton line M-120RNR and show epistasis between two resistant QTLs with different mechanisms conferring resistance.

Abstract

In an earlier study, we identified a major QTL on Chromosome 11 associated with resistance to root-knot nematode in the M-120 RNR Upland cotton line (Gossypium hirsutum L.) of the Auburn 623 RNR source. Herein, we re-evaluated the genetics of the resistance to root-knot nematode in the M-120 RNR × Pima S-6 population by linkage mapping using recently published SSR markers. The QTL analysis detected two regions significantly associated with the resistance phenotype. In addition to the QTL previously identified on Chromosome 11 (qMi-C11), a major QTL was identified on Chromosome 14 (qMi-C14). The resistance locus on qMi-C11 originated from the Clevewilt parent, while the qMi-C14 locus originated from the other resistant parent, Mexico Wild Jack Jones. The qMi-C14 locus had logarithms of odds score of 17 and accounted for 45 % of the total phenotype variation in egg production. It was also associated with galling index, but the percent variation explained was only 6 %, suggesting that the qMi-C11 locus had a much stronger effect on root gall suppression than egg production, while the qMi-C14 locus had a stronger effect on egg production than galling. The results also suggest that the transgressive segregation observed in the development of Auburn 623 RNR was due to the pyramiding of at least two main effect QTLs as well as an additive-by-additive epistatic effects between the two resistant loci. The SSRs markers tightly linked to the qMi-C11 and qMi-C14 loci will greatly facilitate the improvement of RKN resistance in cotton via marker-assisted breeding.  相似文献   

10.
Plants have evolved several defense mechanisms, including resistance genes. Resistance to the root-knot nematode Meloidogyne incognita has been found in wild plant species. The molecular basis for this resistance has been best studied in the wild tomato Solanum peruvianum and it is based on a single dominant gene, Mi-1.2, which is found in a cluster of seven genes. This nematode attacks fiercely several crops, including potatoes. The genomic arrangement, number of copies, function and evolution of Mi-1 homologs in potatoes remain unknown. In this study, we analyzed partial genome sequences of the cultivated potato species S. tuberosum and S. phureja and identified 59 Mi-1 homologs. Mi-1 homologs in S. tuberosum seem to be arranged in clusters and located on chromosome 6 of the potato genome. Previous studies have suggested that Mi-1 genes in tomato evolved rapidly by frequent sequence exchanges among gene copies within the same cluster, losing orthologous relationships. In contrast, Mi-1 homologs from cultivated potato species (S. tuberosum and S. phureja) seem to have evolved by a birth-and-death process, in which genes evolve mostly by mutations and interallelic recombinations in addition to sequence exchanges.  相似文献   

11.
The purpose of this study was to determine the allelic state of the resistance gene H1 against the Ro1 and Ro4 pathotypes of the golden potato cyst nematode (Globodera rostochiensis) among Ukrainian and world potato (Solanum tuberosum ssp. tuberosum) cultivars. The allelic state of the TG689 marker was determined by PCR with DNA samples isolated from potato tubers and primers, one pair of which flanked the allele-specific region and the other one was used to control the DNA quality. Among 77 potato cultivars analyzed, the allele of the marker associated with the H1-type resistance was found in 74% of Ukrainian and 90% of foreign cultivars, although some of them proved to be susceptible to the potato cyst nematode in the field. The obtained data confirm the presence of H1 resistance against golden nematode pathotypes Ro1 and Ro4 among Ukrainian potato cultivars and the efficiency of the used marker within the accuracy that has been declared by its authors.  相似文献   

12.
Pathogenic effect of root-knot nematode Meloidogyne arenaria was studied on balsam (Impatiens balsamina) by inoculating the different inoculum levels of root-knot nematode. It was observed that the inoculum levels up to 2000 J2 of root-knot nematode did not show significant reduction in plant growth characters as compared to control. Although the significant reduction in plant growth characters was recorded at and above 3000 J2 of root-knot nematode, progressive increase in the host infestation as indicated by the number of galls as well as the population of root-knot nematode was recorded with an increase in the level of inoculum. However, the rate of nematode multiplication was reduced with the increase in the inoculum density of M. arenaria. It can be concluded from these results that the damaging threshold level of M. arenaria on balsam was found to be as 3000 J2/plant.  相似文献   

13.
Group A Kunitz-type protease inhibitors (KPI-A) are involved in protecting potato plants from microorganisms and pests. While the nucleotide sequence is known for many KPI-A genes of various potato cultivars (Solanum tuberosum subsp. tuberosum) and a few genes of tomato (Solanum lycopersicum), there are no data on their allelic diversity in other species of the genus Solanum. KPI-A fragments were cloned, amplified, sequenced, and analyzed from plants of the subgenera Potatoe sect. Petota (five genes from S. tuberosum ssp. andigenum and two genes from S. stoloniferum) and Solanum (five genes from S. nugrum), and their consensus sequences were established. An identity of 97–100% was observed among these sequences and the KPI-A sequences of the sections Petota (cultivated potato Solanum tuberosum ssp. tuberosum) and Etuberosum (S. palustre) The interspecific variation of KPI-A did not exceed its intraspecific variation for all but one species (S. lycopersicum). The distribution of highly variable and conserved sequences in the mature protein-coding region was the same in all of the above species. The same primers failed to amplify the homologous genes from Solanum dulcamara, S. lycopersicum, and Mandragora officinarum. Phylogenetic analysis of the KPI-A sequences showed that S. lycopersicum clustered separately from all of the other species examined, that S. nigrum clustered together with species of the sections Etuberosum and Petota, and that these species produced no species-specific clusters. Although S. nigrum is resistant to all known races of the oomycete Phytophthora infestans, which causes one of the most economically important diseases of Solanaceae, the amino acid sequences encoded by S. nigrum KPI-A differed slightly, if at all, from their counterparts of cultivated potato, which is susceptible to P. infestans infection.  相似文献   

14.
Esteya vermicola, an endoparasitic fungus of Bursaphelenchus xylophilus, the pinewood nematode (PWN), exhibits great potential as a biological control agent against this nematode. E. vermicola produces blastospores in liquid media and aerial conidia on solid media. The agent was mass-produced using two kinds of culture media: S (50 % wheat bran and 50 % pine wood powder), L (0.5 g wheat bran and 0.5 g pinewood powder in 200 ml of potato dextrose broth), and two controls: SC (potato dextrose agar), LC (potato dextrose broth). Yields, multiple stress tolerance, storage life, new generation conidial number, and PWN mortality rates of the spores were measured in each of these four media and compared. The spore yields, new generation conidial number, and nematode mortality rates of blastospores were higher than those of conidia. Nevertheless, the conidia had a higher germination rate than the blastospores during the storage process and multiple stress treatments. Considering the number of spores surviving from the process of the storage and multiple stress treatments per unit of mass media, the blastospores from L survived most. Comprehensive analysis indicates that the L culture medium is the most optimal medium for mass production relatively.  相似文献   

15.
Among plant-parasitic nematodes, the root-knot nematodes (RKNs) of the Meloidogyne spp. are the most economically important genus. RKN are root parasitic worms able to infect nearly all crop species and have a wide geographic distribution. During infection, RKNs establish and maintain an intimate relationship with the host plant. This includes the creation of a specialized nutritional structure composed of multinucleate and hypertrophied giant cells, which result from the redifferentiation of vascular root cells. Giant cells constitute the sole source of nutrients for the nematode and are essential for growth and reproduction. Hyperplasia of surrounding root cells leads to the formation of the gall or root-knot, an easily recognized symptom of plant infection by RKNs. Secreted effectors produced in nematode salivary glands and injected into plant cells through a specialized feeding structure called the stylet play a critical role in the formation of giant cells. Here, we describe the complex interactions between RKNs and their host plants. We highlight progress in understanding host plant responses, focusing on how RKNs manipulate key plant processes and functions, including cell cycle, defence, hormones, cellular scaffold, metabolism and transport.  相似文献   

16.
In-vitro methods were developed to test fungi for production of metabolites affecting nematode egg hatch and mobility of second-stage juveniles. Separate assays were developed for two nematodes: root-knot nematode (Meloidogyne incognita) and soybean cyst nematode (Heterodera glycines). For egg hatch to be successfully assayed, eggs must first be surface-disinfested to avoid the confounding effects of incidental microbial growth facilitated by the fungal culture medium. Sodium hypochlorite was more effective than chlorhexidine diacetate or formaldehyde solutions at surface-disinfesting soybean cyst nematode eggs from greenhouse cultures. Subsequent rinsing with sodium thiosulfate to remove residual chlorine from disinfested eggs did not improve either soybean cyst nematode hatch or juvenile mobility. Soybean cyst nematode hatch in all culture media was lower than in water. Sodium hypochlorite was also used to surface-disinfest root-knot nematode eggs. In contrast to soybean cyst nematode hatch, root-knot nematode hatch was higher in potato dextrose broth medium than in water. Broth of the fungus Fusarium equiseti inhibited root-knot nematode egg hatch and was investigated in more detail. Broth extract and its chemical fractions not only inhibited egg hatch but also immobilized second-stage juveniles that did hatch, confirming that the fungus secretes nematode-antagonistic metabolites.  相似文献   

17.
The Mi gene in tomato confers resistance to Meloidogyne javanica, M. incognita, and M. arenaria, the most common tropical root-knot nematode (RKN) species found in Florida. Fusarium wilt (Fol) is another major problem in Florida tomatoes which may interact with RKN and cause more plant damage. To study the interactions between RKN, Fusarium, and Mi in tomato, two greenhouse experiments were conducted. Both experiments used different isolines (with and without I-3 and Mi genes) of the tomato cultivar Tasti Lee®. In the first experiment, all four isolines were subjected to two levels of RKN (~10,000 eggs/pot and no eggs) and two levels of Fol (1000 cc soil with 1,000 cfu/g at planting and no Fol), both applied at planting. In the second experiment, the two isolines without I-3 were exposed to the same two levels of RKN as described above and three levels of Fol (50 ml Fol with 1×106 cfu/m at planting, at 10 DAT, and no Fol). Fol reduced root-knot infection and reproduction when both Fol and RKN were inoculated at planting but not when Fol was inoculated 10 days later. Plant damage from Fol was exacerbated in the presence of RKN, especially when both pathogens were present at planting. Isolines with I-3 grew better in Fol-inoculated soil but had no effect when Fol and RKN were both present. Isolines with Mi gene reduced RKN infection and reproduction but did not affect plant damage caused by Fol. In summary, while RKN reproduction was reduced in the presence of Fol, the overall plant damage was more severe when both pathogens were present.  相似文献   

18.
Simultaneous infestation with root-knot nematodes (RKN) and Fusarium oxysporum f. sp. lycopersici (FOL) leads to formation of a disease complex that increases crop losses than effect of either RKN or FOL. In this study a management programme involving plant resistance, biological control agents, and neem was carried out to manage RKN and fusarium wilt disease complex. The biological control agents were Purpureocillium lilacinum (PL) and Trichoderma harzianum (TH) while the RKN was Meloidogyne javanica. In vitro dual culture plates were set up to test the interaction of biological control agents and FOL. Greenhouse experiments were conducted using two tomato cultivars Rambo F1 and Prostar F1. The treatments were; PL, TH, PL–TH, neem, PL neem, TH neem, and PL–TH neem. Each treatment was replicated four times and the treatments set up in a randomised complete block design in the greenhouse. Inhibition of FOL mycelial growth by TH and PL was 51.9%, and 44% respectively by the ninth day in vitro culture plates. In the cultivar, Prostar F1, the treatments PL–TH, PL, and TH in the presence or absence of neem had a FOL disease severity score significantly lower than the untreated control. Host resistance sufficed to prevent infection of Rambo F1 with FOL. The treatments PL–TH, PL and TH reduced FOL propagules and M. javanica juveniles in the roots and performed even better when combined with neem in both tomato cultivars. Therefore, a host that is resistant combined with biological control agents and organic amendments can be used in the management of RKN and FOL in tomato production.  相似文献   

19.
We have developed a simple PCR assay protocol for detection of the root-knot nematode (RKN) species Meloidogyne arenaria, M. incognita, and M. javanica extracted from soil. Nematodes are extracted from soil using Baermann funnels and centrifugal flotation. The nematode-containing fraction is then digested with proteinase K, and a PCR assay is carried out with primers specific for this group of RKN and with universal primers spanning the ITS of rRNA genes. The presence of RKN J2 can be detected among large numbers of other plant-parasitic and free-living nematodes. The procedure was tested with several soil types and crops from different locations and was found to be sensitive and accurate. Analysis of unknowns and spiked soil samples indicated that detection sensitivity was the same as or higher than by microscopic examination.  相似文献   

20.
Sancassania (Caloglyphus) berlesei (Michael) is a cosmopolitan and free-living mite that inhabits soil as well as laboratory colonies of insects and fungi and may have a role as a biocontrol agent of nematodes. In this study, we investigated the effects of temperature on the development, reproduction, and food consumption of S. berlesei fed egg masses of root-knot nematodes, Meloidogyne spp., an important group of agricultural pests. Mites were reared at 20, 25 or 30 °C in the dark. The mites could feed on the nematode egg masses, and their developmental time decreased at higher temperatures. Time from the egg to adult was similar in females and males reared at the same temperature. Adult females lived longer than males at 25 °C, but not at 20 or 30 °C. Generally, females showed a higher rate of food consumption than males. Females laid the largest number of eggs at 20 and 25 °C (199.7 and 189.8 eggs/female, respectively), but the intrinsic rate of natural increase was highest at 30 °C (r m = 0.29). In comparing our data with previous reports, we noted that S. berlesei that fed on egg masses of root-knot nematodes showed a longer developmental time and a lower reproductive rate than Sancassania mites that fed on other diets. Nonetheless, the relatively high value of r m (e.g., at 25 and 30 °C) suggests that this mite may have certain advantages as a biocontrol agent of root-knot nematodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号