首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The C4 speciesFlaveria trinervia is obviously better adapted to saline environments than the C3 speciesF. pringlei. Treatment with 100 mM NaCl diminished crop growth rate inF. pringlei by 38% but not inF. trinervia. Under saline conditions, more assimilates were invested in leaf growth inF. trinervia but not inF. pringlei. Electrolyte concentration inF. trinervia in control and salt treated plants is lower than inF. pringlei. Fluorescence data do not indicate a damage of PS 2 charge separation in both species. Whether the C4 photosynthetic pathway inF. trinervia is responsible for the improved salt tolerance compared toF. pringlei remains an open question.  相似文献   

2.
Responses of wheat (Triticum aestivum L.) to various concentrations of NaCl and levels of drought were followed. With the rise of NaCl or drought, or NaCl and drought together, growth was retarded. The water content of shoots and roots was mostly unchanged. The chlorophyll and carotenoid contents were increased in plants subjected to salinity or drought or both. Only high salinity level induced a considerable decrease in net photosynthetic rate (PN) and dark respiration rate (RD). PN and RD were decreased with the decrease of soil moisture content. The content of Na+ in the shoots and roots of wheat plants increased with increasing salinity or decreasing soil moisture content or both treatments. Considerable variations in the content of K+, Ca2+ or Mg2+ were induced by the NaCl, drought or both treatments.  相似文献   

3.
4.
5.
利用ISSR标记对新疆白梭梭居群的遗传多样性分析   总被引:2,自引:1,他引:2  
利用ISSR分子标记对新疆白梭梭4个居群,105个个体进行了遗传多样性的比较分析。在供试材料中,11个引物共扩增出171个多态位点,多态位点百分率为84.85%,4个居群的多态位点百分率差异在33.92%.40.35%之间。Shannon多样性指数(I)为0.3518,物种水平的Nei基因多样度(h)为0.3482。遗传变异分析表明,物种水平的居群间遗传分化系数Gst为0.6238,居群间的基因流Nm为0.3016。遗传分析表明吐鲁番居群和甘家湖居群的遗传距离最近。  相似文献   

6.
Complementary to our previous project on the molecular phylogeny of Camphorosmeae, the leaf anatomy of ca. 35 species including all non-Australian and selected Australian species was studied by use of light microscopy. Nine anatomical leaf types were described, compared to previous classifications, and discussed with regard to their putative evolution on the background of phylogenetic trees. Particular emphasis was given to the relationships between the C3 and C4 leaf types: Chenolea type (C3), Eokochia type (C3), Neokochia type (C3), Sedobassia type (C3/C4 intermediate), Bassia prostrata type (C4), B. muricata type (C4), B. eriantha type, B. lasiantha type (C4), Camphorosma type (C4). The main results and conclusions were: (1) Two unusual new C3 leaf types: Chenolea with microfenestrate chlorenchyma, Eokochia with unique complex vascular bundles; (2) Sedobassia interpreted as anatomically C3/C4 intermediate by kranz-like bundle sheath cells is the first C3/C4 intermediate in Camphorosmeae and found in a derived position; (3) Neokochia type detected as the likely starting point for all four C4 leaf types and for the C3/C4 intermediate; (4) hypodermis of C4 types originated from outermost chlorenchyma layer of C3 types and lost multiple times during further evolution; (5) atriplicoid Bassia. lasiantha type without water storage tissue evolved from kochioid B. muricata type; (6) two independent gains of C4 photosynthesis, one in Bassia and one in Camphorosma; (7) depending on the lineage, leaf architecture remains comparatively stable (Australian Camphorosmeae) or shows an unexpected plasticity (Bassia scoparia group).  相似文献   

7.
Abstract Lentil seeds were sown in water and with different concentrations of polyethylene glycol (PEG) 4000 or NaCl. Radicle emergence and growth were delayed by these substances. In cotyledons under stress no variations in solutes occurred, whereas in embryonic axes an accumulation of soluble sugars was observed. The major constituents of the soluble carbohydrates were sucrose, galactose and mannose. Glycosidase activities were not significantly affected in PEG- or NaCl-germinatcd seeds, except axis α-galactosidase, whose activity during axis growth was higher under stress. Water and salt stress did not have a marked effect on carbohydrate metabolism in intact seedlings. The rate of release of 14C from [6-14C]-glucose was similar in the stressed seeds and in the control seeds.  相似文献   

8.
Ionic and osmotic effects of salinity on the ultrastructure of chloroplasts in salt-treated rice seedlings were investigated. After rice seedlings were grown in hydroponic culture for three weeks, they were treated with NaCl and polyethylene glycol (PEG) 4000 both at a water potential of -1.0 MPa for 3 days. The most notable difference in ultrastructural change between NaCl and PEG treatment was observed in the damage in chloroplast membranes. NaCl induced swelling of thylakoids and caused only a slight destruction of the chloroplast envelope. PEG caused severe destruction of the chloroplast envelope compared with NaCl, however thylakoids did not swell. Our observations suggested that in salt-treated rice plants, the ionic effects induced swelling of thylakoids and the osmotic effects caused the destruction of chloroplast envelope.  相似文献   

9.
Thirty-day-old seedlings of two jute species (Corchorus capsularis L. cv. JRC 212 and C. olitorius L. cv. JRO 632) were subjected to short-term salinity stress (160 and 200 mM NaCl for 1 and 2 d). Relative water content, leaf water potential, water uptake, transpiration rate, water retention, stomatal conductance, net photosynthetic rate and water use efficiency of both jute species decreased due to salinity stress. The decrease was greater in C. olitorius than in C. capsularis and with higher magnitude of stress. Greater accumulation of Na+ and Cl- and a lower ratio of K+/Na+ in the root and shoot of C. olitorius compared with C. capsularis were also recorded. Pretreatment of seedlings with kinetin (0.09 mM), glutamic acid (4 mM) and calcium nitrate (5 mM) for 24 h significantly improved net photosynthesis, transpiration and water use efficiency of salinity stressed plants, the effect being more marked in C. olitorius. Among the pre-treatment chemicals, calcium nitrate was most effective. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Most species of the genus Salsola (Chenopodiaceae) that have been examined exhibit C4 photosynthesis in leaves. Four Salsola species from Central Asia were investigated in this study to determine the structural and functional relationships in photosynthesis of cotyledons compared to leaves, using anatomical (Kranz versus non-Kranz anatomy, chloroplast ultrastructure) and biochemical (activities of photosynthetic enzymes of the C3 and C4 pathways, 14C labeling of primary photosynthesis products and 13C/12C carbon isotope fractionation) criteria. The species included S. paulsenii from section Salsola, S. richteri from section Coccosalsola, S. laricina from section Caroxylon, and S. gemmascens from section Malpigipila. The results show that all four species have a C4 type of photosynthesis in leaves with a Salsoloid type Kranz anatomy, whereas both C3 and C4 types of photosynthesis were found in cotyledons. S. paulsenii and S. richteri have NADP- (NADP-ME) C4 type biochemistry with Salsoloid Kranz anatomy in both leaves and cotyledons. In S. laricina, both cotyledons and leaves have NAD-malic enzyme (NAD-ME) C4 type photosynthesis; however, while the leaves have Salsoloid type Kranz anatomy, cotyledons have Atriplicoid type Kranz anatomy. In S. gemmascens, cotyledons exhibit C3 type photosynthesis, while leaves perform NAD-ME type photosynthesis. Since the four species studied belong to different Salsola sections, this suggests that differences in photosynthetic types of leaves and cotyledons may be used as a basis or studies of the origin and evolution of C4 photosynthesis in the family Chenopodiaceae.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

11.
Kranz anatomy, with its separation of elements of the C4 pathway between two cells, has been an accepted criterion for function of C4 photosynthesis in terrestrial plants. However, Bienertia cycloptera (Chenopodiaceae), which grows in salty depressions of Central Asian semi-deserts, has unusual chlorenchyma, lacks Kranz anatomy, but has photosynthetic features of C4 plants. Its photosynthetic response to varying CO2 and O2 is typical of C4 plants having Kranz anatomy. Lack of night-time CO2 fixation indicates it is not acquiring carbon by Crassulacean acid metabolism. This species exhibits an independent, novel solution to function of the C4 mechanism through spatial compartmentation of dimorphic chloroplasts, other organelles and photosynthetic enzymes in distinct positions within a single chlorenchyma cell. The chlorenchyma cells have a large, spherical central cytoplasmic compartment interconnected by cytoplasmic channels through the vacuole to the peripheral cytoplasm. This compartment is filled with mitochondria and granal chloroplasts, while the peripheral cytoplasm apparently lacks mitochondria and has grana-deficient chloroplasts. Immunolocalization studies show enzymes compartmentalized selectively in the CC compartment, including Rubisco in chloroplasts, and NAD-malic enzyme and glycine decarboxylase in mitochondria, whereas pyruvate, Pi dikinase of the C4 cycle is localized selectively in peripheral chloroplasts. Phosphoenolpyruvate carboxylase, a cytosolic C4 cycle enzyme, is enriched in the peripheral cytoplasm. Our results show Bienertia utilizes strict compartmentation of organelles and enzymes within a single cell to effectively mimic the spatial separation of Kranz anatomy, allowing it to function as a C4 plant having suppressed photorespiration; this raises interesting questions about evolution of C4 mechanisms.  相似文献   

12.
The quantitative anatomy of developing cotyledons of NAD-malic enzyme species Salsola incanescens and NADP-malic enzyme species S. paulsenii (Chenopodiaceae) was studied. S. incanescens belongs to the group of species with foliar type of seedling development characterized by slowly growing cotyledons and a rosette form at juvenility. The rosette is the consequence of fast leaf formation, which was correlated with a low rate of leaf growth. S. paulsenii belongs to the group with the cotyledonous type of seedling development. A high growth rate of cotyledons, slow leaf formation, and absence of the rosette characterize this type. Slow leaf formation was correlated with a high rate of leaf growth. The Kranz–anatomy in cotyledons of S. incanescens (atriplicoid type) and S. paulsenii (salsoloid type) determines the duration of cotyledon development proceeding for 15 days after seed germination. The rate of growth changes during the developmental period was correlated with the type of seedling development. Cotyledons of a foliar species S. incanescens exhibit 2 to 5 times slower growth changes in cotyledon area, width, thickness, volume of mesophyll and bundle sheath cells, and number of chloroplasts per bundle sheath cell than the cotyledons of a cotyledonous species S. paulsenii. During cotyledon development in both species, the number of chloroplasts per mesophyll cell remained unchanged, and developmental changes in the bundle sheath occurred at higher rate than in mesophyll cells. Thus, these two indices seem to be independent of the type of Kranz–anatomy. The presence of atriplicoid type cotyledons in the species with salsoloid structure of true leaves might indicate a close genetic relationship between these two patterns of Kranz-anatomy.  相似文献   

13.
The effects of mild osmotic stress conditions on aquaporin-mediated water transport are not well understood. In the present study, mild osmotic stress treatments with 20 and 50 g L?1 polyethylene glycol 6000 (PEG) in Hoagland’s mineral solution were applied for 3 weeks under controlled environmental conditions to transgenic Populus tremula × Populus alba plants constitutively over-expressing a Populus PIP2;5 aquaporin and compared with the wild-type plants. The PEG treatments resulted in growth reductions and triggered changes in net photosynthesis, transpiration, stomatal conductance and root hydraulic conductivity in the wild-type plants. However, height growth, leaf area, gas exchange, and root hydraulic conductivity were less affected by the PEG treatments in PIP2;5-over-expressing poplar lines. These results suggest that water transport across the PIP2;5 aquaporin is an important process contributing to tolerance of mild osmotic stress in poplar. Greater membrane abundance of PIP2;5 was most likely the factor that was responsible for higher root hydraulic conductivity leading to improved plant water flux and, consequently, greater gas exchange and growth rates under mild osmotic stress conditions. The results also provide evidence for the functional significance of PIP2;5 aquaporin in water transport and its strong link to growth processes in poplar.  相似文献   

14.
Salsola arbusculiformis is identified as a C3–C4intermediatespecies based on anatomical, biochemical and physiological characteristics.This is the first report of a naturally occurring intermediatespecies in the Chenopodiaceae, the family with the largest numberof C4species amongst the dicots. In the genus Salsola, mostspecies have Salsoloid anatomy with Kranz type bundle sheathcells and C4photosynthesis, while a few species have Sympegmoidanatomy and were found to have non-Kranz type bundle sheathcells and C3photosynthesis. In the cylindrical leaves of C4Salsolawith Salsoloid type anatomy, there is a continuous layer ofdistinct, chlorenchymatous Kranz type bundle sheath cells surroundedby a single layer of mesophyll cells; whereas species with Sympegmoidtype anatomy have an indistinct bundle sheath with few chloroplastsand multiple layers of chlorenchymatous mesophyll cells. However,S. arbusculiformis has intermediate anatomical features. Whileit has two-to-three layers of mesophyll cells, characteristicof Sympegmoid anatomy, it has distinctive, Kranz-like bundlesheath cells with numerous chloroplasts and mitochondria. Measurementsof its CO2compensation point and CO2response of photosynthesisshow S. arbusculiformis functions as an intermediate specieswith reduced levels of photorespiration. The primary means ofreducing photorespiration is suggested to be by refixing photorespiredCO2in bundle sheath cells, since analysis of photosyntheticenzymes (activity and immunolocalization) and14CO2labellingof initial fixation products suggests minimal operation of aC4cycle. Copyright 2001 Annals of Botany Company Immunolocalization, photosynthetic enzymes, C3–C4intermediate, C4-plants, leaf anatomy, Chenopodiaceae, Salsola arbusculiformis  相似文献   

15.
Effect of increasing concentrations of two of the polyols, ethylene glycol (EG) and polyethylene glycol (PEG), was studied by near and far circular dichroism (CD), fluorescence emission spectroscopy, and binding of hydrophobic dye, 1-anilino-8-naphthalene sulfonic acid (ANS). Far-UV CD spectra show the transition of acid-unfolded trypsinogen from an unordered state to an intermediate state having ordered secondary structure. Interestingly, near-UV CD spectra show some amounts of stabilizing effect on the tertiary structure of the protein also. Tryptophan fluorescence studies indicate the change in the environment of the tryptophan residues on addition of EG and PEG. Maximum ANS binding occurs in presence of 80% EG and 90% PEG (v/v), suggesting the presence of an intermediate or molten globule-like state at high concentrations of the two polyols.  相似文献   

16.
Zhibin Wen  Mingli Zhang 《Flora》2011,206(8):720-730
To examine the anatomical types in Salsoleae s.l., and evaluate carbon isotope fractionation values for identifying the respective photosynthetic pathway, a total of 34 species representing 12 genera of Salsoleae s.l. in China were examined using light microscopy and carbon 13C/12C isotope fractionation. There are nine leaf anatomical types, namely, Sympegmoid (Sympegmoid type, Sympegmoid type II), Salsoloid with hypodermis (Salsola soda type, Salsola soda type II, Nanophyton type II), Salsoloid without hypodermis (Salsola kali type, Salsola kali type II, Nanophyton type, Climacoptera type II). Salsola soda type and Salsola soda type II are found in the assimilating shoots. Two new subtypes, Salsola soda type II and Nanophyton type II are reported. Anabasis brevifolia, A. eriopoda, A. elatior, A. truncata and A. salsa are of the Salsola soda type II, with a distinctive two-layered epidermis cells. Horaninowia ulicina is of the Nanophyton type II with hypodermis which distinguished from Nanophyton type; Both, Salsola kali type and Climacoptera type II exist in Climacoptera. The Climacoptera type II is distinguished from Climacoptera type by an adaxially interrupted Kranz layer. Salsola collina, S. zaidamica, S. praecox, S. pellucida and S. ruthenica in Salsola sect. Salsola have the Salsola kali type II. The Salsola kali type differs from Salsola kali type II having the palisade and Kranz cells interrupted by longitudinal collenchymatic ridges. Although carbon isotope fractionation data alone are already useful tools to identify photosynthesis, their determination in combination with other approaches, such as anatomical studies are necessary in order to render a structuring of all possibilities evolved among C4 type Chenopodiaceae.  相似文献   

17.
The halophytic genus Suaeda (Chenopodiaceae) includes species with the C3 and C4 photosynthetic pathways. North American species of this genus were investigated to determine whether C3 and C4 leaf anatomy are consistent within the two sections of Suaeda, Chenopodina and Limbogermen, present on this continent. All species from section Chenopodina were found to possess C3 anatomy, whereas all species from section Limbogermen were found to be C4 species. Characteristics of leaf anatomy and chloroplast ultrastructure are similar to those reported from C3 and C4 species, respectively, from the Eastern Hemisphere. All species from section Limbogermen have the suaedoid type of leaf anatomy, characterized by differentiation of the mesophyll into palisade parenchyma and a chlorenchymatous sheath surrounding central water-storage tissue, as well as leaf carbon isotope ratios (_13C) of above -20. All species from section Chenopodina have austrobassioid leaf anatomy without a chlorenchymatous sheath and _13C values of below -20. According to our literature review, the photosynthetic pathway has now been reported for about half (44) of the Suaeda species worldwide. The C3 and C4 photosynthetic syndromes are with few exceptions distributed along sectional or subsectional lines. These findings throw new light on the infrageneric taxonomy of this genus.  相似文献   

18.
Liposomes have been prepared by the vesicle extrusion method (VETs) from mixtures of dipalmitoylphosphatidylcholine (DPPC), phosphatidylinositol (PI) and dipalmitoylphosphatidylethanolamine with covalently linked poly(ethylene glycol) molecular mass 5000 and 2000 (DPPE-PEG 5000 and DPPE-PEG 2000) covering a range of 0-7.5 mole%. The encapsulation of D-glucose has been studied and found to be markedly dependent on the mole% DPPE-PEG. The permeability of the liposomes to D-glucose has been measured both as a function of temperature and liposome composition. The permeability coefficients for D-glucose increase with mole% DPPE-PEG 5000 and with temperature over the range 25-50 degrees C. The activation energies for glucose permeability range from 90 to 23 kJ mol(-1). The decrease in activation energy with increasing temperature is attributed to an increasing number of bilayer defects as the liposome content of PEG-grafted lipid is increased. The dependence of D-glucose encapsulation as a function of PEG-grafted lipid content is discussed in terms of the conformation of the PEG molecules on the inner surface of the bilayer. For liposomes containing DPPE-PEG 5000 the relative percentage encapsulation of glucose, assuming that the PEG surface layer excludes glucose, is comparable to that predicted from the mushroom and brush conformational models.  相似文献   

19.
In the presence of sodium chloride (NaCl), DNA fragments can be size‐selectively separated by varying the final concentration of polyethylene glycol (PEG). This separation strategy in combination with the use of paramagnetic particles provides a valuable platform for achieving the desired DNA size interval, which is important in automated library preparation for high‐throughput DNA sequencing. Here, we report the establishment of recovery spectra of DNA fragments that enable the determination of suitable NaCl and PEG concentrations for size‐selective separation. Firstly, at a given NaCl concentration, the recovery equation was obtained by fitting the DNA recovery ratios versus the PEG concentrations using the logistic function to determine the required parameters. Secondly, the slope function of the recovery equation was achieved by deducing its first derivative. Therefore, the recovery spectrum can be generated using the slope function based on those parameters. According to the recovery spectra of different length DNA fragments, suitable NaCl and PEG concentrations can be determined, respectively, by calculating their resolution values and recovery ratios. The strategy was effectively applied to the size‐selective separation of 532‐, 400‐, and 307‐bp fragments at the selected reagent concentrations with recoveries of 96.9, 64.7, and 85.9%, respectively. Our method enables good predictions of NaCl and PEG concentrations for size‐selective DNA separation.  相似文献   

20.
Young olive plants (Olea europaea L.) were grown either in hydroponic or soil culture in a glasshouse over two growing seasons. Plants were exposed to NaCl concentrations between 0 and 200 mM for 34–35 days followed by 30–34 days of relief from stress to determine the effect of salinity on gas exchange of two cultivars ('Frantoio' and 'Leccino') differing in salt-exclusion capacity. Salinity stress brought about a reduction in net CO2 assimilation and stomatal conductance in both cultivars, but the effect was more pronounced in the salt tolerant 'Frantoio' than in the salt-sensitive 'Leccino' cultivar. Therefore, gas exchange parameters may be misleading if used to evaluate the salt tolerance of olive genotypes. Recovery in gas exchange parameters during relief from stress was slower in the salt sensitive cultivar. In general, the decline in assimilation reflected the salt-induced reduction in stomatal conductance, but a marked effect on carboxylation efficiency and CO2 compensation point was measured in plants treated with 200 mM NaCl for four weeks. The cultivar 'Frantoio' showed a 50% reduction in assimilation and stomatal conductance at 146 and 78 mM leaf Na+ concentration (tissue water molar basis) respectively, whereas the corresponding 50% thresholds for the cultivar 'Leccino' were at 275 and 264 mM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号