首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gamma-aminobutyric acid (GABA) and delta-aminolevulinic acid (ALA), playing important roles in agriculture, medicine and other fields, are multifunctional non-protein amino acids with similar and comparable properties and biosynthesis pathways. Recently, microbial synthesis has become an inevitable trend to produce GABA and ALA due to its green and sustainable characteristics. In addition, the development of metabolic engineering and synthetic biology has continuously accelerated and increased the GABA and ALA yield in microorganisms. Here, focusing on the current trends in metabolic engineering strategies for microbial synthesis of GABA and ALA, we analysed and compared the efficiency of various metabolic strategies in detail. Moreover, we provide the insights to meet challenges of realizing industrially competitive strains and highlight the future perspectives of GABA and ALA production.  相似文献   

2.
L-苯丙氨酸 (L-Phe) 是一种重要的必需氨基酸,广泛应用于食品、饲料添加剂以及医药等领域.L-Phe主要由化学合成法、酶法和微生物发酵法等3种方法来生产.其中,微生物发酵法由于具有原料廉价易得、环境污染较小、产物纯度高等优点成为目前国内外工业化生产L-Phe的主要方法.本文主要以大肠杆菌为例对L-Phe生物合成途...  相似文献   

3.
In Saccharomyces cerevisiae, as in all eukaryotic organisms, delta-aminolevulinic acid (ALA) is a precursor of porphyrin biosynthesis, a very finely regulated pathway. ALA enters yeast cells through the gamma-aminobutyric acid (GABA) permease Uga4. The incorporation of a metabolite into the cells may be a limiting step for its intracellular metabolization. To determine the relationship between ALA transport and ALA metabolization, ALA incorporation was measured in yeast mutant strains deficient in the delta-aminolevulinic acid-synthase, uroporphyrinogen III decarboxylase, and ferrochelatase, three enzymes involved in porphyrin biosynthesis. Results presented here showed that neither intracellular ALA nor uroporphyrin or protoporphyrin regulates ALA incorporation, indicating that ALA uptake and its subsequent metabolization are not related to each other. Thus a key metabolite as it is, ALA does not have a transport system regulated according to its role.  相似文献   

4.
5-Aminolevulinic acid (ALA) synthesis has been shown to be the rate limiting step of tetrapyrrole biosynthesis. Glutamyl-tRNA reductase (GluTR) is the first committed enzyme of plant ALA synthesis and is controlled by interacting regulators, such as heme and the FLU protein. Induced inactivation of the HEMA1 gene encoding GluTR by RNAi expression in tobacco resulted in a reduced activity of Mg chelatase and Fe chelatase indicating a feed-forward regulatory mechanism that links ALA synthesis posttranslationally with late enzymes of tetrapyrrole biosynthesis (Hedtke et al., 2007). Here, the regulatory impact of GluTR was investigated by overexpression of AtHEMA1 in Arabidopsis and tobacco plants. Light-dependent ALA synthesis cannot benefit from an up to 7-fold induced expression of GluTR in Arabidopsis. While constitutive AtHEMA1 overexpression in tobacco stimulates ALA synthesis by 50-90% during light-exposed growth of seedlings, no increase in heme and chlorophyll contents is observed. HEMA1 overexpression in etiolated and dark-grown Arabidopsis and tobacco seedlings leads to additional accumulation of protochlorophyllide. As excessive accumulation of GluTR does not correlate with increased ALA formation, it is hypothesized that ALA synthesis is additionally limited by other effectors that balance the allocation of ALA with the activity of enzymes of chlorophyll and heme biosynthesis.  相似文献   

5.
5-Aminolevulinic acid (5-ALA) is the precursor for the biosynthesis of tetrapyrrole compounds and has broad applications in the medical and agricultural fields. Because of the disadvantages of chemical synthesis methods, microbial production of 5-ALA has drawn intensive attention and has been regarded as an alternative in the last years, especially with the rapid development of metabolic engineering and synthetic biology. In this mini-review, recent advances on the application and microbial production of 5-ALA using novel biological approaches (such as whole-cell enzymatic-transformation, metabolic pathway engineering and cell-free process) are described and discussed in detail. In addition, the challenges and prospects of synthetic biology are discussed.  相似文献   

6.
δ-aminolevulinate (ALA) is an important intermediate involved in tetrapyrrole synthesis (precursor for vitamin B12, chlorophyll and heme) in vivo. It has been widely applied in agriculture and medicine. On account of many disadvantages of its chemical synthesis, microbial production of ALA has been received much attention as an alternative because of less expensive raw materials, low pollution, and high productivity. Vitamin B12, one of ALA derivatives, which plays a vital role in prevention of anaemia has also attracted intensive works. In this review, recent advances on the production of ALA and vitamin B12 with novel approaches such as whole-cell enzyme-transformation and metabolic engineering are described. Furthermore, the direction for future research and perspective are also summarized.  相似文献   

7.
Vitreoscilla hemoglobin (VHb) is accumulated at high levels in both soluble and insoluble forms when expressed from its native promoter on a pUC19-derived plasmid in Escherichia coli. Examination by atomic absorption spectroscopy and electron paramagnetic resonance spectroscopy revealed that the insoluble form uniformly lacks the heme prosthetic group (apoVHb). The purified soluble form contains heme (holoVHb) and is spectroscopically indistinguishable from holoVHb produced by Vitreoscilla cells. This observation suggested that a relationship may exist between the insolubility of apoVHb and biosynthesis of heme. To examine this possibility, a series of experiments were conducted to chemically and genetically manipulate the formation and conversion of 5-aminolevulinic acid (ALA), a key intermediate in heme biosynthesis. Chemical perturbations involved supplementing the growth medium with the intermediate ALA and the competitive inhibitor levulinic acid which freely cross the cell barrier. Genetic manipulations involved amplifying the gene dosage for the enzymes ALA synthase and ALA dehydratase. Results from both levulinic acid and ALA supplementations indicate that the level of soluble holoVHb correlates with the heme level but that the level of insoluble apoVHb does not. The ratio of soluble to insoluble VHb also does not correlate with the level of total VHb accumulated. The effect of amplifying ALA synthase and ALA dehydratase gene dosage is complex and may involve secondary factors. Results indicate that the rate-limiting step of heme biosynthesis in cells overproducing VHb does not lie at ALA synthesis, as it reportedly does in wild-type E. coli (S. Hino and A. Ishida, Enzyme 16:42-49, 1973).  相似文献   

8.
红景天苷是红景天属植物的主要有效成分之一,具有耐缺氧、抗辐射、抗疲劳、抗肿瘤、降血糖、提高免疫力等多重功效。随着其需求量的日益增加和植物资源的不断减少,微生物法合成红景天苷因具有周期短和易调控等优势而倍受关注。目前微生物法合成红景天苷尚处于基础研发阶段,为了方便相关领域研究者系统了解其研究现状和探讨其未来发展方向,文中对红景天苷生物合成途径、糖基转移酶、野生菌/天然酶资源和工程菌/重组酶体系进行了综述。  相似文献   

9.
Herein, we report the development of a microbial bioprocess for high‐level production of 5‐aminolevulinic acid (5‐ALA), a valuable non‐proteinogenic amino acid with multiple applications in medical, agricultural, and food industries, using Escherichia coli as a cell factory. We first implemented the Shemin (i.e., C4) pathway for heterologous 5‐ALA biosynthesis in E. coli. To reduce, but not to abolish, the carbon flux toward essential tetrapyrrole/porphyrin biosynthesis, we applied clustered regularly interspersed short palindromic repeats interference (CRISPRi) to repress hemB expression, leading to extracellular 5‐ALA accumulation. We then applied metabolic engineering strategies to direct more dissimilated carbon flux toward the key precursor of succinyl‐CoA for enhanced 5‐ALA biosynthesis. Using these engineered E. coli strains for bioreactor cultivation, we successfully demonstrated high‐level 5‐ALA biosynthesis from glycerol (~30 g L?1) under both microaerobic and aerobic conditions, achieving up to 5.95 g L?1 (36.9% of the theoretical maximum yield) and 6.93 g L?1 (50.9% of the theoretical maximum yield) 5‐ALA, respectively. This study represents one of the most effective bio‐based production of 5‐ALA from a structurally unrelated carbon to date, highlighting the importance of integrated strain engineering and bioprocessing strategies to enhance bio‐based production.  相似文献   

10.
随着分子生物学技术的快速发展,功能基因的挖掘在微生物高产多糖合成关键途径研究中变得越来越重要,不断发展的基因挖掘方法和基因组分析工具推进了研究的深入进行。本文主要综述了近年来报道的微生物多糖生物合成途径和多糖合成途径中的关键酶,以及利用多种技术手段和分析软件工具对多糖合成关键基因进行挖掘和验证的相关研究,为微生物多糖合成关键基因的验证以及微生物高产多糖菌株的制备提供参考。  相似文献   

11.
Chlorophyll biosynthesis in plants is subjected to modulation by various environmental factors. To understand the modulation of the chlorophyll (Chl) biosynthesis during greening process by salt, 100–200 mM NaCl was applied to the roots of etiolated rice seedlings 12 h prior to the transfer to light. Application of 200 mM NaCl to rice seedlings that were grown in light for further 72 h resulted in reduced dry matter production (–58%) and Chl accumulation (–66%). Ionic imbalance due to salinity stress resulted in additional downregulation (41–45%) of seedling dry weight, Chl and carotenoid contents over and above that of similar osmotic stress induced by polyethylene glycol. Downregulation of Chl biosynthesis may be attributed to decreased activities of Chl biosynthetic pathway enzymes, i.e. 5‐aminolevulinic acid (ALA) dehydratase (EC‐2.4.1.24), porphobilinogen deaminase (EC‐4.3.1.8), coproporphyrinogen III oxidase (EC‐1.3.3.3), protoporphyrinogen IX oxidase (EC‐1.3.3.4), Mg‐protoporphyrin IX chelatase (EC‐6.6.1.1) and protochlorophyllide oxidoreductase (EC‐1.3.33.1). Reduced enzymatic activities were due to downregulation of their protein abundance and/or gene expression in salt‐stressed seedlings. The extent of downregulation of ALA biosynthesis nearly matched with that of protochlorophyllide and Chl to prevent the accumulation of highly photosensitive photodynamic tetrapyrroles that generates singlet oxygen under stress conditions. Although, ALA synthesis decreased, the gene/protein expression of glutamyl‐tRNA reductase (EC‐1.2.1.70) increased suggesting it may play a role in acclimation to salt stress. The similar downregulation of both early and late Chl biosynthesis intermediates in salt‐stressed seedlings suggests a regulatory network of genes involved in tetrapyrrole biosynthesis.  相似文献   

12.
13.
BACKGROUND AND AIMS: Trypanosoma cruzi is the causative agent of Chagas disease or American trypanosomiasis. The parasite manifests a nutritional requirement for heme compounds because of its biosynthesis deficiency. The aim of this study has been to investigate the presence of metabolites and enzymes of porphyrin pathway, as well as ALA formation in epimastigotes of T. cruzi, Tulahuén strain, Tul 2 stock. METHODS: Succinyl CoA synthetase, 5-aminolevulinic acid (ALA) synthetase, 4,5-dioxovaleric (DOVA) transaminase, ALA dehydratase and porphobilinogenase activities, as well as ALA, porphobilinogen (PBG), free porphyrins and heme content were measured in a parasite cells-free extract. Extracellular content of these metabolites was also determined. RESULTS: DOVA, PBG, porphyrins and heme were not detected in acellular extracts of T. cruzi. However ALA was detected both intra- and extracellularly This is the first time that the presence of ALA (98% of intracellularly formed ALA) is demonstrated in the extracellular medium of a parasite culture. Regarding the ALA synthesizing enzymes, DOVA transaminase levels found were low (7.13+/-0.49EU/mg protein), whilst ALA synthetase (ALA-S) activity was undetectable. A compound of non-protein nature, low molecular weight, heat unstable, inhibiting bacterial ALA-S activity was detected in an acellular extract of T. cruzi. This inhibitor could not be identified with either ALA, DOVA or heme. CONCLUSIONS: ALA synthesis is functional in the parasite and it would be regulated by the heme levels, both directly and through the inhibitor factor detected. ALA formed can not be metabolized further, because the necessary enzymes are not active, therefore it should be excreted to avoid intracellular cytotoxicity.  相似文献   

14.
Effects of delta-aminolevulinic acid (ALA) and melatonin were investigated in the female Syrian hamster Harderian gland. This is an organ physiologically exposed to strong oxidative stress due to the highest porphyrinogenic rates known in nature. Enzyme activities of porphyrin biosynthesis and of antioxidative protection, oxidative protein modification, and histological integrity were studied. In the porphyrin biosynthetic pathway, ALA and melatonin acted synergistically by downregulating ALA synthase (ALA-S) and stimulating product formation from ALA; the combination of ALA and melatonin suppressed ALA-S activity, down to about 1% of that in controls. While ALA effects on porphyrinogenesis can be interpreted in terms of homeostasis, melatonin's actions may be seen in relation to seasonality and/or reduction of oxidative stress. Among antioxidant enzymes, superoxide dismutase (SOD) and glutathione reductase (GR) activities were diminished by ALA, presumably due to the vulnerability of their active centers to free radicals, whereas melatonin moderately increased SOD. Both ALA and melatonin strongly stimulated catalase (CAT), thereby counteracting the oxidative stress induced by ALA and its metabolites. Nevertheless, exogenous ALA caused a strong net rise in protein carbonyl and considerable damage of tissue. When given together with ALA, melatonin antagonized these effects and largely protected the integrity of glandular structures.  相似文献   

15.
萜烯类化合物是一类高度多样化的天然产物,具有抗肿瘤、抗氧化及免疫调节等生理活性,因此被广泛应用于医药健康、食品、化妆品领域。然而,直接从自然资源中获取萜烯类化合物效率低、成本高,且往往对生态环境产生不利影响,不能实现绿色可持续生产。微生物合成萜烯类化合物近年来备受关注,研究人员从合成途径的构建与调控、关键酶的理性及半理性改造、发酵工艺优化等多个方面进行了探究,取得了丰硕的成果。其中,合成途径中关键酶的催化效率是影响微生物生产萜烯类化合物的重要因素。针对关键酶的研究对于提高微生物合成萜烯类化合物的能力,推动该类天然产物微生物生产的大规模应用具有重要意义。对萜烯类化合物合成途径中的3-羟基-3-甲基戊二酰辅酶A还原酶(HMGR)、1-脱氧-D-木酮糖-5-磷酸合酶(DXS)、异戊二烯基二磷酸合成酶(IDS)和萜烯合酶(TPS)4种关键酶的研究进行了综述,并总结讨论了如何通过代谢工程和蛋白质工程手段以及合成生物学技术调节关键酶的催化活性,提高微生物合成萜烯类化合物的效率,对未来利用微生物合成萜烯类化合物的发展进行了展望。  相似文献   

16.
3-脱氢莽草酸,是芳香族氨基酸生物合成代谢途径中一种重要的中间产物,可作为一些化学合成制剂和药物中间原料。这样以无毒可再生物质为起始原料的合成方法与传统的有机合成化学制剂的方法相比,对环境更加有利。此外,它还是一种十分有效的抗氧化剂。工业上一般采用化学合成法和发酵法来生产3-脱氢莽草酸,随着代谢工程的兴起,使得更加理性改造菌株成为可能,这更加促进了发酵法的广泛应用。本文主要介绍了代谢工程在生物合成3-脱氢莽草酸生产菌改造中的应用情况,其中涉及3-脱氢莽草酸生物合成途径中相关基因及其酶的调控、中心代谢途径的改造和3-脱氢莽草酸合成支路的修饰等,并探讨了将来的发展前景。  相似文献   

17.
STUDIES ON HAEM BIOSYNTHESIS IN RAT BRAIN   总被引:3,自引:2,他引:1  
Abstract— Abnormalities involving haem biosynthesis have been postulated as underlying mechanisms in the aetiology of the neural manifestations of acute porphyria and of lead poisoning. This paper reports a study of the enzymes of the haem biosynthetic pathway and their control in mammalian brain. The activity of rat brain 6-aminolaevulinate synthetase (ALA synthetase), 6-aminolaevulinate dehydratase (ALA dehydratase), uroporphyrinogen I synthetase, uroporphyrinogen decarboxylase and ferrochelatase were found to be between 12.5 and 0.002% of the corresponding values for liver. This accords with the lower concentrations of total haem and cytochrome P450 found in brain and with the slower rate of incorporation of [4-14C]ALA into brain haem in vivo . The subcellular distribution of radioactivity following intraventricular injection of [4-14C]ALA confirmed that the bulk of brain haemoproteins are intramitochondrial in contrast to liver where the major portion is microsomal. Brain haem biosynthesis was apparently unaffected by factors known to influence this pathway in liver, including starvation and treatment with allylisopropylacetamide or phenobarbitone. These findings suggest that brain haem requirements are considerably less than those of liver and are not subject to significant fluctuations under normal circumstances. Apparent non-inducibility of ALA synthetase suggests that deficient haem and consequently haemoprotein production could result where other enzymes in the pathway become rate-limiting due to genetic defects or inhibition by exogenous agents such as lead.  相似文献   

18.
Mau YH  Wang WY 《Plant physiology》1988,86(3):793-797
The first committed intermediate of chlorophyll biosynthesis, δ-aminolevulinic acid (ALA), is synthesized from glutamate in the plant cell. The last step of ALA synthesis is a transamination reaction which converts glutamate-1-semialdehyde (GSA) to ALA. The mechanism of the transamination was examined by using glutamate, specifically labeled with either 1-13C or 15N, as substrate for ALA synthesis. After incubating with crude enzymes extracted from Chlamydomonas reinhardtii, the distribution of labels in purified ALA molecules was examined by nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. We found that both isotopes were present in the same ALA molecule. We interpret the results to mean that intermolecular transamination occurs during the conversion of GSA to ALA.  相似文献   

19.
非天然氨基酸在医药、农药、材料等领域得到广泛应用,其绿色、高效合成越来越受到关注.近年来,随着合成生物学的快速发展,微生物细胞工厂为非天然氨基酸的制造提供了重要手段.文中从合成途径的重构、关键酶的设计改造及与前体的协同调控、竞争性旁路途径的敲除、辅因子循环系统的构建等方面介绍了 一系列非天然氨基酸细胞工厂构建与应用的研...  相似文献   

20.
甾类化合物具有重要的生理医药作用,市场需求巨大。甾类化合物及其关键甾类药物通过微生物转化制备工艺较化学合成法具有区域立体选择性、减少合成步骤、缩短生产周期、提高收率以及生态友好等优点逐步被应用,然而甾类物质微生物分解代谢机制还有待进一步深入探索研究并确定。本文从甾类化合物结构种类与主要来源、生理功能、微生物转化与分解代谢机制的研究等方面进行了归纳,着重解析甾类化合物分解代谢过程关键酶系及其分子作用机制,为甾药化合物生产菌种改造与工程菌构建,以及微生物转化工业化生产工艺的开发提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号