首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many marine bacteria secrete exopolysaccharides (EPSs) that have important ecological and physiological functions. Numerous nutritional and environmental factors influence bacterial EPS production. However, the regulatory mechanisms of EPS production are poorly understood. The deep-sea Bacteroidetes bacterium Zunongwangia profunda SM-A87 can produce high quantities of EPS, and its EPS production is enhanced significantly by lactose. Here, we studied the reasons behind the significant advantage that lactose has over other carbon sources in EPS production in SM-A87. RNA-seq technologies were used to study lactose-regulated genes in SM-A87. The expression level of genes within the EPS gene cluster was up-regulated when lactose was added. Supplement of lactose also influenced the expression of genes located outside the EPS gene cluster that are also involved in EPS biosynthesis. The major glycosyl components of SM-A87 EPS are mannose, glucose and galactose. Genomic metabolic pathway analyses showed that the EPS precursor GDP-mannose can be synthesized from glucose, while the precursor UDP-glucose must be synthesized from galactose. Lactose can provide glucose and galactose simultaneously and prevent glucose inhibition. Lactose can also greatly stimulate the growth of SM-A87. Taken together, lactose acts not only as an inducer but also as a carbohydrate source for EPS production. This research broadens our knowledge of the regulation of EPS production in marine bacteria.  相似文献   

2.
An optimal medium for exopolysaccharides (EPS) production was obtained through one-factor-at-a-time method and response surface methodology. Under optimal culture medium, the maximum EPS concentration in shake flask was 5.16 g/l. Two groups of EPSs (designated as Fr-I and Fr-II) were obtained from the culture filtrates by size exclusion chromatography/multiangle laser light scattering, and the weight average molar masses (M w) of Fr-I and Fr-II were determined to be 4.098 × 104 and 1.114 × 104 g/mol, respectively. The molecular confirmation of Fr-I was revealed to be a rigid rod form in aqueous solution. Moreover, monosaccharide composition and characteristic groups were investigated by GC and Fourier transform infrared, respectively. Finally, pharmacology experiment in vitro indicated EPS Fr-II of Pleurotus eryngii exhibited higher antioxidant and antitumor abilities than Fr-I, which might be attributed to the different molecular weights and chemical compositions in the EPS fraction.  相似文献   

3.
Lactobacillus plantarum MA2 was isolated from traditional Chinese Tibetan kefir grains. Its antioxidant properties had been demonstrated in vitro and in vivo previously. In the present study, the probiotic characteristics of this strain were further evaluated by investigating its acid and bile salt tolerances, cell surface hydrophobicity, and autoaggregation, respectively. In addition, the cellular antioxidant activity (CAA) assay was applied to test the antioxidant capacity of the isolate in different growth phases. Same method was also used to evaluate the antioxidant capacity of its fermentation supernatant, cell-free extract, and intact cell quantitatively. The results of probiotic characteristic tests showed that MA2 could survive at pH 2.5 and 0.3% bile salt. Meanwhile, the measurements of cell surface hydrophobicity and autoaggregation were 45.29?±?2.15 and 6.30?±?0.34%, respectively. The results of cellular antioxidant activity tests indicated that MA2 had high antioxidant potential. The CAA value of logarithmic phase cell-free extract of MA2 (39,450.00?±?424.05 μmol quercetin equivalents/100 g sample) was significantly higher than that in stationary phase cell-free extract (3395.98?±?126.06 μmol quercetin equivalents/100 g sample) and that of fermentation supernatant in logarithmic phase (2174.41?±?224.47 μmol quercetin equivalents/100 g sample) (p?<?0.05). The CAA method was successively applied to evaluate the antioxidant capacity of MA2 in this study, which suggests that it could be used as a useful method for lactic acid bacteria antioxidant potential evaluation.  相似文献   

4.
Liu SB  Qiao LP  He HL  Zhang Q  Chen XL  Zhou WZ  Zhou BC  Zhang YZ 《PloS one》2011,6(11):e26825
Zunongwangia profunda SM-A87 isolated from deep-sea sediment can secrete large quantity of exopolysaccharide (EPS). Response surface methodology was applied to optimize the culture conditions for EPS production. Single-factor experiment showed that lactose was the best carbon source. Based on the Plackett–Burman design, lactose, peptone and temperature were selected as significant variables, which were further optimized by the steepest ascent (descent) method and central composite design. The optimal culture conditions for EPS production and broth viscosity were determined as 32.21 g/L lactose, 8.87 g/L peptone and an incubation temperature of 9.8°C. Under these conditions, the maximum EPS yield and broth viscosity were 8.90 g/L and 6551 mPa•s, respectively, which is the first report of such high yield of EPS from a marine bacterium. The aqueous solution of the EPS displayed high viscosity, interesting shearing thinning property and great tolerance to high temperature, a wide range of pH, and high salinity.  相似文献   

5.
Response surface methodology (RSM) was applied to optimize the critical medium ingredients of Agaricus blazei. A three-level Box–Behnken factorial design was employed to determine the maximum biomass and extracellular polysaccharide (EPS) yields at optimum levels for glucose, yeast extract (YE), and peptone. A mathematical model was then developed to show the effect of each medium composition and its interactions on the production of mycelial biomass and EPS. The model predicted the maximum biomass yield of 10.86 g/l that appeared at glucose, YE, peptone of 26.3, 6.84, and 6.62 g/l, respectively, while a maximum EPS yield of 348.4 mg/l appeared at glucose, YE, peptone of 28.4, 4.96, 5.60 g/l, respectively. These predicted values were also verified by validation experiments. The excellent correlation between predicted and measured values of each model justifies the validity of both the response models. The results of bioreactor fermentation also show that the optimized culture medium enhanced both biomass (13.91 ± 0.71 g/l) and EPS (363 ± 4.1 mg/l) production by Agaricus blazei in a large-scale fermentation process.  相似文献   

6.
The present study investigated the synergistic effect of nutritional supplements (amino acid and Tween 80) on lactic acid production by Lactobacillus delbruckii utilizing a sugar refinery by product (cane molasses) in a submerged fermentation process. Initially, the effect of individual factors on lactic acid yield was studied by supplementing amino acids and their combinations, Tween 80 and cane molasses at varying concentrations in production medium. A combination of l-phenylalanine and l-lysine gave a maximum lactic acid yield of 47.89?±?0.1 g/L on a dry cell weight basis at individual factor level. Similarly, maximum lactic acid yield was obtained by supplementing the production medium with 40.0 g/L and 2.0 g/L Tween 80 and cane molasses, respectively, at individual factor level. In order to further improve the lactic acid yield, nutritional supplements were optimized by central composite rotatable design (CCRD) using Minitab 15 software. Shake flask cultivation under optimized conditions, i.e., cane molasses (32.40 g/L), Tween 80 (2.0 g/L) and l-phenylalanine and l-lysine (34.0 mg/L) gave a lactic acid yield of 64.86?±?0.2 g/L, corresponding to 95.0 % of the predicted yield of 67.78?±?0.3 g/L. Batch cultivation performed in 7.5 L bioreactor (working volume: 3.0 L) under optimized conditions gave maximum lactic acid yield and productivity of 79.12?±?0.2 g/L and 3.40 g/L·h, which is higher than previous studies with reduced fermentation time. Screening of lactic acid producing bacteria and characterization of lactic acid was also done.  相似文献   

7.
We reported that lignocellulose decomposition can be used to facilitate the production of bioactive polysaccharides from submerged culture of Inonotus obliquus. Exo-polysaccharide (EPS) production and antioxidant activity by Inonotus obliquus was enhanced by employing lignocellulose decomposition in a corn straw-containing submerged fermentation. A significant increase in the EPS production and hydroxyl radical scavenging activity from 1.09 ± 0.01 g/l and 72.3 ± 1.9% in a basal medium to 1.38 ± 0.02 g/l and 82.7 ± 0.5% in a corn straw-containing medium was obtained. A synchronized effect between lignocellulose decomposition and malondialdehyde presenting hydroxyl radical concentration in the fermentation broth was identified. The adding of thiourea, a hydroxyl radical-scavenging reagent, suppressed malondialdehyde generation and lowered the lignocellulose decomposition rate. Correspondingly, the EPS production and hydroxyl radical scavenging activity decreased to 1.26 g/l and 74%. The EPS obtained from the corn straw-containing medium also presented the strongest superoxide radical scavenging activity. The monosaccharide components of the EPS from the corn straw-containing medium are rhamnose, arabinose, xylose, mannose, glucose, and galactose with molar proportions at 3.0, 3.0, 0.9, 46.6, 11.4, and 35.1%, respectively, which are largely different from the molar proportions of the EPS from the basal medium.  相似文献   

8.
The kinetic study of Arthrospira platensis extracellular polymeric substances (EPS) production under different trophic modes??photoautotrophy (100???mol photons m?2?s?1), heterotrophy (1.5?g/L glucose), and mixotrophy (100???mol photons m?2?s?1 and 1.5?g/L glucose)??was investigated. Under photoautotrophic and heterotrophic conditions, the maximum EPS production 219.61?±?4.73 and 30.30?±?1.97?mg/L, respectively, occurred during the stationary phase. Under a mixotrophic condition, the maximum EPS production (290.50?±?2.21?mg/L) was observed during the early stationary phase. The highest specific EPS productivity (433.62?mg/g per day) was obtained under a photoautotrophic culture. The lowest specific EPS productivity (38.33?mg/g per day) was observed for the heterotrophic culture. The effects of glucose concentration, light intensity, and their interaction in mixotrophic culture on A. platensis EPS production were evaluated by means of 32 factorial design and response surface methodology. This design was carried out with a glucose concentration of 0.5, 1.5, and 2.5?g/L and at light levels of 50, 100, and 150???mol photons m?2?s?1. Statistical analysis of the model demonstrated that EPS concentration and EPS yield were mainly influenced by glucose concentration and that conditions optimizing EPS concentration were dissimilar from those optimizing EPS yield. The highest maximum predicted EPS concentration (369.3?mg/L) was found at 150???mol photons m?2?s?1 light intensity and 2.4?g/L glucose concentration, while the highest maximum predicted EPS yield (364.3?mg/g) was recorded at 115???mol photons m?2?s?1 light intensity and 1.8?g/L glucose concentration.  相似文献   

9.
Twelve marine bacterial cultures were screened for extracellular protease activity, and the bacterium CFR26M which exhibited the highest activity on caseinate agar plate was identified as an Exiguobacterium sp. Significant amount of extracellular protease (5.9?±?0.3 U/ml) and antioxidant materials, measured as 2,2′-diphenyl picrylhydrazyl (DPPH) radical scavenging activity (44.4?±?0.5 %), was produced by CFR26M in submerged fermentation using a shrimp biowaste medium. Response surface methodology (RSM) was employed to optimize the process variables for maximum production of protease and antioxidant materials by CFR26M. Among the seven variables screened by two-level 2**(7–2) fractional factorial design, the concentration of shrimp biowaste, sugar, and phosphate was found to be significant (p?≤?0.05). The optimum levels of these variables were determined by employing the central composite design (CCD) of RSM. The coefficient of determination (R 2) values of 0.9039 and 0.8924 for protease and antioxidant, respectively, indicates the accuracy of the CCD models. The optimum levels of shrimp biowaste, sugar, and phosphate were 21.2, 10.5, and 2.3 % (w/v) for production of protease and 28.8, 12, and 0.32 % (w/v) for production of antioxidant material, respectively. The concentration of shrimp biowaste, sugar, and phosphate had linear and quadratic effect on both protease and antioxidant productions. RSM optimization yielded 6.3-fold increases in protease activity and 1.6-fold in antioxidant material production. The crude protease of CFR26M had a maximum activity at 32?±?2 °C with pH 7.6. This is the first report on the use of marine Exiguobacterium sp. for concomitant production of protease and antioxidant materials from shrimp biowaste.  相似文献   

10.
In this study on the valorization of hemicelluloses (a co-product generated during cellulosic bioethanol production), prehydrolyzates obtained from poplar woodchips pretreated in an industrial experimental steam-explosion pilot-plant facility were evaluated for the production of bioxylitol using the yeast, Candida guilliermondii FTI 20037, employing both batch and fed-batch fermentation modes in shake flasks on defined nutrient medium. The prehydrolyzates consisted of monosaccharides (pentose and hexose sugars) as well as xylo-oligosaccharides and undegraded hemicellulose. Xylose (31.6?±?0.57 g/L) was the major sugar in the prehydrolyzates that also contained acetic acid and degradation products of lignin and sugars (phenolic and furanic compounds). Xylose in the prehydrolyzates could be further increased (106.4?±?0.02 g/L) through an acid hydrolysis step (0.6 % (w/v) H2SO4). Compounds of a toxic nature in both the acid hydrolyzates and prehydrolyzates were removed by treatment with Amberlite IRA-400 resin (chloride form). Batch fermentation of pure xylose and poplar prehydrolyzate resulted in bioxylitol production of 9.9?±?0.01 and 4.9?±?0.17 g/L, respectively, indicating that the poplar prehydrolyzates exhibited an inhibitory effect on fermentation. After detoxification of the poplar prehydrolyzates, bioxylitol production increased to 8.9?±?0.01 g/L. Fed-batch fermentation of the prehydrolyzate increased the bioxylitol production to 12.39?±?0.33 g/L, while acid hydrolysis followed by detoxification resulted in a maximum bioxylitol production of 22.0?±?0.01 g/L, a 348 % increase. The results demonstrated that acid hydrolysis and detoxification followed by fed-batch fermentation was an efficient way to produce bioxylitol from poplar prehydrolyzates.  相似文献   

11.
This study aimed to overexpress a glucose oxidase gene (GOD1) in Aureobasidium sp. P6 to achieve Ca2+-gluconic acid (GA) overproduction. The GOD1 gene was cloned, deleted, and overexpressed. A protein deduced from the GOD1 gene of Aureobasidium sp. P6 strain had 1824 bp that encoded a protein with 606 amino acids, with a conserved NADB-ROSSMAN domain and a GMC-oxred domain. Deleting the GOD1 gene made the disruptant GOK1 completely lose the ability to produce GA and GOD1 activity, whereas overexpressing the GOD1 gene rendered the transformant GOEX8 to produce considerably more Ca2+-GA (160.5?±?5.6 g/L) and higher GOD1 activity (1438.6?±?73.2 U/mg of protein) than its parent P6 strain (118.7?±?4.3 g/L of Ca2+-GA and 1100.0?±?23.6 U/mg of GOD1 protein). During a 10-L fermentation, the transformant GOEX8 grown in the medium containing 160.0 g/L of glucose produced 186.8?±?6.0 g/L of Ca2+-GA, the yield was 1.2 g/g of glucose, and the volumetric productivity was 1.7 g/L/h. Most of the produced GOD1 were located in the yeast cell wall. The purified product was identified to be a GA. The transformant GOEX8 overexpressing the GOD1 gene could produce considerably more Ca2+-GA (186.8?±?6.0 g/L) than its wild-type strain P6.  相似文献   

12.
The optimal culture conditions of exopolysaccharides (EPS) production in submerged culture medium by Pleurotus geesteranus 5 # were determined using an orthogonal matrix method. The optimal defined medium (per liter) was 60.0 g maltose, 5.0 g tryptone, 1 mM NaCl, 5 mM KH2PO4, and initial pH 6.0 at 28 °C. In the optimal culture medium, the maximum EPS production was 16.97 g/L in a shake flask. Two groups of EPSs (designated as Fr-I and Fr-II) were obtained from the culture filtrates by size exclusion chromatography (SEC), and their molecular characteristics were examined by a multiangle laser-light scattering (MALLS) and refractive index (RI) detector system. The approximate weight-average molar masses of the Fr-I and Fr-II of EPS were determined to be 3.263 × 104 and 5.738 × 103 g/mol, respectively. The low values of polydispersity ratio (1.176 and 1.124 for Fr-I and Fr-II, respectively) of EPSs mean that these EPS molecules exist much less dispersed in aqueous solution without forming large aggregates. Furthermore, the experiments in vitro indicated that P. geesteranus 5# EPS exhibit high antitumor and antioxidative effects.  相似文献   

13.
Abstract

Sequential optimization of propionate production using apple pomace was studied. All experiments were performed in a static flask in anaerobic conditions. Effect of apple pomace as nitrogen source against conventional N sources (yeast extract, peptone) was studied. The double increase was observed in propionic acid production while using yeast extract and peptone (0.29?±?0.01?g/g), as against the use of only apple pomace extract (APE) (0.14?±?0.01?g/g). Intensification of propionic acid fermentation was also achieved by increasing the pH control frequency of the culture medium from 24-(0.29?±?0.01?g/g) to 12-hour intervals (30?°C) (0.30?±?0.02?g/g) and by increasing the temperature of the culture from 30 to 37?°C (12-hour intervals of pH control) (0.32?±?0.01?g/g). An important factor in improving the parameters of fermentation was the addition of biotin to the medium. The 0.2?mg/L dose of biotin allowed to attain 7.66?g/L propionate with a yield of 0.38?±?0.03?g/g (12-hour intervals of pH control, 37?°C).  相似文献   

14.
It is believed that high concentrations of sodium chloride (NaCl) suppress the biosynthesis of exopolysaccharide (EPS) in lactic acid bacteria (LAB). Nevertheless, overproduction of EPSs due to high salinity stress in solid state fermentation performed on an agar surface was demonstrated in this study using a response surface methodology via a central composite design (CCD). Under optimized conditions with NaCl 4.97% and sucrose 136.5 g/L at 40.79 h of incubation, the EPS yield was 259% (86.36 g/L of EPS), higher than the maximum yield produced with the modified MRS medium containing only 120 g/L of sucrose without NaCl (33.4 g/L of EPS). Biosynthesis of EPS by Lactobacillus confusus TISTR 1498 was independent of biomass production. Our results indicated that high salinity stress can enhance EPS production in solid state fermentation.  相似文献   

15.
Netrium digitus is a representative of the species-rich class Zygnematophyceae (Streptophyta). Its intensive extracellular polysaccharide (EPS) production makes this alga interesting for biotechnological applications with a focus on cosmetics and food additives. Quantitative data on growth and EPS production in suspension and, for the first time, in immobilized culture using lab-scale porous substrate bioreactors, so-called Twin-Layer (TL) systems, is presented. It is shown that the cell as well as the EPS dry weight content is increased at least sixfold in immobilized compared to suspension culture. Due to the high amount of EPS, the biofilms reach a thickness of more than 8 mm after 27 days at 70 μmol photons m?2 s?1 and with 1.5% CO2 supply. Frequent exchange of the growth medium results in a linear cell biomass increase of 2.02?±?0.09 g m?2 growth area day?1 compared to 2.99?±?0.09 g m?2 day?1, when the medium is not exchanged. Under this mode of cultivation, the EPS production is lower and a final concentration of 12.18?±?1.25 g m?2 compared to 20.76?±?0.85 g m?2, when medium was exchanged, is reached. It is clearly demonstrated that the relatively slow growing, but excessively EPS producing, microalgal species N. digitus can be grown in porous substrate bioreactors and that this culturing technique is a promising alternative to suspension culture for the Zygnematophyceae.  相似文献   

16.
Response surface methodology (RSM), employing the fractional factorial design (FFD) was used to optimize the fermentation medium for the production of glucose oxidase (GOD) from a marine isolate (NRC9) of Aspergillus niger under submerged fermentation. The design was employed by selecting glucose, CaCO3, ammonium phosphate and MgSO4 concentrations as model factors by ‘one variable at a time’ experiment. A second-order quadratic model and response surface method showed that the optimum concentrations (g/l) glucose, 100; CaCO3, 25; (NH4)2HPO4, 1.8 and 0.4 of MgSO4, resulted in an improvement of GOD production (170?±?0.88 U/ml) as compared to the initial level (109.81?±?1.38 U/ml) after four days of incubation at 200 rpm and 30 °C, whereas its predicted value obtained by the quadratic model was 164.36 U/ml. Analysis of variance (ANOVA) showed a high coefficient of determination value (R 2) of 0.967, ensuring a satisfactory adjustment of the quadratic model with the experimental data. This is the first report on production of glucose oxidase from a marine fungal isolate, Aspergillus niger NRC9, using statistical experimental design and response surface methodology in optimization of its production under submerged fermentation.  相似文献   

17.
It is believed that high concentrations of sodium chloride (NaCl) suppress the biosynthesis of exopolysaccharide (EPS) in lactic acid bacteria (LAB). Nevertheless, overproduction of EPSs due to high salinity stress in solid state fermentation performed on an agar surface was demonstrated in this study using a response surface methodology via a central composite design (CCD). Under optimized conditions with NaCl 4.97% and sucrose 136.5 g/L at 40.79 h of incubation, the EPS yield was 259% (86.36 g/L of EPS), higher than the maximum yield produced with the modified MRS medium containing only 120 g/L of sucrose without NaCl (33.4 g/L of EPS). Biosynthesis of EPS by Lactobacillus confusus TISTR 1498 was independent of biomass production. Our results indicated that high salinity stress can enhance EPS production in solid state fermentation.  相似文献   

18.
Sago pith residues (58 % starch, 23 % cellulose, 9.2 % hemicellulose, and 4 % lignin) are one of the abundant lignocellulosic residues generated after starch extraction process in sago mill. In this study, fermentable sugars from enzymatic hydrolysis of sago pith residues were converted to acetone–butanol–ethanol (ABE) by Clostridium acetobutylicum ATCC 824. With an initial concentration of 30 g/L of concentrated sago pith residues hydrolysate containing 23 g/L of glucose and 4.58 g/L of cellobiose, 4.22?±?0.17 g/L of ABE were produced after 72 h of fermentation with yield and productivity of 0.20 g/g glucose and 0.06 g/L/h, respectively. Results are in agreement when synthetic glucose was used as a carbon source. Increasing sago pith residue hydrolysate to 50 g/L (containing 40 g/L glucose) and supplementing with 0.5 g/L yeast extract, approximately 8.84?±?0.20 g/L of ABE (5.41?±?0.10 g/L of butanol) were produced with productivity and yield of 0.12 g/L/h and 0.30 g/g glucose respectively, providing a 52 % improvement.  相似文献   

19.
Lipid homeostasis is well-known in oleaginous yeasts, but there are few non-oleaginous yeast models apart from Saccharomyces cerevisiae. We are proposing the non-oleaginous yeast Candida zeylanoides QU 33 as model. The aim of this study was to investigate the influence of the carbon/nitrogen ratio and the type of nitrogen source upon oil accumulation by this yeast grown on shake flask cultures. The maximum biomass was obtained in yeast extract (2.39?±?0.19 g/l), followed by peptone (2.24?±?0.05 g/l), while the highest content of microbial oil (0.35?±?0.01 g/l) and the maximum lipid yield (15.63 %) were achieved with peptone. Oleic acid was the predominant cellular fatty acid in all culture media (>32.23 %), followed by linoleic (>15.79 %) and palmitic acids (>13.47 %). The highest lipid yield using glucose and peptone was obtained at the C/N ratio of 200:1.  相似文献   

20.
Efforts to increase the productivity of microalgal cultures have been focused on the improvement of photobioreactors, but little attention has been paid to the nutritional requirements of microalgae in order to improve culture media formulation. In this study, the main goal was obtaining a high productivity for Tetraselmis suecica (Chlorophyta) in semicontinuous culture by adding magnesium (Mg), silicon (Si), and strontium (Sr) at concentrations from 0.01 to 10 mM; at the time, the effect on steady-state cell density, biochemical composition, and antioxidant activity of T. suecica was evaluated. Because productivity is higher in high-density cultures, the work was focused many times to cell density. Mg (3 mM) and Sr (0.1 mM) added separately reached the highest steady-state cell density (7.0?×?106?±?0.4 cells mL?1) in comparison to control (4.2?±?0.1 cells mL?1), but simultaneous addition had a synergic effect, achieving 8.7?×?106?±?0.6 cells mL?1. Silicon (3 mM) significantly affected the steady-state cell density, reaching 6.0?±?0.3 cells mL?1 and increased the cell ash-free dry weight, reaching 127?±?7.9 pg cell?1 in comparison to control (102.7?±?5.0 pg cell?1), resulting in an ash-free dry weight productivity of 0.75?±?0.07 g?L?1 day?1. The highest fatty acids content and antioxidant activity, measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method were obtained with Sr 10 mM. Sr treatments showed a high correlation (R 2?=?0.98) between DPPH inhibition and polyphenolic content, explaining its high antioxidant activity. Therefore, the addition of Mg, Si, and Sr to culture medium of T. suecica is recommended to achieve high steady-state cell density in semicontinuous cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号