首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The genomes of the plant pathogens Xanthomonas axonopodis (Xac) and Xanthomonas campestris (Xcc) were analysed with the aim of deducing their ability to produce nonribosomal peptides. Nonribosomal peptide synthetase (NRPS) genes were identified in two separate loci of Xac. While the genes of locus 1 are common to both strains, locus 2 was only found in Xac. Dissection and phylogenetic analysis of the condensation and thioesterase domains of the NRPSs of loci 1 and 2 of Xac revealed homology, respectively, with siderophore and lipopeptide synthetases. Further analysis of locus 1 revealed genes related to polyketide and polyamine biosynthesis that could be involved in the assembly of substrates for siderophore biosynthesis in both strains. In vitro production of siderophores by both Xac and Xcc was confirmed. Since bacterial siderophores and lipopeptides can be pathogenic and are typically produced nonribosomally, these results suggest that the identified genes could be involved in phytotoxin production.  相似文献   

2.
The C-terminal thioesterase (TE) domains from nonribosomal peptide synthetases (NRPSs) catalyze the final step in the biosynthesis of diverse biologically active molecules. In many systems, the thioesterase domain is involved in macrocyclization of a linear precursor presented as an acyl-S-enzyme intermediate. The excised thioesterase domain from the tyrocidine NRPS has been shown to catalyze the cyclization of a peptide thioester substrate which mimics its natural acyl-S-enzyme substrate. In this work we explore the generality of cyclization catalyzed by isolated TE domains. Using synthetic peptide thioester substrates from 6 to 14 residues in length, we show that the excised TE domain from the tyrocidine NRPS can be used to generate an array of sizes of cyclic peptides with comparable kinetic efficiency. We also studied the excised TE domains from the NRPSs which biosynthesize the symmetric cyclic decapeptide gramicidin S and the cyclic lipoheptapeptide surfactin A. Both TE domains exhibit expected cyclization activity: the TE domain from the gramicidin S NRPS catalyzes head-to-tail cyclization of a decapeptide thioester to form gramicidin S, and the TE domain from the surfactin NRPS catalyzes stereospecific cyclization to form a macrolactone analogue of surfactin. With an eye toward generating libraries of cyclic molecules by TE catalysis, we report the solid-phase synthesis and TE-mediated cyclization of a small pool of linear peptide thioesters. These studies provide evidence for the general utility of TE catalysis as a means to synthesize a wide range of macrocyclic compounds.  相似文献   

3.
4.
Streptolydigin, a secondary metabolite produced by Streptomyces lydicus, is a potent inhibitor of bacterial RNA polymerases. It has been suggested that streptolydigin biosynthesis is associated with polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS). Thus, there is great interest in understanding the role of fatty acid biosynthesis in the biosynthesis of streptolydigin. In this paper, we cloned a type II fatty acid synthase (FAS II) gene cluster of fabDHCF from the genome of S. lydicus and constructed the SlyfabCF-disrupted mutant. Sequence analysis showed that SlyfabDHCF is 3.7 kb in length and encodes four separated proteins with conserved motifs and active residues, as shown in the FAS II of other bacteria. The SlyfabCF disruption inhibited streptolydigin biosynthesis and retarded mycelial growth, which were likely caused by the inhibition of fatty acid synthesis. Streptolydigin was not detected in the culture of the mutant strain by liquid chromatography–mass spectrometry. Meanwhile, the streptolol moiety of streptolydigin accumulated in cultures. As encoded by fabCF, acyl carrier protein (ACP) and β-ketoacyl-ACP synthase II are required for streptolydigin biosynthesis and likely involved in the step between PKS and NRPS. Our results provide the first genetic and metabolic evidence that SlyfabCF is shared by fatty acid synthesis and antibiotic streptolydigin synthesis.  相似文献   

5.
Cyanobacterial lipopeptides have antimicrobial and antifungal bioactivities with potential for use in pharmaceutical research. However, due to their hemolytic activity and cytotoxic effects on human cells, they may pose a health issue if produced in substantial amounts in the environment. In bacteria, lipopeptides can be synthesized via several well‐evidenced mechanisms. In one of them, fatty acyl‐AMP ligase (FAAL) initiates biosynthesis by activation of a fatty acyl residue. We have performed a bioinformatic survey of the cyanobacterial genomic information available in the public databases for the presence of FAAL‐containing non‐ribosomal peptide synthetase/polyketide synthetase (NRPS/PKS) biosynthetic clusters, as a genetic basis for lipopeptide biosynthesis. We have identified 79 FAAL genes associated with various NRPS/PKS clusters in 16% of 376 cyanobacterial genomic assemblies available, suggesting that FAAL is frequently incorporated in NRPS/PKS biosynthetases. FAAL was present either as a stand‐alone protein or fused either to NRPS or PKS. Such clusters were more frequent in derived phylogenetic lineages with larger genome sizes, which is consistent with the general pattern of NRPS/PKS pathways distribution. The putative lipopeptide clusters were more frequently found in genomes of cyanobacteria that live attached to surfaces and are capable of forming microbial biofilms. While lipopeptides are known in other bacterial groups to play a role in biofilm formation, motility, and colony expansion, their functions in cyanobacterial biofilms need to be tested experimentally. According to our data, benthic and terrestrial cyanobacteria should be the focus of a search for novel candidates for lipopeptide drug synthesis and the monitoring of toxic lipopeptide production.  相似文献   

6.
The acyl-acyl carrier protein (ACP) thioesterase cDNA from the plant Umbellularia californica was functionally expressed in various recombinant Escherichia coli strains in order to establish a new metabolic route toward medium-chain-length polyhydroxyalkanoate (PHA(MCL)) biosynthesis from non-related carbon sources. Coexpression of the PHA synthase genes from Ralstonia eutropha and Pseudomonas aeruginosa, or only the PHA synthase gene from P. aeruginosa, respectively, showed PHA(MCL) accumulation when the type II PHA synthase from P. aeruginosa was produced. Both wild-type E. coli and various fad mutants were investigated; and only when the beta-oxidation pathway was impaired PHA(MCL) accumulation from gluconate was observed, contributing to about 6% of cellular dry weight. Thus coexpression of type II PHA synthase gene with cDNA encoding the medium-chain acyl-ACP thioesterase from U. californica established a new PHA(MCL) biosynthesis pathway, connecting fatty acid de novo biosynthesis with fatty acid beta-oxidation, using a non-related carbon source.  相似文献   

7.
Functional cross talk between fatty acid biosynthesis and secondary metabolism has been discovered in several cases in microorganisms; none of them, however, involves a modular biosynthetic enzyme. Previously, we reported a hybrid modular nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) pathway for the biosynthesis of FK228 anticancer depsipeptide in Chromobacterium violaceum strain 968. This pathway contains two PKS modules on the DepBC enzymes that lack a functional acyltransferase (AT) domain, and no apparent AT-encoding gene exists within the gene cluster or its vicinity. We report here that, through reconstitution of the FK228 biosynthetic pathway in Escherichia coli cells, two essential genes, fabD1 and fabD2, both encoding a putative malonyl coenzyme A (CoA) acyltransferase component of the fatty acid synthase complex, are positively identified to be involved in FK228 biosynthesis. Either gene product appears sufficient to complement the AT-less PKS modules on DepBC for polyketide chain elongation. Concurrently, a gene (sfp) encoding a putative Sfp-type phosphopantetheinyltransferase was identified to be necessary for FK228 biosynthesis as well. Most interestingly, engineered E. coli strains carrying variable genetic components produced significant levels of FK228 under both aerobic and anaerobic cultivation conditions. Discovery of the trans complementation of modular PKSs by housekeeping ATs reveals natural product biosynthesis diversity. Moreover, demonstration of anaerobic production of FK228 by an engineered facultative bacterial strain validates our effort toward the engineering of novel tumor-targeting bioagents.  相似文献   

8.
The cephabacins, one of the beta-lactam antibiotics, are produced by Lysobacter lactamgenus. The previous studies the cephabacin biosynthesis were limited to a gene cluster that encodes the gene products responsible for the biosynthesis of the cephem nucleus. The long-term goal of this research is to elucidate the metabolic diversity and biosynthetic pathway of cephabacins and to design and/or discover new pharmacologically active compounds by engineering the cephabacin biosynthetic pathway in L. lactamgenus. In this study, we have cloned and sequenced a 24-kb fragment of a DNA locus upstream of the previously reported but incomplete putative ORF9 of L. lactamgenus. This contains three putative ORFs (the complete ORF9, ORF10, and ORF11) transcribed in the same direction and one putative ORF (ORF12) in the opposite direction. The isolated DNA locus extends the previously cloned part of the DNA locus containing the genes responsible for biosynthesis of the cephem nucleus up to 45 kb. The 42-kb fragment of the 45-kb gene cluster is located between a potential TATA box just upstream of the ORF11 and a termination loop just downstream of the previously reported bla gene. The complete ORF9 contains three nonribosomal peptide synthetase (NRPS) modules and one polyketide synthase (PKS) module and the ORF11 contains one NRPS module. The complete ORF9 also contains a putative thioesterase domain at the C-terminal end. We predicted the amino acid specificity of the four NRPSs by generating specificity binding pockets and expressed one of the NRPSs to confirm the amino acid specificity. The adenylation domain of the NRPS1, which is the last module of the NRPSs, showed significant amino acid specificity for L-arginine. These findings are in perfect agreement with the composition that was expected for the structure of cephabacins which contain an acetate residue, an L-arginine, and one to three L-alanines at the C-3' position of the cephem nucleus of cephabacins. The ORF10, encoding a putative ABC transporter which might be involved in conferring resistance against cephabacins, was identified between the complete ORF9 and the ORF11. Therefore, the complete ORF9, ORF10, ORF11 reported here and the other genes previously reported constitute an operon for the biosynthesis of cephabacins in L. lactamgenus. Based on our results, the biosynthetic pathways of acetate and elongated peptide moieties and a mechanism by which cephabacins are assembled by connecting the peptide moiety synthesized by the gene products of the complete ORF9 and the ORF11 to the C-3' position of the cephem nucleus synthesized by the gene products of pcbAB, pcbC, cefE, cefF, and cefD have been elucidated.  相似文献   

9.
Bacterial lipopeptides (LPs) are a diverse group of secondary metabolites synthesized through one or more non-ribosomal peptide synthetases (NRPSs). In certain genera, such as Pseudomonas and Bacillus, these enzyme systems are often involved in synthesizing biosurfactants or antimicrobial compounds. Several different types of LPs have been reported for non-pathogenic plant-associated Pseudomonas. Focusing on this group of bacteria, we devised and validated a PCR method to detect novel LP-synthesizing NRPS genes by targeting their lipoinitiation and tandem thioesterase domains, thus avoiding amplification of genes for non-LP metabolites, such as the pyoverdine siderophores present in all fluorescent Pseudomonas. This approach enabled detection of as yet unknown NRPS genes in strains producing viscosin, viscosinamide, WLIP, or lokisin. Furthermore, it proved valuable to identify novel candidate LP producers among Pseudomonas rhizosphere isolates. By phylogenetic analysis of these amplicons, several of the corresponding NRPS genes can be tentatively assigned to the viscosin, amphisin, or entolysin biosynthetic groups, while some others may represent novel NRPS systems.  相似文献   

10.
The phosphopantetheinyl transferases (PPTases) are responsible for the activation of the carrier protein domains of the polyketide synthases (PKS), non ribosomal peptide synthases (NRPS) and fatty acid synthases (FAS). The analysis of the Streptomyces ambofaciens ATCC23877 genome has revealed the presence of four putative PPTase encoding genes. One of these genes appears to be essential and is likely involved in fatty acid biosynthesis. Two other PPTase genes, samT0172 (alpN) and samL0372, are located within a type II PKS gene cluster responsible for the kinamycin production and an hybrid NRPS-PKS cluster involved in antimycin production, respectively, and their products were shown to be specifically involved in the biosynthesis of these secondary metabolites. Surprisingly, the fourth PPTase gene, which is not located within a secondary metabolite gene cluster, appears to play a pleiotropic role. Its product is likely involved in the activation of the acyl- and peptidyl-carrier protein domains within all the other PKS and NRPS complexes encoded by S. ambofaciens. Indeed, the deletion of this gene affects the production of the spiramycin and stambomycin macrolide antibiotics and of the grey spore pigment, all three being PKS-derived metabolites, as well as the production of the nonribosomally produced compounds, the hydroxamate siderophore coelichelin and the pyrrolamide antibiotic congocidine. In addition, this PPTase seems to act in concert with the product of samL0372 to activate the ACP and/or PCP domains of the antimycin biosynthesis cluster which is also responsible for the production of volatile lactones.  相似文献   

11.
In vitro translation of poly(A)+ RNA from the uropygial glands of mallard ducks (Anas platyrhynchos) generated a 29-kDa protein which cross-reacted with rabbit antibodies prepared against S-acyl fatty acid synthase thioesterase (Kolattukudy, P. E., Rogers, L., and Flurkey, W. (1985) J. Biol. Chem., 260, 10789-10793). A poly(A)+ RNA fraction enriched in this thioesterase mRNA, isolated by sucrose density gradient centrifugation, was used to prepare cDNA which was cloned in Escherichia coli using the plasmid pUC9. Using hybrid-selected translation and colony hybridization, 17 clones were selected which contained the cDNA for S-acyl fatty acid synthase thioesterase. Northern blot analysis showed that the mature mRNA for this thioesterase contained 1350 nucleotides whereas the cloned cDNA inserts contained 1150-1200 base pairs. Five of the 6 clones tested for 5'-sequence had identical sequences, and the three tested for 3'-end showed the same sequence with poly(A) tails. Two clones, pTE1 and pTE3, representing nearly the full length of mRNA, were selected for sequencing. Maxam-Gilbert and Sanger dideoxy chain termination methods were used on the cloned cDNA and on restriction fragments subcloned in M13 in order to determine the complete nucleotide sequence of the cloned cDNA. The nucleotide sequence showed an open reading frame coding for a peptide of 28.8 kDa. Two peptides isolated from the tryptic digest of the thioesterase purified from the gland showed amino acid sequences which matched with two segments of the sequence deduced from the nucleotide sequence. Another segment containing a serine residue showed an amino acid sequence homologous to the active serine-containing segment of the thioesterase domain of fatty acid synthase. Thus, the clones represent cDNA for S-acyl fatty acid synthase thioesterase. The present results constitute the first case of a complete sequence of a thioesterase.  相似文献   

12.
The gene cluster involved in producing the cyclic heptadepsipeptide micropeptin was cloned from the genome of the unicellular cyanobacterium Microcystis aeruginosa K-139. Sequencing revealed four genes encoding non-ribosomal peptide synthetases (NRPSs) that are highly similar to the gene cluster involved in cyanopeptolins biosynthesis. According to predictions based on the non-ribosomal consensus code, the order of the mcnABCE NPRS modules was well consistent with that of the biosynthetic assembly of cyclic peptides. The biochemical analysis of a McnB(K-139) adenylation domain and the knock-out of mcnC in a micropeptin-producing strain, M. viridis S-70, revealed that the mcn gene clusters were responsible for the production of heptadepsipeptide micropeptins. A detailed comparison of nucleotide sequences also showed that the regions between the mcnC and mcnE genes of M. aeruginosa K-139 retained short stretches of DNA homologous to halogenase genes involved in the synthesis of halogenated cyclic peptides of the cyanopeptolin class including anabaenopeptilides. This suggests that the mcn clusters of M. aeruginosa K-139 have lost the halogenase genes during evolution. Finally, a comparative bioinformatics analysis of the congenial gene cluster for depsipetide biosynthesis suggested the diversification and propagation of the NRPS genes in cyanobacteria.  相似文献   

13.
Wang Y  Chen Y  Shen Q  Yin X 《Gene》2011,483(1-2):11-21
The biosynthetic gene cluster for laspartomycins, a family of 11 amino acid peptide antibiotics, has been cloned and sequenced from Streptomyces viridochromogenes ATCC 29814. Annotation of a segment of 88912bp of S. viridochromogenes genomic sequence revealed the putative lpm cluster and its flanking regions which harbor 43 open reading frames. The lpm cluster, which spans approximately 60 kb, consists of 21 open reading frames. Those include four NRPS genes (lpmA/orf18, lpmB/orf25, lpmC/orf26 and lpmD/orf27), four genes (orfs 21, 22, 24 and 29) involved in the lipid tail biosynthesis and attachment, four regulatory genes (orfs 13, 19, 32 and 33) and three putative exporters or self-resistance genes (orfs 14, 20 and 30). In addition, the gene involved in the biosynthesis of the nonproteinogenic amino acid Pip was also identified in the lpm cluster while the genes necessary for the biosynthesis of the rare residue diaminopropionic acid (Dap) were found to reside elsewhere on the chromosome. Interestingly, the dabA, dabB and dabC genes predicted to code for the biosynthesis of the unusual amino acid diaminobutyric acid (Dab) are organized into the lpm cluster even though the Dab residue was not found in the laspartomycins. Disruption of the NRPS lpmC gene completely abolished laspartomycin production in the corresponding mutant strain. These findings will allow molecular engineering and combinatorial biosynthesis approaches to expand the structural diversity of the amphomycin-group peptide antibiotics including the laspartomycins and friulimicins.  相似文献   

14.
α-Cyclopiazonic acid (CPA) is an indole tetramic acid mycotoxin. Based on our identification of the polyketide synthase–nonribosomal peptide synthase (PKS–NRPS) hybrid gene cpaA involved in cyclopiazonic acid biosynthesis in Aspergillus fungi, we carried out heterologous expression of Aspergillus flavus cpaA under α-amylase promoter in Aspergillus oryzae and identified its sole product to be the CPA biosynthetic intermediate cyclo-acetoacetyl-l-tryptophan (cAATrp). This result rationalized that the PKS–NRPS hybrid enzyme CpaA catalyzes condensation of the diketide acetoacetyl-ACP formed by the PKS module and l-Trp activated by the NRPS module. This CpaA expression system provides us an ideal platform for PKS–NRPS functional analysis, such as adenylation domain selectivity and product releasing mechanism.  相似文献   

15.
Serrawettin W1 produced by Serratia marcescens is a surface active exolipid having various functions supporting behaviors of bacteria on surface environments. Through the genetic analyses of serrawettin-less mutants of S. marcescens 274, the swrW gene encoding putative serrawettin W1 synthetase was identified. Homology analysis of the putative SwrW demonstrated the presence of condensation, adenylation, thiolation, and thioesterase domains which are characteristic for nonribosomal peptide synthetase (NRPS). NRPSs have been known as multi-modular enzymes. Linear alignment of these modules specifying respective amino acids will enable peptide bond formation resulting in a specific amino acid sequence. Putative SwrW was uni-modular NRPS specifying only L-serine. Possible steps in this simple unimodular NRPS for biosynthesis of serrawettin W1 [ cyclo-(D-3-hydroxydecanoyl-L-seryl) (2) ] were predicted by referring to the ingenious enzymatic activity of gramicidin S synthetase (multi-modular NRPS) of Brevibacillus brevis.  相似文献   

16.
The biosynthesis of the aromatic polyene macrolide antibiotic candicidin, produced by Streptomyces griseus IMRU 3570, begins with a p-aminobenzoic acid (PABA) molecule which is activated to PABA-CoA and used as starter for the head-to-tail condensation of four propionate and 14 acetate units to produce a polyketide molecule to which the deoxysugar mycosamine is attached. Using the gene coding for the PABA synthase ( pabAB) from S. griseusIMRU 3570 as the probe, a 205-kb region of continuous DNA from the S. griseus chromosome was isolated and partially sequenced. Some of the genes possibly involved in the biosynthesis of candicidin were identified including part of the modular polyketide synthase (PKS), genes for thioesterase, deoxysugar biosynthesis, modification, transport, and regulatory proteins. The regulatory mechanisms involved in the production of candicidin, such as phosphate regulation, were studied using internal probes for some of the genes involved in the biosynthesis of the three moieties of candicidin (PKS, aromatic moiety and amino sugar). mRNAs specific for these genes were detected only in the production medium (SPG) but not in the SPG medium supplemented with phosphate or in the inoculum medium, indicating that phosphate represses the expression of genes involved in candicidin biosynthesis. The modular architecture of the candicidin PKS and the availability of the PKSs involved in the biosynthesis of three polyene antibiotics (pimaricin, nystatin, and amphotericin B) shall make possible the creation of new, less toxic and more active polyene antibiotics through combinatorial biosynthesis and targeted mutagenesis.  相似文献   

17.
Fatty acid synthase of animal tissue is a multifunctional enzyme comprised of two identical subunits, each containing seven partial activities and a site for the prosthetic group, 4'-phosphopantetheine (acyl carrier protein). We have recently isolated cDNA clones of chicken fatty acid synthase coding for the dehydratase, enoyl reductase, beta-ketoacyl reductase, acyl carrier protein, and thioesterase domains (Chirala, S.S., Kasturi, R., Pazirandeh, M., Stolow, D.T., Huang, W.Y., and Wakil, S.J. (1989) J. Biol. Chem. 264, 3750-3757). To gain insight into the structure and function of the various domains, the portion of the cDNA coding for the acyl carrier protein and thioesterase domains was expressed in Escherichia coli by using an expression vector that utilizes the phage lambda PL promoter. The recombinant protein was efficiently expressed and purified to near homogeneity using anion-exchange and hydroxyapatite chromatography. As expected from the coding capacity of the cDNA expressed, the protein has a molecular weight of 43,000 and reacts with antithioesterase antibodies. The recombinant thioesterase was found to be enzymatically active and has the same substrate specificity and kinetic properties as the native enzyme of the multifunctional synthase. Treatment of the recombinant protein with alpha-chymotrypsin results in the cleavage of the acyl carrier protein and thioesterase domain junction sequence at exactly the same site as with native fatty acid synthase. The amino acid composition of the purified recombinant protein revealed the presence of 0.6 mol of beta-alanine/mol of protein, indicating partial pantothenylation of the recombinant acyl carrier protein domain. These results indicate that the expressed protein has a conformation similar to the native enzyme and that its folding into functionally active domains is independent of the remaining domains of the multifunctional synthase subunit. These conclusions are consistent with the proposal that the multifunctional synthase gene has evolved from fusion of component genes.  相似文献   

18.
Pyridomycin is a structurally unique antimycobacterial cyclodepsipeptide containing rare 3-(3-pyridyl)-l-alanine and 2-hydroxy-3-methylpent-2-enoic acid moieties. The biosynthetic gene cluster for pyridomycin has been cloned and identified from Streptomyces pyridomyceticus NRRL B-2517. Sequence analysis of a 42.5-kb DNA region revealed 26 putative open reading frames, including two nonribosomal peptide synthetase (NRPS) genes and a polyketide synthase gene. A special feature is the presence of a polyketide synthase-type ketoreductase domain embedded in an NRPS. Furthermore, we showed that PyrA functioned as an NRPS adenylation domain that activates 3-hydroxypicolinic acid and transfers it to a discrete peptidyl carrier protein, PyrU, which functions as a loading module that initiates pyridomycin biosynthesis in vivo and in vitro. PyrA could also activate other aromatic acids, generating three pyridomycin analogues in vivo.  相似文献   

19.
Analyses of microbial genome sequences reveal numerous examples of gene clusters encoding proteins typically involved in complex natural product biosynthesis but not associated with the production of known natural products. In Streptomyces coelicolor M145 there are several gene clusters encoding new nonribosomal peptide synthetase (NRPS) systems not associated with known metabolites. Application of structure-based models for substrate recognition by NRPS adenylation domains predicts the amino acids incorporated into the putative peptide products of these systems, but the accuracy of these predictions is untested. Here we report the isolation and structure determination of the new tris-hydroxamate tetrapeptide iron chelator coelichelin from S. coelicolor using a genome mining approach guided by substrate predictions for the trimodular NRPS CchH, and we show that this enzyme, which lacks a C-terminal thioesterase domain, together with a homolog of enterobactin esterase (CchJ), are required for coelichelin biosynthesis. These results demonstrate that accurate prediction of adenylation domain substrate selectivity is possible and raise intriguing mechanistic questions regarding the assembly of a tetrapeptide by a trimodular NRPS.  相似文献   

20.
A cloned cDNA containing the entire coding sequence for the long-chain S-acyl fatty acid synthetase thioester hydrolase (thioesterase I) component as well as the 3'-noncoding region of the fatty acid synthetase has been isolated using an expression vector and domain-specific antibodies. The coding region was assigned to the thioesterase I domain by identification of sequences coding for characterized peptide fragments, amino-terminal analysis of the isolated thioesterase I domain and the presence of the serine esterase active-site sequence motif. The thioesterase I domain is 306 amino acids long with a calculated molecular mass of 33,476 daltons; its DNA is flanked at the 5'-end by a region coding for the acyl carrier protein domain and at the 3'-end by a 1,537-base pairs-long noncoding sequence with a poly(A) tail. The thioesterase I domain exhibits a low, albeit discernible, homology with the discrete medium-chain S-acyl fatty acid synthetase thioester hydrolases (thioesterase II) from rat mammary gland and duck uropygial gland, suggesting a distant but common evolutionary ancestry for these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号