首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The RNA polymerase associated with RpoS transcribes many genes related to stationary phase and stress survival in Escherichia coli. The DNA sequence of rpoS exhibits a high degree of polymorphism. A C to T transition at position 99 of the rpoS ORF, which results in a premature amber stop codon often found in E. coli strains. The rpoSam mutant expresses a truncated and partially functional RpoS protein. Here, we present new evidence regarding rpoS polymorphism in common laboratory E. coli strains. One out of the six tested strains carries the rpoSam allele, but expressed a full-length RpoS protein owing to the presence of an amber supressor mutation. The rpoSam allele was transferred to a non-suppressor background and tested for RpoS level, stress resistance and for the expression of RpoS and sigma70-dependent genes. Overall, the rpoSam strain displayed an intermediate phenotype regarding stress resistance and the expression of σS-dependent genes when compared to the wild-type rpoS + strain and to the rpoS null mutant. Surprisingly, overexpression of rpoSam had a differential effect on the expression of the σ70-dependent genes phoA and lacZ that, respectively, encode the enzymes alkaline phosphatase and β-galactosidase. The former was enhanced while the latter was inhibited by high levels of RpoSam.  相似文献   

2.
The rpoS gene from Pseudomonas sp. M18, which encodes predicted protein (an alternative sigma factor s, σS, or σ38) with 99.5% sequence identity with RpoS from Pseudomonas aeruginosa PAO1, was first cloned. In order to investigate the mechanism of rpoS expression, an rpoS null mutant, named M18S, was constructed with insertion of aacC1 cassette bearing a gentamycin resistance gene. With introduction of a plasmid containing an rpoS′–′lacZ translational fusion (pMERS) to wild-type strain M18 or M18S, it was first found that β-galactosidase activity expressed in strain M18S (pMERS) decreased to fourfold of that expressed in the strain M18 (pMERS). When strain M18S (pMERS) was introduced with another plasmid pBBS containing the wild-type rpoS gene, its β-galactosidase expression level was enhanced and almost restored to that in strain M18 (pMERS). Similarly, expression of β-galactosidase from a chromosomal fusion of the promoter of the wild-type rpoS gene with lacZ (rpoSlacZ) was enhanced fivefold in the presence of a plasmid with the wild-type rpoS gene. With these findings, it is suggested that RpoS sigma factor may be involved in autoinducing its own gene expression in Pseudomonas sp. M18.  相似文献   

3.
We have previously demonstrated that low-shear modeled microgravity (low-shear MMG) serves to enhance the virulence of a bacterial pathogen, Salmonella enterica serovar Typhimurium. The Salmonella response to low-shear MMG involves a signaling pathway that we have termed the low-shear MMG stimulon, though the identities of the low-shear MMG stimulon genes and regulatory factors are not known. RpoS is the primary sigma factor required for the expression of genes that are induced upon exposure to different environmental-stress signals and is essential for virulence in mice. Since low-shear MMG induces a Salmonella acid stress response and enhances Salmonella virulence, we reasoned that RpoS would be a likely regulator of the Salmonella low-shear MMG response. Our results demonstrate that low-shear MMG provides cross-resistance to several environmental stresses in both wild-type and isogenic rpoS mutant strains. Growth under low-shear MMG decreased the generation time of both strains in minimal medium and increased the ability of both strains to survive in J774 macrophages. Using DNA microarray analysis, we found no evidence of induction of the RpoS regulon by low-shear MMG but did find that other genes were altered in expression under these conditions in both the wild-type and rpoS mutant strains. Our results indicate that, under the conditions of these studies, RpoS is not required for transmission of the signal that induces the low-shear MMG stimulon. Moreover, our studies also indicate that low-shear MMG can be added to a short list of growth conditions that can serve to preadapt an rpoS mutant for resistance to multiple environmental stresses.  相似文献   

4.
During entry into stationary phase, many free-living, gram-negative bacteria express genes that impart cellular resistance to environmental stresses, such as oxidative stress and osmotic stress. Many genes that are required for stationary-phase adaptation are controlled by RpoS, a conserved alternative sigma factor, whose expression is, in turn, controlled by many factors. To better understand the numbers and types of genes dependent upon RpoS, we employed a genetic screen to isolate more than 100 independent RpoS-dependent gene fusions from a bank of several thousand mutants harboring random, independent promoter-lacZ operon fusion mutations. Dependence on RpoS varied from 2-fold to over 100-fold. The expression of all fusion mutations was normal in an rpoS/rpoS+ merodiploid (rpoS background transformed with an rpoS-containing plasmid). Surprisingly, the expression of many RpoS-dependent genes was growth phase dependent, albeit at lower levels, even in an rpoS background, suggesting that other growth-phase-dependent regulatory mechanisms, in addition to RpoS, may control postexponential gene expression. These results are consistent with the idea that many growth-phase-regulated functions in Escherichia coli do not require RpoS for expression. The identities of the 10 most highly RpoS-dependent fusions identified in this study were determined by DNA sequence analysis. Three of the mutations mapped to otsA, katE, ecnB, and osmY—genes that have been previously shown by others to be highly RpoS dependent. The six remaining highly-RpoS-dependent fusion mutations were located in other genes, namely, gabP, yhiUV, o371, o381, f186, and o215.  相似文献   

5.
6.
Synthetic acid tolerance, especially during active cell growth, is a desirable phenotype for many biotechnological applications. Natively, acid resistance in Escherichia coli is largely a stationary-phase phenotype attributable to mechanisms mostly under the control of the stationary-phase sigma factor RpoS. We show that simultaneous overexpression of noncoding small RNAs (sRNAs), DsrA, RprA and ArcZ, which are translational RpoS activators, increased acid tolerance (based on a low-pH survival assay) supra-additively up to 8500-fold during active cell growth, and provided protection against carboxylic acid and oxidative stress. Overexpression of rpoS without its regulatory 5′-UTR resulted in inferior acid tolerance. The supra-additive effect of overexpressing the three sRNAs results from the impact their expression has on RpoS-protein levels, and the beneficial perturbation of the interconnected RpoS and H-NS networks, thus leading to superior tolerance during active growth. Unlike the overexpression of proteins, overexpression of sRNAs imposes hardly any metabolic burden on cells, and constitutes a more effective strain engineering strategy.  相似文献   

7.
8.
The effect of mutation in rpoS gene encoding sigma S subunit of RNA-polymerase on the capacity of Pseudomonas chlororaphis 449 to assimilate nitrogen was investigated. It has been shown that mutant cells with knocked-out rpoS gene had significantly lower capacity to utilize the nitrogen sources such as alanine, proline, histidine, arginine, urea, and ammonium and glutamine synthetase was downregulated in their cell free extracts. Both defects were abolished by glutamine supplementation to the medium. It is suggested that in Pseudomonas chlororaphis the association of the nitrogen control system and the system of gene expression is regulated by RNA-polymerase sigma S subunit, which can be responsible for cell adaptation at nitrogen supply limitation.  相似文献   

9.
The Erwinia amylovora rpoS gene, encoding the alternative sigma factor RpoS, has been cloned and characterized. Though highly sensitive to a number of environmental stresses, an E. amylovora rpoS mutant was not compromised in its ability to grow or cause disease symptoms within apple seedlings or in an overwintering model.  相似文献   

10.
Quorum sensing, bacterial cell-to-cell communication with small signal molecules, controls the virulence of many pathogens. In contrast to other vibrios, neither the VanI/VanR acylhomoserine lactone quorum sensing system, nor the three-channel quorum sensing system affects virulence of the economically important aquatic pathogen Vibrio anguillarum. Indole is another molecule that recently gained attention as a putative signal molecule. The data presented in this study indicate that indole signaling and the alternative sigma factor RpoS have a significant impact on the virulence of V. anguillarum. Deletion of rpoS resulted in increased expression of the indole biosynthesis gene tnaA and in increased production of indole. Both rpoS deletion and the addition of exogenous indole (50–100 µM) resulted in decreased biofilm formation, exopolysaccharide production (a phenotype that is required for pathogenicity) and expression of the exopolysaccharide synthesis gene wbfD. Further, indole inhibitors increased the virulence of the rpoS deletion mutant, suggesting that indole acts downstream of RpoS. Finally, in addition to the phenotypes found to be affected by indole, the rpoS deletion mutant also showed increased motility and decreased sensitivity to oxidative stress.  相似文献   

11.
12.
13.
DnaK is essential for starvation-induced resistance to heat, oxidation, and reductive division in Escherichia coli. Studies reported here indicate that DnaK is also required for starvation-induced osmotolerance, catalase activity, and the production of the RpoS-controlled Dps (PexB) protein. Because these dnaK mutant phenotypes closely resemble those of rpoS38) mutants, the relationship between DnaK and RpoS was evaluated directly during growth and starvation at 30°C in strains with genetically altered DnaK content. A starvation-specific effect of DnaK on RpoS abundance was observed. During carbon starvation, DnaK deficiency reduced RpoS levels threefold, while DnaK excess increased RpoS levels nearly twofold. Complementation of the dnaK mutation restored starvation-induced RpoS levels to normal. RpoS deficiency had no effect on the cellular concentration of DnaK, revealing an epistatic relationship between DnaK and RpoS. Protein half-life studies conducted at the onset of starvation indicate that DnaK deficiency significantly destabilized RpoS. RpoH (ς32) suppressors of the dnaK mutant with restored levels of RpoS and dnaK rpoS double mutants were used to show that DnaK plays both an independent and an RpoS-dependent role in starvation-induced thermotolerance. The results suggest that DnaK coordinates sigma factor levels in glucose-starved E. coli.  相似文献   

14.
Cellular robustness is an important trait for industrial microbes, because the microbial strains are exposed to a multitude of different stresses during industrial processes, such as fermentation. Thus, engineering robustness in an organism in order to push the strains toward maximizing yield has become a significant topic of research. We introduced the deinococcal response regulator DR1558 into Escherichia coli (strain Ec-1558), thereby conferring tolerance to hydrogen peroxide (H2O2). The reactive oxygen species (ROS) level in strain Ec-1558 was reduced due to the increased KatE catalase activity. Among four regulators of the oxidative-stress response, OxyR, RpoS, SoxS, and Fur, we found that the expression of rpoS increased in Ec-1558, and we confirmed this increase by Western blot analysis. Electrophoretic mobility shift assays showed that DR1558 bound to the rpoS promoter. Because the alternative sigma factor RpoS regulates various stress resistance-related genes, we performed stress survival analysis using an rpoS mutant strain. Ec-1558 was able to tolerate a low pH, a high temperature, and high NaCl concentrations in addition to H2O2, and the multistress tolerance phenotype disappeared in the absence of rpoS. Microarray analysis clearly showed that a variety of stress-responsive genes that are directly or indirectly controlled by RpoS were upregulated in strain Ec-1558. These findings, taken together, indicate that the multistress tolerance conferred by DR1558 is likely routed through RpoS. In the present study, we propose a novel strategy of employing an exogenous response regulator from polyextremophiles for strain improvement.  相似文献   

15.
16.
To study the physiological roles of polyamines, we carried out a global microarray analysis on the effect of adding polyamines to an Escherichia coli mutant that lacks polyamines because of deletions in the genes in the polyamine biosynthetic pathway. Previously, we have reported that the earliest response to polyamine addition is the increased expression of the genes for the glutamate-dependent acid resistance system (GDAR). We also presented preliminary evidence for the involvement of rpoS and gadE regulators. In the current study, further confirmation of the regulatory roles of rpoS and gadE is shown by a comparison of genome-wide expression profiling data from a series of microarrays comparing the genes induced by polyamine addition to polyamine-free rpoS+/gadE+ cells with genes induced by polyamine addition to polyamine-free ΔrpoS/gadE+ and rpoS+gadE cells. The results indicate that most of the genes in the E. coli GDAR system that are induced by polyamines require rpoS and gadE. Our data also show that gadE is the main regulator of GDAR and other acid fitness island genes. Both polyamines and rpoS are necessary for the expression of gadE gene from the three promoters of gadE (P1, P2, and P3). The most important effect of polyamine addition is the very rapid increase in the level of RpoS sigma factor. Our current hypothesis is that polyamines increase the level of RpoS protein and that this increased RpoS level is responsible for the stimulation of gadE expression, which in turn induces the GDAR system in E. coli.  相似文献   

17.
18.
Shigella flexneri grown to stationary phase has the ability to survive for several hours at pH 2.5. This acid resistance, which may contribute to the low infective dose associated with shigellosis, is dependent upon the expression of the stationary-phase-specific sigma factor σs. Using random TnphoA and TnlacZ mutagenesis we isolated five acid-sensitive mutants of S. flexneri, which had lost their ability to survive at pH 2.5 for 2 h in vitro. Each transposon insertion with flanking S. flexneri DNA was cloned and sequenced. Database searches indicated that two TnlacZ mutants had an insertion within the hdeA gene, which is the first gene in the hdeAB operon. Acid resistance was restored in one of these mutants by a plasmid carrying the entire hdeAB operon. Further sequence analysis from the remaining TnlacZ and two TnphoA mutants demonstrated that they all had insertions within a previously unidentified open reading frame (ORF), which is directly downstream from the gadB gene. This putative ORF encodes a protein that has homology to a number of inner membrane amino acid antiporters. A 1.8 kb polymerase chain reaction (PCR) product containing this gene was cloned, which was able to restore acid resistance in each mutant. These fusions were induced during entry into late exponential phase and were positively regulated by RpoS. We confirmed that the expression of the acid-resistance phenotype in acidified minimal media was dependent upon the supplementation of glutamic acid and that this glutamate-dependent system was RpoS regulated. Southern hybridization revealed that both the gadC and hdeAB loci are absent in Salmonella. An rpoS deletion mutant of S. flexneri was also constructed to confirm the important role played by this gene in acid resistance. This rpoS ? derivative was extremely acid sensitive. Two-dimensional gel electrophoresis of this mutant revealed that it no longer expressed 27 proteins in late log phase that were present in its isogenic parent. These data indicate that the expression of acid resistance in S. flexneri may be multifactorial and involve proteins located at different subcellular locations.  相似文献   

19.
Translation of the sigma factor RpoS is activated by DsrA, RprA and ArcA, three small non-coding sRNAs (sRNA) that expose the ribosome-binding site (RBS) by opening up an inhibitory loop. In the RpoS network, no sRNAs have been found to pair with the RBS, a most common sRNA target site in bacteria. Here, we generate Ribo-0, an artificial sRNA, which represses rpoS translation by pairing with the RBS. Ribo-0 bypasses the RNA chaperon Hfq but requires the RBS to be loosely blocked. Ribo-0 interacts with DsrA and reshapes the RpoS network. Specifically, in the intact RpoS network, DsrA activates rpoS translation by freeing up the RBS. In the modified RpoS network where Ribo-0 is introduced, the DsrA-caused RBS exposure facilitates Ribo-0 binding, thereby strengthening Ribo-0 inhibition. In other words, Ribo-0 changes DsrA from an activator to an accomplice for repressing rpoS translation. This work presents an artificial mechanism of rpoS regulation, reveals mutual effects of native and synthetic players and demonstrates genetic context-dependency of their functions.  相似文献   

20.
Escherichia coli growing on glucose in minimal medium controls its metabolite pools in response to environmental conditions. The extent of pool changes was followed through two-dimensional thin-layer chromatography of all 14C-glucose labelled compounds extracted from bacteria. The patterns of metabolites and spot intensities detected by phosphorimaging were found to reproducibly differ depending on culture conditions. Clear trends were apparent in the pool sizes of several of the 70 most abundant metabolites extracted from bacteria growing in glucose-limited chemostats at different growth rates. The pools of glutamate, aspartate, trehalose, and adenosine as well as UDP-sugars and putrescine changed markedly. The data on pools observed by two-dimensional thin-layer chromatography were confirmed for amino acids by independent analysis. Other unidentified metabolites also displayed different spot intensities under various conditions, with four trend patterns depending on growth rate. As RpoS controls a number of metabolic genes in response to nutrient limitation, an rpoS mutant was also analyzed for metabolite pools. The mutant had altered metabolite profiles, but only some of the changes at slow growth rates were ascribable to the known control of metabolic genes by RpoS. These results indicate that total metabolite pool (“metabolome”) analysis offers a means of revealing novel aspects of cellular metabolism and global regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号