首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Summary The endocardium of Oniscus asellus L. and Asellus aquaticus L. consists of lipid cells. The epicardium consists of a layer of cells with a vesiculated cytoplasm covered by a thick extracellular fibrous sheet. The myocardium is a single layer of cells, the sarcolemma invaginates at Z disc level forming transverse tubules, and longitudinal tubules branch off from these. At the A-I level' longitudinal tubules form transverse systems, which form couplings with the sarcoplasmic reticulum. The sarcoplasmic reticulum appears as perforated sheets enveloping the myofibrils. Two types of nerve terminal are found: one is embedded in a myocardial cell process, the other lies in a myocardial cell depression. They contain clear and dense-cored synaptic vesicles.This work was supported by grants from the Norwegian Research Council for Science and the Humanities  相似文献   

3.
The effects of temperature on four dehydrogenases in homogenates of promastigotes of Leishmania donovani (several strains), L. mexicana, and L. tarentolae were studied.  相似文献   

4.
In the legume Phaseolus vulgaris L., glutamine synthetase (GS; EC.6.3.1.2.) is encoded by four actively transcribed genes, gln-, gln-, gln- and gln-. We have studied the expression of these genes in cotyledons during seed germination and have studied the effect of light and nitrate on this process. An RNase-protection method, used to detect the abundances of GS mRNAs, revealed that the four GS genes are differentially expressed in the germinating cotyledons. The gln-. mRNA was present in dry seeds and was the most abundant GS mRNA during early stages of germination. The gln- and gln- mRNAs were first detectable 2 d after sowing and their abundances differed in light- and dark-grown cotyledons at later stages of germination. The gln- mRNA (which encodes the plastid-located GS) was detectable only in light-grown cotyledons, at a low abundance. A nitrate supply of 2 mM had only a minor effect on the expression of the GS genes. Western immunodetection and ion-exchange high-performance liquid chromatography demonstrated that the polypeptide and isoenzyme were present in extracts of dry seeds and represented the major GS products at 2 d and 4 d. Both the and polypeptides appeared at the 2-d stage. The role of differential GS gene expression in controlling cotyledonary GS activity is discussed.Abbreviations 1D, 2D one-, two-dimensional - GS glutamine synthetase - GSt GS transferase activity - IEX-HPLC ion-exchange high-performance liquid chromatography - kDa kilodaltons - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis We are grateful to the Association of Commonwealth Universities and the Science and Engineering Research Council for financially supporting R.S. and to the S.E.R.C. for a grant to support M.J.B. We would like to thank Dr K.J.F. Farnden (University of Otago, New Zealand) and Dr T.H.N. Ellis (John Innes Institute, Norwich) for scanning the autoradiographs for Fig. 2.  相似文献   

5.
Nitrate and nitrite reductases were both induced by adding three concentrations of nitrate to the nutrient supply of nitrate-starved barley seedlings. Enzyme induction was not proportional to the amount of nitrate introduced. Glutamine synthetase also increased above a high endogenous activity but the increase did not differ significantly between any of the three nitrate treatments. Nitrate accumulated rapidly in leaves of plants given 4.0 mM or 0.5 mM nitrate but not with 0.1 mM nitrate. In all treatments, amino acids in leaves increased for 2 d, chiefly attributable to glutamine, then declined. Transferring plants from the three nitrate treatments to nitrate-free nutrient produced an immediate decline in nitrate reductase but nitrite reductase continued to increase for 2 d, before declining. Glutamine-synthetase activity was not affected by withdrawal of nitrate, nor did nitrate withdrawal retard plant growth during the 9-d period of the experiment. The disparity between accumulated nitrate and nitrate-reducing capacity and the rapid decrease in leaf nitrate when nutrient nitrate supply was removed, indicated the presence of a nitrate-storage pool that could be called upon to maintain amino-acid production in times of nitrogen starvation.Abbreviations GS glutamine synthetase - NR nitrate reductase - NiR nitrite reductase  相似文献   

6.
Gebauer  G.  Hahn  G.  Rodenkirchen  H.  Zuleger  M. 《Plant and Soil》1998,199(1):59-70
Nitrate reductase activities (NRA) and nitrate concentration per unit biomass in Picea abies (L.) Karst. roots from four different soil horizons and in leaves and roots of the frequent field-layer species Oxalis acetosella L. were measured on six different irrigation and liming treatments within the Höglwald project, S-Bavaria, Germany. Liming increased and acid irrigation reduced soil nitrate availability when compared to control plots. Nitrate assimilation capacities of the respective plant compartments per unit of soil volume or ground area were calculated from the NRA per unit of biomass and from the biomass distribution on the various treatments.Mean NRA per unit of biomass in Picea abies roots ranged between 0.23 and 0.09 mol NO 2 - g-1 d.w. h-1 without significant effects of soil horizon or treatment. Limed and non-limed treatments showed for Picea different root distributions within the soil profile, but root biomass per unit of ground area (295 to 220 g d.w. m-2) was not affected by the various treatments. Thus, nitrate assimilation capacity of Picea roots per unit of ground area ranged between 19.5 and 11.4 mol NO 2 - m-2 h-1 without major treatment effects.In laminae of Oxalis acetosella mean NRA per unit of biomass ranged between 2.91 and 0.27 mol NO 2 - g-1 d.w. h-1 and, in contrast to Picea abies, treatment effects were found with NRA on limed plots increased and on acid irrigated plots reduced when compared to control plots. Mean leaf biomass of Oxalis per unit of ground area ranged between 9.57 and 0.66 g d.w. m-2 and responded in a similar manner to the various treatments. Thus, for the Oxalis leaf NRA per unit of ground area (27.85 to 0.18 mol NO2 m-2 h-1) a cumulative response to the variations in nitrate availability was found.The different responses of Picea abies and Oxalis acetosella to changes in soil nitrate availability are discussed with respect to their suitability to prevent soil nitrate leaching.  相似文献   

7.
8.
Decreased nitrate in vegetables can improve crop nitrogen utilization efficiency and lessen the human health risk caused by the reduction of nitrate to nitrite in vegetables. This paper studied the mechanisms of differences in nitrate accumulation and distribution within organs of two cultivars of pakchoi (Brassica campestris L.ssp. Chinensis (L.) previously screened in hydroponic experiments from 12 cultivars popularly grown in China at present. The two typical cultivars used in this experiment were Shanghaiqing with low nitrate accumulation and Liangbaiye 1 with high nitrate accumulation. There was no significant difference of total nitrate uptake but a significant difference in nitrate content existed between the two cultivars. Compared with Liangbaiye 1, Shanghaiqing showed a significantly higher photosynthetic rate and nitrate reductase activity. Determination of nitrate concentration (activity) in vacuoles with double-barrelled nitrate-selective microelectrodes showed that Shanghaiqing had lower vacuolar nitrate activity than Liangbaiye 1. Two putative nitrate reductase genes, nia1 and nia2, were amplified from the leaf blades of these two cultivars. Nia1 mRNA fragments (887 bp, accession numbers DQ082868 and DQ082869) were amplified using degenerate primer and nia2 mRNA fragment was amplified using one pair of generate primers designed according to DQ001901. Sequence analysis of DQ082868 and DQ082869 both showed 97% and 87% similarity with two nitrate reductase mRNA sequences of Brassica napus, accession numbers D38219 and D38220, respectively. The results of real time PCR to compare the relative expression of the putative nitrate reductase genes (nia1 and nia2) showed that Shanghaiqing had significantly higher expression level than Liangbaiye 1 and nia2 was significantly higher than nia1 in leaf blade and petiole. Both the nitrate reductase activity and the relative expression level of nia1 were in the order of leaf blade > root > petiole, while that of nia2 was leaf blade > petiole > root. There was no statistically significant difference of nitrate activity stored in vacuoles between the different organs of the two cultivars. It can be concluded that Shanghaiqing took up slightly less nitrate, but had significantly higher nitrate reductase activity in cytosol and had a higher relative expression of the putative nitrate reductase genes than Liangbaiye 1; this leads to the fact that Shanghaiqing has a lower nitrate content than Liangbaiye 1.  相似文献   

9.
Remobilisation of vacuolar stored nitrate in barley root cells   总被引:12,自引:0,他引:12  
Double-barrelled nitrate-selective microelectrodes have been used to measure the time course of the remobilisation of vacuolar stored nitrate in barley (Hordeum vulgare L. cv. Klaxon) root cells during 24 h of nitrate deprivation. These measurements showed that there are different time courses for this process in epidermal and cortical cells of the same root. The remobilisation was much slower from cortical cell vacuoles and had a time course which was similar to that obtained for tissue digests of the roots. The microelectrodes were also used to measure the nitrate concentration in sap exuding from detopped seedlings. These measurements showed that there was a gradual decrease in the delivery of nitrate to the shoot during this time. Root nitrate reductase activity of neither shoots nor roots changed significantly during the first 24 h. Direct measurement of the cytosolic nitrate in a root epidermal cell showed that during short-term changes, such as a 20-min exposure to zero external nitrate supply, cytosolic nitrate was maintained relatively unchanged. Net nitrate efflux from the roots was measurable during the initial 5 h of the zero-nitrate incubation period; after this time no further nitrate efflux was detectable. These measurements are discussed in relation to the nitrate budget of a root cell and we conclude that during the first 24 h of nitrate withdrawal vacuolar nitrate can be readily mobilised to supply the nitrogen demands of the seedling and to maintain the cytosolic nitrate concentration. Received: 31 July 1997 / Accepted 11 December 1997  相似文献   

10.
11.
Nitrate reduction in roots and shoots and exchange of reduced N between organs were quantitatively estimated in intact 13-d-old seedlings of two-row barley (Hordeum vulgare L. cv. Daisengold) using the 15N-incorporation model (A. Gojon et al. (1986) Plant Physiol. 82, 254–260), except that NH + 4 was replaced by NO - 2 . N-depleted seedlings were exposed to media containing both nitrate (1.8 mM) and nitrite (0.2 mM) under a light-dark cycle of 12:12 h at 20°C; the media contained different amounts of 15N labeling. Experiments were started either immediately after the beginning (expt. 1) or immediately prior to the end (expt. 2) of the light period, and plants were sampled subsequently at each light-dark transition throughout 36 h. The plants effectively utilized 15NO - 3 and accumulated it as reduced 15N, predominantly in the shoots. Accumulation of reduced 15N in both experiments was nearly the same at the end of the experiment but the accumulation pattern in roots and shoots during each 12-h period differed greatly depending on time and the light conditions. In expt. 1, the roots accounted for 31% (light), 58% (dark), and 9% (light) of nitrate reduction by the whole plants, while in expt. 2 the contributions of the root were 82% (dark), 20% (light), and 29% (dark), during each of the three 12-h periods. Xylem transport of nitrate drastically decreased in the dark, but that of reduced N rather increased. The downward translocation of reduced 15N increased while nitrate reduction in the root decreased, whereas upward translocation decreased while nitrate reduction in the shoot increased. We conclude that the cycling of reduced N through the plant is important for N feeding of each organ, and that the transport system of reduced N by way of xylem and phloem, as well as nitrate reduction by root and shoot, can be modulated in response to the relative magnitude of reduced-N demands by the root and shoot, with the one or the other predominating under different circumstances.Symbols Anl accumulation of reduced 15N from 15NO - 3 in 14NO - 3 -fed roots of divided root system - Ar accumulation in root of reduced 15N from 15NO - 3 - As accumulation in shoot of reduced 15N from 15NO - 3 - Rr 15NO - 3 reduction in root - Rs 15NO - 3 reduction in shoot - Tp translocation to root of shoot-reduced 15N from 15NO - 3 in phloem - Tx translocation to shoot of root-reduced 15N from 15NO - 3 in xylem  相似文献   

12.
13.
14.
15.
通过盆栽和水培试验,探讨了硝态氮对小白菜铬污染毒性的调控作用。结果表明:外源Cr6 对小白菜铬吸收和积累具有明显的促进效应,抑制了小白菜对铁养分的吸收并降低了小白菜的硝酸还原酶活性;硝态氮可有效缓减Cr6 对小白菜吸收铁和硝酸还原酶活性的抑制作用,促进小白菜碳氮代谢和Vc的生物合成,并刺激小白菜生长。在相同铬污染条件下,土壤硝态氮的增加促进了外源Cr6 向有机态转化,且硝态氮有协同强化小白菜吸收Cr6 的效应。表明硝态氮在促进小白菜生长的同时,也促进了小白菜对Cr6 的吸收,提高了小白菜的铬累积水平。  相似文献   

16.
P. lanceolata andP. major were grown in culture solutions with nitrate or ammonium as the nitrogen source. Dry matter accumulation in the shoot was faster with nitrate than with ammonium, whilst that of the roots was not affected by the nitrogen source. As a consequence, the shoot-to-root ratio was lower with ammonium than with nitrate. InP. lanceolata, dry matter percentage of shoot and root tissue was lower with nitrate nutrition, suggesting better elongation growth than with ammonium. However, in shoot tissue ofP. major the opposite was found. The rate of root respiration declined with time, and this was almost completely due to a declining activity of the alternative path, which amounted to about 30–60% of total root respiration. Respiration via the cytochrome path was for a part of time slightly increased by ammonium, whereas the activity of the alternative path was strongly enhanced. The concentration of ethanol-soluble carbohydrates (SC) in the roots of both species was higher when nitrate was used, but no difference in the concentration of starch was found. When the plants were transferred from one nitrogen source to the other, many parameters, including the concentration of nitrate and chloride, and the shoot to root ratio, adjusted to the new situation in both species. Grassland Species Research Group, Publication no. 116.  相似文献   

17.
With the aims (1) to test whether the different natural occurrence of twoPlantago species in grasslands is explained by a different preference of the species for nitrate or ammonium; (2) to test whether the different occurrence is explained by differences in the flexibility of the species towards changes in the nitrogen form; (3) to find suitable parameters as a tool to study ammonium and nitrate utilization of these species at the natural sites in grasslands, plants ofPlantago lanceolata andP. major ssp.major were grown with an abundant supply of nitrate, ammonium or nitrate+ammonium as the nitrogen source (0.5 mM). The combination of ammonium and nitrate gave a slightly higher final plant weight than nitrate or ammonium alone. Ammonium lowered the shoot to root ratio inP. major. Uptake of nitrate per g root was faster than that of ammonium, but from the mixed source ammonium and nitrate were taken up at the same rate. In vivo nitrate reductase activity (NRA) was present in both shoot and roots of plants receiving nitrate. When ammonium was applied in addition to nitrate, NRA of the shoot was not affected, but in the root the activity decreased. Thus, a larger proportion of total NRA was present in the shoot than with nitrate alone. In vitro glutamate dehydrogenase activity (GDHA) was enhanced by ammonium, both in the shoot and in the roots.In vitro glutamine synthetase activity (GSA) was highest in roots of plants receiving ammonium. Both GDHA and GSA were higher inP. lanceolata than inP. major. The concentration of ammonium in the roots increased with ammonium, but it did not accumulate in the shoot. The concentration of amino acids in the roots was also enhanced by ammonium. Protein concentration was not affected by the form of nitrogen. Nitrate accumulated in both the shoot and the roots of nitrate grown plants. When nitrate in the solution was replaced by ammonium, the nitrate concentration in the roots decreased rapidly. It also decreased in the shoot, but slowly. It is concluded that the nitrogen metabolism of the twoPlantago species shows a similar response to a change in the form of the nitrogen source, and that differences in natural occurrence of these species are not related to a differential adaptation of nitrogen metabolism towards the nitrogen form. Suitable parameters for establishing the nitrogen source in the field are thein vivo NRA, nitrate concentrations in tissues and xylem exudate, and the fraction of total reduced nitrogen in the roots that is in the soluble form, and to some extent thein vitro GDHA and GSA of the roots. Grassland Species Research Group. Publ. no 118.  相似文献   

18.
19.
cNR, cytosolic nitrate reductase
PM-NR, plasma membrane-bound nitrate reductase

Activities of plasma membrane-bound nitrate reductase (PM-NR) and cytosolic nitrate reductase (cNR) in tobacco (Nicotiana tabacum L. cv. Samsun) are regulated differently, depending upon the nitrate supply to the culture medium (in sand culture). The cNR activity of roots was higher at low nitrate concentrations with the maximum at 5 mM nitrate supply and declined to low values beyond 5 mM . In contrast, the PM-NR activity of roots increased with higher nitrate concentrations with the maximum at 25 mM nitrate and clearly decreased only at 40 mM . This high PM-NR activity correlated with a low growth rate and might be one of the responses to excess nitrate. Internal nitrate and total nitrogen content of the tissues, however, showed a relative minimum in shoots and in roots of between 15 and 25 mM external nitrate. With declining PM-NR activities beyond 25 mM external nitrate, the nitrate content in the tissue increased indicating an inverse relationship between tissue nitrate content and root PM-NR activity. In leaves both NR activities (cNR and PM-NR) correlated with the internal nitrate content, but with a different response at low nitrate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号