首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ hybridization of Drosophila melanogaster somatic chromosomes has been used to demonstrate the near exact correspondence between the location of highly repetitious DNA and classically defined constitutive heterochromatin. The Y chromosome, in particular, is heavily labeled even by cRNA transcribed from female (XX) DNA templates (i.e., DNA from female Drosophila with 2 Xs and 2 sets of autosomes). This observation confirms earlier reports that the Y chromosome contains repeated DNA sequences that are shared by other chromosomes. In grain counting experiments the Y chromosome shows significantly heavier label than any other chromosome when hybridized with cRNA from XY DNA templates (i.e., DNA from male Drosophila with 1 X and 1 Y plus 2 sets of autosomes). However, the preferential labeling of the Y is abolished if the cRNA is derived from XX DNA. We interpret these results as indicating the presence of a class of Y chromosome specific repeated DNA in D. melanogaster. The relative inefficiency of the X chromosome in binding cRNA from XY and XYY DNA templates, coupled with its ability to bind XX derived cRNA, may also indicate the presence of an X chromosome specific repeated DNA.  相似文献   

2.
A series of Y recombinants have been isolated from Y-specific DNA libraries and regionally located on the Y chromosome using a Y deletion panel constructed from individuals carrying structural abnormalities of the Y chromosome. Of twenty recombinants examined twelve have been assigned to Yp and eight to Yq. Five of the Yp recombinants map between Yp11.2 and Ypter and one can only be assigned to Yp. Of the former, four detect homologies on the X chromosome between Xq13 and Xq24 and the latter one between Xp22.3 and Xpter. The sixth recombinant detects autosomal homologous sequences. The six remaining Yp probes are located between Ycen and Yp11.2. One of these detects a homology on the X chromosome at Xq13-Xq24 and a series of autosomal sequences, two detect uniquely Y-specific sequences and three a complex pattern of autosomal homologies. The remaining eight recombinants have been assigned to three intervals on Yq. Of three recombinants located between Ycen and Yq11.21 two detect only Y sequences and one additional autosomal homologies. Two recombinants lie in the interval Yq11.21-Yq11-22, one of which detects only Y sequences and the other an Xp homology between Xp22.3 and Xpter. Finally, the three remaining Yq recombinants all detect autosomal homologies and are located between Yq11.22 and Yq12. The divergence between homologies on different chromosomes has been examined for three recombinants by washing Southern Blots at different levels of stringency. Additionally, Southern analysis of DNA from flow sorted chromosomes has been used to identify autosomes carrying homologies to two of the Y recombinants.  相似文献   

3.
克鲁维酵母种间原生质体融合的研究   总被引:5,自引:0,他引:5  
乳酸克鲁维酵母(Kluyueromyces lactis Y12—1)和脆壁克鲁维酵母(K.fragilis8554)是乳糖酶生产菌株。应用原生质体融合技术进行了两菌株种问融合的研究。通过试验.原生质体形成及再生的最佳条件为:对数期的细胞,2%的蜗牛酶.30℃酶解30分钟.原生质体形成率90%以上,再生率20%左右。原生质体融合由聚乙二醇(PEG)诱导。K.lactisY12-l不能旋酵菊糖;K.fragilis 8554不能同化D-松三糖和麦芽糖;利用二菌株自身的营养缺陷性质获得融合子。融合子既能发酵菊糖又能同化D-松三糖和麦芽糖;融合子的DNA含量约为二亲株之和;融合子的菌落形态与亲株相比有一定差别.在以乳糖为碳源的培养基中,融合子的乳糖酶产量提高14一l6%;连续15次传代,融合子稳定。  相似文献   

4.
Summary Gene conversion of large DNA heterologous fragments has been shown to take place efficiently in Saccharomyces cerevisiae. It has been found that a 2.6 kb LEU2 DNA fragment in a multicopy plasmid was replaced by a 3.1 kb PG11 chromosomal DNA fragment, when both fragments were flanked by homologous DNA regions. Gene conversion was asymmetric in a total of 481 recombinants analyzed. In contrast, truncated PG11 or LEU2 genes in multicopy plasmids, gave no recombinants that restored a complete plasmid copy of these genes in a total of 242 recombinants studied, confirming that a conversion tract is disrupted by a heterologous region. The asymmetry of the events detected suggest that gene conversion of large DNA heterologies involves a process whereby a gap first covers one heterologous fragment and then this is followed by new DNA synthesis using the other heterologous fragment as a template. Therefore, it is likely that large DNA heterologies are converted by a double-strand gap repair mechanism.  相似文献   

5.
Few angiosperms have distinct Y chromosomes. Among those that do are Silene latifolia (Caryophyllaceae), Rumex acetosa (Polygonaceae) and Coccinia grandis (Cucurbitaceae), the latter having a male/female difference of 10% of the total genome (female individuals have a 0.85 pg genome, male individuals 0.94 pg), due to a Y chromosome that arose about 3 million years ago. We compared the sequence composition of male and female C. grandis plants and determined the chromosomal distribution of repetitive and organellar DNA with probes developed from 21 types of repetitive DNA, including 16 mobile elements. The size of the Y chromosome is largely due to the accumulation of certain repeats, such as members of the Ty1/copia and Ty3/gypsy superfamilies, an unclassified element and a satellite, but also plastome‐ and chondriome‐derived sequences. An abundant tandem repeat with a unit size of 144 bp stains the centromeres of the X chromosome and the autosomes, but is absent from the Y centromere. Immunostaining with pericentromere‐specific markers for anti‐histone H3Ser10ph and H2AThr120ph revealed a Y‐specific extension of these histone marks. That the Y centromere has a different make‐up from all the remaining centromeres raises questions about its spindle attachment, and suggests that centromeric or pericentromeric chromatin might be involved in the suppression of recombination.  相似文献   

6.
Interspecific recombinants have been produced between Streptococcus cremoris H-61 and S. lactis J-1 by polyethylene glycol-induced protoplast fusion. All of the fusants obtained showed mixed physiological properties of the two parents, and possessed plasmids derived from both parents at random. Physiological properties of primary colonies were stably maintained among the progenies after the single-colony isolation procedure. Similarly, in most of the fusants the plasmid profiles of the primary colonies were stably maintained, but one lost 2 out of the 7 plasmid bands. However, there was no indication that plasmids from either one of the parents were preferentially lost. These results showed that interspecific genetic transfer occurred on chromosomal and plasmid DNA on the protoplast fusion and that the fusants obtained were not heterokaryons, but true recombinants.  相似文献   

7.
Summary The introgression of genetic material from alien species is assuming increased importance in wheat breeding programs. One example is the translocation of the short arm of rye chromosome 1 (1RS) onto homoeologous wheat chromosomes, which confers disease resistance and increased yield on wheat. However, this translocation is also associated with dough quality defects. To break the linkage between the desirable agronomic traits and poor dough quality, recombination has been induced between 1RS and the homoeologous wheat arm IDS. Seven new recombinants were isolated, with five being similar to those reported earlier and two havina new type of structure. All available recombinantsw ere characterized with DNA probes for the loci Nor-R1, 5SDna-R1, and Tel-R1. Also, the amount of rye chromatin present was quantified with a dispersed rye-specific repetitive DNA sequence in quantitative dot blots. Furthermore, the wheat-rye recombinants were used as a mapping tool to assign two RFLP markers to specific regions on chromosome arms 1DS and 1RS of wheat and rye, respectively.  相似文献   

8.
F. Shibata  M. Hizume  Y. Kuroki 《Chromosoma》1999,108(4):266-270
The dioecious plant Rumex acetosa has a multiple sex chromosome system: XX in female and XY1Y2 in male. Both types of Y chromosome were isolated from chromosome spreads of males by manual microdissection, and their chromosomal DNA was amplified using degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR). When the biotin-labeled DOP-PCR product was hybridized with competitor DNA in situ, the fluorescent signal painted the Y chromosomes. A library of Y chromosome DNA was constructed from the DOP-PCR product and screened for DNA sequences specific to the Y chromosome. One Y chromosome-specific DNA sequence was identified and designated RAYSI (R. acetosa Y chromosome-specific sequence I). RAYSI is a tandemly arranged repetitive DNA sequence that maps to the 4’,6-diamidino-2-phenylindole bands of both Y chromosomes. Received: 22 December 1998; in revised form: 22 March 1999 / Accepted: 23 March 1999  相似文献   

9.
We determined the parental species ofYoungia koidzumiana (a natural interspecific hybrid) using PCR and arbitrary 10-mer primers to generate random amplified polymorphic DNA (RAPD) markers. These markers, generated by three primers, were sufficient to distinguishYoungia sonchifolia, Youngia denticulata, Youngia chelidoniifolia, andY. koidzumiana. The electrophoresis profiles of the amplified products from each of the four species were then compared. Three primers produced a total of 42 scorable markers; nine were specific markers forY. denticulata andY. chelidoni-ifolia. The length of the amplified DNA fragments ranged from 370 to 2500 b p. The three primers revealed polymorphic bands, which were indicators of the parental species ofY. koidzumiana. These bands showed a combination of specific profiles forY. denticulata andY. chelidoniifolia. Our results also were comparable to the data obtained for flowering times, floret numbers, and chromosome numbers of the four species. Therefore, we suggest thatY. koidzumiana is a hybrid betweenY. denticulata andY. chelidoniifolia}, and that RAPD markers are well suited for assessing the origins of plant species.  相似文献   

10.
Recombinant viruses were constructed to have an Escherichia coli replicon containing a mutagenesis marker, the supF gene, integrated within the thymidine kinase locus (tk) of herpes simplex virus type 1. These viruses expressed either wild-type or mutant DNA polymerase (Pol) and were tested in a mutagenesis assay for the fidelity of their replication of the supF gene. A mutation frequency of approximately 10(-4) was observed for wild-type strain KOS-derived recombinants in their replication of the supF gene. However, recombinants derived from the PAA(r)5 Pol mutant, which has been demonstrated to have an antimutator phenotype in replicating the tk gene, had three- to fourfold increases in supF mutation frequency (P < 0.01), a result similar to that exhibited when the supF gene was induced to replicate as episomal DNA (Y. T. Hwang, B.-Y. Liu, C.-Y. Hong, E. J. Shillitoe, and C. B. C. Hwang, J. Virol. 73:5326-5332, 1999). Thus, the PAA(r)5 Pol mutant had an antimutator function in replicating the tk gene and was less accurate in replicating the supF gene than was the wild-type strain. The spectra of mutations and distributions of substituted bases within the supF genes that replicated as genomic DNA were different from those in the genes that replicated as episomal DNA. Therefore, the differences in sequence contents between the two target genes influenced the accuracy of the Pol during viral replication. Furthermore, the replication mode of the target gene also affected the mutational spectrum.  相似文献   

11.
The sequence organization of four different families of Y chromosomal repetitive DNA is characterized at three levels of spatial extension along the Y chromosome of Drosophila hydei. At the lowest level of resolution, DNA blot analysis of Y chromosomal fragments of different lengths and in situ hybridization experiments on metaphase chromosomes demonstrate the clustering of each particular sequence family within one defined region of the chromosome. At a higher level of resolution, family specific repeats can be detected within these clusters by crosshybridization within 10–20 kb long continuous stretches of cloned DNA in EMBL3 phages. At the highest level of resolution, detailed sequence analysis of representative subclones about 1 kb in length reveals a satellite-like head to tail arrangement of family specific degenerated subrepeats as the building scheme common to all four families. Our results provide the first comparative sequence analysis of three novel families of repetitive DNA on the long arm of the F chromosome of D. hydei. Additional data are presented which support the existence of two related subfamilies of repetitive DNA on the short arm of the Y chromosome.  相似文献   

12.
Saturation of human chromosome 3 with unique sequence hybridization probes   总被引:4,自引:0,他引:4  
We have generated chromosome 3-specific recombinant libraries in both lambda and cosmid cloning vectors starting with somatic cell hybrids (hamster/human) containing either an intact chromosome 3 or a chromosome 3 with an interstitial deletion removing 75% of long-arm sequences. The libraries contained between 2 X 10(5) and 5 X 10(6) independent recombinants. Approximately 2% of the recombinants in these libraries contain inserts of human DNA. These were identified by hybridizing the recombinants to radioactively labeled total human DNA. Over 2500 recombinants containing human DNA were isolated from these various libraries and DNA was prepared from each of them. This represents 80,000 kb of cloned chromosome 3 sequences. One-third of the DNAs were digested with EcoRI or HindIII, and fragments free of repetitive sequences were radioactively labeled using random hexanucleotide primers and tested as unique sequence hybridization probes. Over 6500 of the fragments were tested and of these 758 were unique sequence probes with minimal or no background hybridization. Their hybridization only to chromosome 3 was verified. These probes, which were derived from 452 independent recombinants, should provide an effective saturation of human chromosome 3.  相似文献   

13.
薛友纺  刘晓冬 《遗传学报》1994,21(2):118-124
PCR是一种对ES细胞定点整合重组子进行鉴定的有效方法。由于在定点整合重组子和非定点整合重组子中外源导入基因与基因组DNA分子整合的方式各不相同。因此,非重组子、定点整合重组子和非定点整合重组子的基因DNA结构也将各不相同。因此,非重组子、定点整合重组子和非定点整合重组子的基因组DNA分子结构也将各不相同。当我们设计合适的引物,从PCR扩增结果中即可分析、鉴别出定点整合重组子、非定点整合重组子、或  相似文献   

14.
Investigations of genetic diversity and domestication in South American camelids (SAC) have relied on autosomal microsatellite and maternally‐inherited mitochondrial data. We present the first integrated analysis of domestic and wild SAC combining male and female sex‐specific markers (male specific Y‐chromosome and female‐specific mtDNA sequence variation) to assess: (i) hypotheses about the origin of domestic camelids, (ii) directionality of introgression among domestic and/or wild taxa as evidence of hybridization and (iii) currently recognized subspecies patterns. Three male‐specific Y‐chromosome markers and control region sequences of mitochondrial DNA are studied here. Although no sequence variation was found in SRY and ZFY, there were seven variable sites in DBY generating five haplotypes on the Y‐chromosome. The haplotype network showed clear separation between haplogroups of guanaco–llama and vicuña–alpaca, indicating two genetically distinct patrilineages with near absence of shared haplotypes between guanacos and vicuñas. Although we document some examples of directional hybridization, the patterns strongly support the hypothesis that llama (Lama glama) is derived from guanaco (Lama guanicoe) and the alpaca (Vicugna pacos) from vicuña (Vicugna vicugna). Within male guanacos we identified a haplogroup formed by three haplotypes with different geographical distributions, the northernmost of which (Peru and northern Chile) was also observed in llamas, supporting the commonly held hypothesis that llamas were domesticated from the northernmost populations of guanacos (L. g. cacilensis). Southern guanacos shared the other two haplotypes. A second haplogroup, consisting of two haplotypes, was mostly present in vicuñas and alpacas. However, Y‐chromosome variation did not distinguish the two subspecies of vicuñas.  相似文献   

15.
In our experiments we tried to explain some anomalies in the formation of recombinants in anEscherichia coli mutant strain which, compared with the control, yields a lower number of recombinants. Following the transfer of C14-thymidine-labelled donor chromosome it was found that the low recombinant frequency is not due to a lower effectiveness of DNA transfer into the recipient cell; similarly, using the technique of interrupted mating between the cells we were able to detect that the rate of chromosome transfer is the same as in the control. The low frequency of recombinants may be explained by some restriction processes which take place in the recipient cell following the chromosome transfer. In addition, a relation between the localization of a marker and its subsequent expression in the recombinants was observed. Analyzing this phenomenon we were able to find a gene located near thethr marker which might modify the expression of integrated donor marker in the zygote. The probable mode of action of this gene is discussed.  相似文献   

16.
Summary Thirty-nine recombinants isolated from a Y chromosome-specific library were deletion mapped. Seven deletion intervals were defined by hybridization of probes to DNA of eight individuals with aberrant Y chromosomes. Extreme cytogenetic limits of the deletion intervals were determined by in situ hybridization of one probe per deletion interval. Five intervals, with a total of twenty-five probes, were allocated to the longarm euchromatic region. The probes described will be useful for characterization of aberrant Y chromosomes, in searching for expressed sequences on the Y chromosome, and for further study of the evolutionary relationship between the Y chromosome and other chromosomes.  相似文献   

17.
Several recombinants were identified and purified from a cloned library of human DNA by virtue of their homology to DNA from a mouse-human hybrid cell line containing a single human chromosome, the X, and their lack of homology to mouse DNA. Three recombinants were characterized in detail, and all were homologous to reiterated DNA from the human X chromosome. These recombinants also were homologous to reiterated sequences on one or more human autosomes and, therefore, were not X chromosome specific. The recombinant DNA fragments homologous to human reiterated X DNA were the same fragments homologous to human reiterated autosomal DNA. Digestion of genomic DNAs with several restriction enzymes revealed that the pattern of fragments homologous to one recombinant, lambda Hb2, was the same on autosomes as on the X chromosome, suggesting that the molecular organization of these elements on the X is not distinct from their organization on autosomes.  相似文献   

18.
Single laser flow cytometry was applied to the karyotype analysis of green monkeys. Clear sex difference in flow karyotype was recognized in this monkey, because Y chromosome could be identified as a single peak in the histogram of male specimens. We could isolate Y chromosome of this species by the use of a cell sorter, and demonstrate by polymerase chain reaction that the sorted-out chromosomes contained the Y chromosome specific nucleotide sequence (SRY). This chromosome sorting technique provides a powerful strategy for constructing the DNA library specific to Y chromosome in this species.  相似文献   

19.
An improved method for detecting Y chromosomal DNA   总被引:2,自引:0,他引:2  
Summary The DNA probe Y97 was derived from a repeat sequence in the human Y centromere, a region which must be present in a mitotically functional Y chromosome. We have demonstrated that Y97, which detects a Y-specific 5.5-kb Eco RI fragment by Southern analysis, is very useful for the molecular detection of small amounts of Y-derived material and represents a significant improvement over previous tests for molecular diagnosis of sex. The male-female difference in hybridization was unequivocal even when only 25 ng of total DNA was used per lane. Furthermore, in mixing experiments the 5.5-kb Eco RI fragment was detectable even when only 5% of the total DNA was male. By increasing hybridization stringency, we have developed a rapid, sensitive, and accurate method to detect Y chromosomal DNA in unrestricted samples.  相似文献   

20.
We report a new approach for molecular sex identification of extant Ursinae and Tremarctinae bears. Two Y‐specific fragments (SMCY and 318.2) and one X‐specific fragment (ZFX) are amplified in a multiplex PCR, yielding a double test for male‐specific amplification and an internal positive control. The primers were designed and tested to be bear‐specific, thereby minimizing the risk of cross‐amplification in other species including humans. The high sensitivity and small amplicon sizes (100, 124, 160 base pairs) facilitate analysis of non‐invasively obtained DNA material. DNA from tissue and blood as well as from 30 non‐invasively collected hair and faeces yielded clear and easily interpretable results. The fragments were detected both by standard gel electrophoresis and automated capillary electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号