首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of our study was to examine the effects of a single exercise bout on the natural killer (NK) cell count and activity in physically active elderly people, sedentary elderly people, and sedentary young people. Eight elderly women who trained by walking (age, 64 +/- 1 years; Vo(2peak), 32.2 +/- 1.1 ml.kg(-1).min(-1)), 8 age-matched untrained women (63 +/- 1 years, 28.8 +/- 1.0 ml.kg(-1).min(-1)), and 8 young untrained women (25 +/- 1 years, 37.6 +/- 1.6 ml.kg(-1).min(-1)) were studied. Blood samples were taken before, immediately after, and 2 hours after a 30-minute bout of exercise at an intensity equivalent to 70-75% of Vo(2peak). Peripheral blood mononuclear cells were isolated and the NK cell count and activity were analyzed. The NK cell count of the elderly sedentary group immediately after exercise was significantly higher than those of the elderly women who walked and young sedentary women, whereas no significant interaction was detected in NK cell activity and NK cell activity per cell number among the 3 groups. Consequently, an intrinsic defect in the cytotoxic ability of NK cells appeared in sedentary elderly people but not in active elderly people who perform habitual exercise.  相似文献   

2.
In order to test for possible sex differences in endurance capacity, groups of young, physically active women (n = 6) and men (n = 7) performed bicycle ergometer exercise at 80% and 90% of their maximal oxygen uptakes (VO2 max). The groups were matched for age and physical activity habits. At 80% VO2 max the women performed significantly longer (P less than 0.05), 53.8 +/- 12.7 min vs 36.8 +/- 12.2 min, respectively (means +/- SD). Mid-exercise and terminal respiratory exchange ratio (R) values were significantly lower in women, suggesting a later occurrence of muscle glycogen depletion as a factor in their enhanced endurance. At 90% VO2 max the endurance times were similar for men and women, 21.2 +/- 10.3 min and 22.0 +/- 5.0 min, respectively. The blood lactate levels reached in these experiments were only marginally lower (mean differences 1.5 to 2 mmol X l-1) than those obtained at VO2 max, suggesting high lactate levels as a factor in exhaustion. The changes in body weight during the 80% experiments and the degree of hemoconcentration were not significantly different between men and women.  相似文献   

3.
The purposes of this study were 1) to evaluate gender differences in back extensor endurance capacity during isometric and isotonic muscular contractions, 2) to determine the relation between absolute load and endurance time, and 3) to compare men [n = 10, age 22.4 +/- 0.69 (SE) yr] and women (n = 10, age 21.7 +/- 1.07 yr) in terms of neuromuscular activation patterns and median frequency (MF) shifts in the electromyogram (EMG) power spectrum of the lumbar and hip extensor muscles during fatiguing submaximal isometric trunk extension exercise. Subjects performed isotonic and isometric trunk extension exercise to muscular failure at 50% of maximum voluntary contraction force. Women exhibited a longer endurance time than men during the isometric task (146.0 +/- 10.9 vs. 105.4 +/- 7.9 s), but there was no difference in endurance performance during the isotonic exercise (24.3 +/- 3.4 vs. 24.0 +/- 2.8 repetitions). Absolute load was significantly related to isometric endurance time in the pooled sample (R(2) = 0.34) but not when men and women were analyzed separately (R(2) = 0.05 and 0.04, respectively). EMG data showed no differences in neuromuscular activation patterns; however, gender differences in MF shifts were observed. Women demonstrated a similar fatigability in the biceps femoris and lumbar extensors, whereas in men, the fatigability was more pronounced in the lumbar musculature than in the biceps femoris. Additionally, the MF of the lumbar extensors demonstrated a greater association with endurance time in men than in women (R(2) = 0.45 vs. 0.19). These findings suggest that gender differences in muscle fatigue are influenced by muscle contraction type and frequency shifts in the EMG signal but not by alterations in the synergistic activation patterns.  相似文献   

4.
In sedentary individuals, H(1) receptors mediate the early portion of postexercise skeletal muscle hyperemia, whereas H(2) receptors mediate the later portion. It is not known whether postexercise hyperemia also presents in endurance-trained individuals. We hypothesized that the postexercise skeletal muscle hyperemia would also exist in endurance-trained individuals and that combined blockade of H(1) and H(2) receptors would abolish the long-lasting postexercise hyperemia in trained and sedentary individuals. We studied 28 sedentary and endurance trained men and women before and through 90 min after a 60-min bout of cycling at 60% peak O(2) uptake on control and combined H(1)- and H(2)-receptor antagonist days (fexofenadine and ranitidine). We measured arterial pressure (brachial auscultation) and femoral blood flow (Doppler ultrasound). On the control day, femoral vascular conductance (calculated as flow/pressure) was elevated in all groups 60 min after exercise (sedentary men: Delta86 +/- 35%, trained men, Delta65 +/- 18%; sedentary women, Delta61 +/- 19%, trained women: Delta59 +/- 23%, where Delta is change; all P < 0.05 vs. preexercise). In contrast, on the histamine antagonist day, femoral vascular conductance was not elevated in any of the groups after exercise (sedentary men: Delta21 +/- 17%, trained men: Delta9 +/- 5%, sedentary women: Delta19 +/- 4%, trained women: Delta11 +/- 11%; all P > 0.16 vs. preexercise; all P < 0.05 vs. control day). These data suggest postexercise skeletal muscle hyperemia exists in endurance trained men and women. Furthermore, histaminergic mechanisms produce the long-lasting hyperemia in sedentary and endurance-trained individuals.  相似文献   

5.
The extents to which decreased muscle size or activation are responsible for the decrease in strength commonly observed with aging remain unclear. Our purpose was to compare muscle isometric strength [maximum voluntary contraction (MVC)], cross-sectional area (CSA), specific strength (MVC/CSA), and voluntary activation in the ankle dorsiflexor muscles of 24 young (32 +/- 1 yr) and 24 elderly (72 +/- 1 yr) healthy men and women of similar physical activity level. Three measures of voluntary muscle activation were used: the central activation ratio [MVC/(MVC + superimposed force)], the maximal rate of voluntary isometric force development, and foot tap speed. Men had higher MVC and CSA than did women. Young men had higher MVC compared with elderly men [262 +/- 19 (SE) vs. 197 +/- 22 N, respectively], whereas MVC was similar in young and elderly women (136 +/- 15 vs. 149 +/- 16 N, respectively). CSA was greater in young compared with elderly subjects. There was no age-related impairment of specific strength, central activation ratio, or the rate of voluntary force development. Foot tap speed was reduced in elderly (34 +/- 1 taps/10 s) compared with young subjects (47 +/- 1 taps/10 s). These results suggest that isometric specific strength and the ability to fully and rapidly activate the dorsiflexor muscles during a single isometric contraction were unimpaired by aging. However, there was an age-related deficit in the ability to perform rapid repetitive dynamic contractions.  相似文献   

6.
To investigate the effects of gender and age on respiratory muscle function, 160 healthy volunteers (80 males, 80 females) were divided into four age groups. Twenty-eight of the male subjects were smokers. After the subjects were familiarized with the experimental procedure, respiratory muscle strength, inspiratory muscle endurance, and spirometric function, including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), FEV1/FVC, tidal volume, breathing rate, and duty cycle, were measured. The respiratory muscle strength was indicated by the maximal static inspiratory and expiratory pressures (PImmax and PEmmax). Inspiratory muscle endurance was determined by the time the subject was able to sustain breathing against an inspiratory pressure load on a modified Nickerson-Keens device. The results showed that 1) except for inspiratory muscle endurance and FEV1/FVC, men had greater respiratory muscle and pulmonary functions than women, 2) respiratory muscle function and pulmonary function decreased with age, 3) smoking tended to lower duty cycle and FEV1/FVC and to enhance PE,mmax, and 4) inspiratory muscle endurance was greater in men who were physically active than in those who were sedentary. Therefore we conclude that there are sexual and age differences in respiratory muscle strength and pulmonary function and that smoking or physical activity may affect respiratory muscle function.  相似文献   

7.
This study examines the effects of a 16-week Tai Chi (TC) training program on the muscle strength, endurance, and reaction time of the lower extremities of elderly people. A total of 40 elderly individuals (aged ?60 years) completed the study. They were divided into two groups: the TC group (11 men and 11 women) underwent a supervised TC exercise program for 16 weeks, while the control group (9 men and 9 women) received general education for a comparable time period. Pre- and post-intervention measurements were conducted. An isokinetic dynamometer was used to measure the maximum concentric strength and dynamic endurance of the knee flexors and the extensors, and the maximum concentric strength of the ankle plantarflexors and dorsiflexors. The neuromuscular response of the rectus femoris, semitendinosus, gastrocnemius, and anterior tibialis muscles was measured by the onset latency to sudden perturbations using an electromyography system. After 16 weeks, the TC group showed a 19.9% increase in muscle strength of the knee flexors (p<.000) that was significantly greater than that in the control group (p=.046). There was also a significant decrease in semitendinosus muscle latency (6.6%, p=.014) that was significantly shorter than that in the control group (p=.042). No significant training effects were found in other measures. These results suggest that improving biomechanical characteristics of lower extremity muscles may need longer TC intervention for elderly people.  相似文献   

8.
To evaluate the effect of endurance training on ventilatory function in older individuals, 1) 14 master athletes (MA) [age 63 +/- 2 yr (mean +/- SD); maximum O2 uptake (VO2max) 52.1 +/- 7.9 ml . kg-1 . min-1] were compared with 14 healthy male sedentary controls (CON) (age 63 +/- 3 yr; VO2max of 27.6 +/- 3.4 ml . kg-1 . min-1), and 2) 11 sedentary healthy men and women, age 63 +/- 2 yr, were reevaluated after 12 mo of endurance training that increased their VO2max 25%. MA had a significantly lower ventilatory response to submaximal exercise at the same O2 uptake (VE/VO2) and greater maximal voluntary ventilation (MVV), maximal exercise ventilation (VEmax), and ratio of VEmax to MVV than CON. Except for MVV, all of these parameters improved significantly in the previously sedentary subjects in response to training. Hypercapnic ventilatory response (HCVR) at rest and the ventilatory equivalent for CO2 (VE/VCO2) during submaximal exercise were similar for MA and CON and unaffected by training. We conclude that the increase in VE/VO2 during submaximal exercise observed with aging can be reversed by endurance training, and that after training, previously sedentary older individuals breathe at the same percentage of MVV during maximal exercise as highly trained athletes of similar age.  相似文献   

9.
Peripheral effects of endurance training in young and old subjects   总被引:4,自引:0,他引:4  
The effects of 12 wk of endurance training at 70% peak O2 consumption (VO2) were studied in 10 elderly (65.1 +/- 2.9 yr) and 10 young (23.6 +/- 1.8 yr) healthy men and women. Training had no effect on weight or body composition in either group. The elderly had more adipose tissue and less muscle mass than the young. Initial peak VO2 was lower in the elderly, but the absolute increase of 5.5-6.0 ml.kg-1.min-1 after training was similar for both groups. Muscle biopsies taken at rest showed that, before training, muscle glycogen stores were 61% higher in the young. Before training, glycogen utilization per joule during submaximal exercise was higher in the elderly. Glycogen stores and muscle O2 consumption increased significantly in response to training in the elderly only. After training, the proportion of energy derived from whole body carbohydrate oxidation during submaximal exercise declined in the young only. The absolute changes that training produced in peak VO2 were similar in both age groups, but the 128% increase in muscle oxidative capacity was greater in the elderly, suggesting that peripheral factors play an important role in the response of the elderly to endurance exercise.  相似文献   

10.

Objectives

We aimed to assess the correlation between muscle strength and muscle mass based on sex and age, and their association with walking speed, which is a health predictor for independent living, in elderly Japanese individuals.

Methods

The participants included 318 (111 men, 207 women) community-dwelling elderly Japanese individuals aged ≥65 years. Knee extension strength was assessed as an indicator of muscle strength, and bioelectrical impedance analysis was used to measure muscle mass. The maximum walking speed of participants was recorded. All measurements were categorized based on sex and age groups as follows: young-old (age, 65–74 years) and old-old (age, ≥75 years).

Results

Appendicular muscle mass and knee extension strength decreased with age in both men and women. In men, knee extension strength showed significant positive correlations with leg and appendicular muscle mass in both young-old and old-old age groups. However, in women, only the old-old age group showed significant positive correlations between knee extension strength and leg and appendicular muscle mass. Muscle strength was significantly positively correlated with maximum walking speed in all groups, whereas muscle mass was not significantly correlated with maximum walking speed in men and women.

Conclusions

Muscle strength was significantly correlated with muscle mass in both age groups in men. However, in women, the correlation between muscle strength and muscle mass differed according to age. This finding suggests that the relationship between muscle strength and muscle mass differs according to sex and age. Muscle strength showed significant correlation with walking speed in both men and women in both age groups. These findings suggest that it is necessary to recognize that muscle strength is different from muscle mass, and that an individualized approach to prevent decline of muscle strength and muscle mass is necessary for health promotion in elderly.  相似文献   

11.
The number of hematopoietic stem cells (HSC) and endothelial progenitor cells (EPC) is thought to be a marker for neovascularization and vascular repair. Because physical inactivity and aging are risk factors for cardiovascular diseases, these factors may influence the numbers of HSCs and EPCs. Therefore, we examined baseline and exercise-induced levels of HSCs and EPCs in sedentary and trained young and older men. To study the role of aging in eight sedentary young (19-28 years) and eight sedentary older men (67-76 years), baseline and acute exercise-induced numbers of HSCs (CD34+-cells) and EPCs (CD34+/VEGFR-2+-cells) were quantified by fluorescence-activated cell sorter (FACS) analysis. To examine the effect of chronic training, eight age-matched trained young men (18-28 years) were compared with sedentary young men, whereas older men performed an 8-week endurance training. Older men showed significantly lower baseline and exercise-induced levels of HSCs/EPCs than the young men (P < 0.05). In young and older men, acute exercise significantly increased HSCs (P < 0.01), but not EPCs. The absolute increase in numbers of HSCs was attenuated in older men (P = 0.03). Apart from the lower baseline numbers of EPCs after chronic training in older men, training status did not alter baseline or exercise-induced levels of HSCs/EPCs in young and older men. We concluded that advancing age results in lower circulating numbers of HSCs and EPCs and attenuates the acute exercise-induced increase in HSCs. Interestingly, in young as well as in older men chronic endurance training does not affect baseline and exercise-induced numbers of HSCs and EPCs.  相似文献   

12.
The purpose of this study was to investigate the time course of adaptations to training in young (i.e., <15 years) and older (i.e., <18 years) junior rugby league players. Fourteen young (14.1 +/- 0.2 years) and 21 older (16.9 +/- 0.3 years) junior rugby league players participated in a 10-week preseason strength, conditioning, and skills program that included 3 sessions each week. Subjects performed measurements of standard anthropometry (i.e., height, body mass, and sum of 7 skinfolds), muscular power (i.e., vertical jump), speed (i.e., 10-m, 20-m, and 40-m sprint), agility (505 test), and estimated maximal aerobic power (i.e., multistage fitness test) before and after training. In addition, players underwent a smaller battery of fitness tests every 3 weeks to assess the time course of adaptation to the prescribed training stimulus. During the triweekly testing sessions, players completed assessments of upper-body (i.e., 60-second push-up, sit-up, and chin-up test) and lower-body (i.e., multiple-effort vertical jump test) muscular endurance. Improvements in maximal aerobic power and muscular endurance were observed in both the young and the older junior players following training. The improvements in speed, muscular power, maximal aerobic power, and upper-body muscular endurance were greatest in the young junior players, while improvements in lower-body muscular endurance were greatest in the older junior players. These findings demonstrate that young (i.e., <15 years) and older (i.e., <18 years) junior rugby league players adapt differently to a given training stimulus and that training programs should be modified to accommodate differences in maturational and training age. In addition, the results of this study provide conditioning coaches with realistic performance improvements following a 10-week preseason strength and conditioning program in junior rugby league players.  相似文献   

13.
We tested the hypothesis that hormone replacement therapy (HRT)-related increases in C-reactive protein (CRP) would either be blunted or absent in postmenopausal women who regularly perform endurance exercise. Plasma CRP is an independent predictor of future cardiovascular events in healthy men and women. Oral HRT increases plasma CRP concentrations in postmenopausal women. Regular aerobic exercise reduces the risk of cardiovascular events and is associated with lower CRP concentrations in adults. To date, no study has evaluated the influence of habitual physical activity on the elevation of CRP associated with HRT. Plasma CRP concentrations were measured in 114 postmenopausal women: 39 physically active (endurance trained) and 75 sedentary postmenopausal subjects. Sixty-five women were users of HRT (22 physically active and 43 sedentary), and 49 were nonusers (17 physically active and 32 sedentary). CRP levels were approximately 75% higher (P < 0.01) in the sedentary users vs. nonusers of HRT (1.9 +/- 1.8 vs. 1.1 +/- 1.0 mg/l). In contrast, there was no difference in CRP levels between the physically active users and nonusers of HRT (0.6 +/- 0.4 vs. 0.4 +/- 0.2 mg/l; P = 0.61). Regardless of HRT status, CRP concentrations were approximately 65% lower in the physically active compared with sedentary women. In conclusion, physically active postmenopausal women exhibit lower plasma CRP concentrations compared with sedentary controls. Importantly, the HRT-related elevation in plasma CRP levels observed in sedentary women is absent in women who engage in regular endurance exercise. These data suggest that habitual physical activity may prevent the elevation in CRP concentrations due to HRT.  相似文献   

14.
Sex differences in fatigue resistance of the adductor pollicis (AP) muscle were studied in 24 older adults who were divided into three groups: 12 older men (69.8 +/- 4.60 years), 6 older women not on hormone replacement therapy (HRT) (70.2 +/- 4.02 years), and 6 older women on HRT (68.7 +/- 6.47 years). Fatigue in the AP muscle was induced using an intermittent (5 s contraction, 5 s rest) submaximal voluntary contraction (50% of maximal voluntary contraction (MVC)) protocol, which was continued until exhaustion (i.e., when subjects could either no longer maintain a 5-s contraction at 50% MVC or when the MVC was deemed to be lower than the target force). There was no effect of HRT on MVC or time to fatigue (TTF); therefore, the older women were pooled as one subject group. At baseline, men were stronger than women for MVC (75.9 +/- 18.8 N in men vs. 56.8 +/- 10.0 N in women; P < 0.05) and evoked twitch force (7.3 +/- 1.7 N in men vs. 5.2 +/- 0.8 N in women; P < 0.05). There was no difference in TTF between men and women (14.77 +/- 7.06 min in men vs. 11.53 +/- 4.91 min in women; P > 0.20), nor was there a significant relationship between baseline muscle force and TTF (r = 0.14). There was also no difference in the pattern of fatigue and recovery between the men and women. These results suggest that there is no difference in endurance or fatigue characteristics of the AP muscle in men and women over the age of 65 years, and that baseline muscle force does not predict fatigue resistance in this muscle.  相似文献   

15.
To test the hypothesis that sex influences forearm blood flow (FBF) during exercise, 15 women and 16 men of similar age [women 24.3 +/- 4.0 (SD) vs. men 24.9 +/- 4.5 yr] but different forearm muscle strength (women 290.7 +/- 44.4 vs. men 509.6 +/- 97.8 N; P < 0.05) performed dynamic handgrip exercise as the same absolute workload was increased in a ramp function (0.25 W/min). Task failure was defined as the inability to maintain contraction rate. Blood pressure and FBF were measured on separate arms during exercise by auscultation and Doppler ultrasound, respectively. Muscle strength was positively correlated with endurance time (r = 0.72, P < 0.01) such that women had a shorter time to task failure than men (450.5 +/- 113.0 vs. 831.3 +/- 272.9 s; P < 0.05). However, the percentage of maximal handgrip strength achieved at task failure was similar between sexes (14% maximum voluntary contraction). FBF was similar between women and men throughout exercise and at task failure (women 13.6 +/- 5.3 vs. men 14.5 +/- 4.9 ml.min(-1).100 ml(-1)). Mean arterial pressure was lower in women at rest and during exercise; thus calculated forearm vascular conductance (FVC) was higher in women during exercise but similar between sexes at task failure (women 0.13 +/- 0.05 vs. men 0.11 +/- 0.04 ml.min(-1).100 ml(-1).mmHg(-1)). In conclusion, the similar FBF during exercise was achieved by a higher FVC in the presence of a lower MAP in women than men. Still, FBF remained coupled to work rate (and presumably metabolic demand) during exercise irrespective of sex.  相似文献   

16.
The purpose of this study was to determine whether the loss of muscle strength in the elderly could be explained entirely by a decline in the physiological cross-sectional area (PCSA) of muscle. Isometric force, muscle activation (twitch interpolation), and coactivation (surface electromyograph) were measured during maximal voluntary contractions (MVCs) of the elbow flexors (EFs) and extensors (EEs) in 20 young (23 +/- 3 yr) and 13 older (81 +/- 6 yr) healthy men. PCSA was determined using magnetic resonance imaging, and normalized force (NF) was calculated as the MVC/PCSA ratio. The PCSA was smaller in the old compared with the young men, more so in the EEs (28%) compared with the EFs (19%) (P < 0.001); however, the decline in MVC (approximately 30%) with age was similar in the two muscle groups. Muscle activation was not different between the groups, but coactivation was greater (5%) (P < 0.001) in the old men for both muscles. NF was less (11%) in the EFs (P < 0.01) and tended to be unchanged in the EEs of the old compared with young subjects. The relative maintenance of NF in the EEs compared with the EFs may be related to age-associated changes in the architecture of the triceps brachii muscle. In conclusion, although the decline in PCSA explained the majority of strength loss in the old men, additional factors such as greater coactivation or reduced specific tension also may have contributed to the age-related loss of isometric strength.  相似文献   

17.
We tested the hypothesis that resting metabolic rate (RMR) declines with age in physically active men (endurance exercise > or =3 times/wk) and that this decline is related to weekly exercise volume (h/wk) and/or daily energy intake. Accordingly, we studied 137 healthy adult men who had been weight stable for > or =6 mo: 32 young [26 +/- 1 (SE) yr] and 34 older (62 +/- 1 yr) sedentary males (internal controls); and 39 young (27 +/- 1 yr) and 32 older (63 +/- 2 yr) physically active males (regular endurance exercise). RMR was measured by indirect calorimetry (ventilated hood system) after an overnight fast and approximately 24 h after exercise. Because RMR is related to fat-free mass (FFM; r = 0.76, P < 0.001, current study), FFM was covaried to adjust RMR (RMR(adj)). RMR(adj) was lower with age in both the sedentary (72.0 +/- 2.0 vs. 64.0 +/- 1.3 kcal/h, P < 0.01) and the physically active (76.6 +/- 1.1 vs. 67.9 +/- 1.2 kcal/h, P < 0.01) males. In the physically active men, RMR(adj) was related to both exercise volume (no. of h/wk, regardless of intensity; r = 0.56, P < 0.001) and estimated energy intake (r = 0.58, P < 0.001). Consistent with these relations, RMR(adj) was not significantly different in subgroups of young and older physically active men matched either for exercise volume (h/wk; n = 11 each) or estimated energy intake (kcal/day; n = 6 each). These results indicate that 1) RMR, per unit FFM, declines with age in highly physically active men; and 2) this decline is related to age-associated reductions in exercise volume and energy intake and does not occur in men who maintain exercise volume and/or energy intake at a level similar to that of young physically active men.  相似文献   

18.
This investigation assessed strength of the hip extensors and flexors when assistive devices and weight bearing are changing after total hip arthroplasty (THA). Eleven individuals (6 men, 5 women; mean age 74.45 +/- 4.88 years) with unilateral THA were evaluated isokinetically at 60 degrees x sec(-1) before surgery on the involved and uninvolved limbs. Each subject's involved limb was tested 60 days after surgery. Comparisons were made between involved and uninvolved limbs and between the involved limb before surgery and 60 days after surgery for both the hip extensors and flexors. Hip extensor and flexor strength before surgery on the involved side was 39% and 29% lower, respectively, compared with the uninvolved side. Sixty days after surgery, strength of the hip extensors and flexors improved 50% and 27%, respectively, compared with before surgery. Over the 60-day interval, the responsiveness of isokinetic testing was high for both muscle groups (range, 0.74-1.51). It would seem appropriate that intensive rehabilitation continue through at least the 60-day period and that isokinetic testing is an effective tool to monitor hip strength before and after surgery.  相似文献   

19.
The purpose of this study was to examine the influence of myosin heavy chain (MHC) isoform composition and training status on the mechanomyographic (MMG) amplitude versus isometric torque relationship for the vastus lateralis. Five resistance-trained (mean +/- SD age = 23.2 +/- 3.7 years), 5 aerobically trained (mean +/- SD age = 32.6 +/- 5.2 years), and 5 sedentary (mean +/- SD age = 23.4 +/- 4.1 years) men performed isometric muscle actions of the leg extensors in 20% increments from 20% to 100% of the maximum voluntary contraction. Biopsies from the vastus lateralis revealed that the MHC composition for the resistance-trained subjects was 59.0 +/- 4.2% Type IIa, 0.1 +/- 0.1% Type IIx, and 40.9 +/- 4.3% Type I. The aerobically-trained subjects had 27.4 +/- 7.8% Type IIa, 0.0 +/- 0.0% Type IIx, and 72.6 +/- 7.8% Type I MHC. The sedentary subjects had 42.1 +/- 7.8% Type IIa, 17.8 +/- 6.4% Type IIx, and 40.1 +/- 10.9% Type I MHC. There were no consistent patterns of responses for the resistance-trained, aerobically trained, or sedentary subjects for MMG amplitude versus torque. Thus, differences in MHC isoform composition and training status did not explain the unique torque-related patterns for MMG amplitude.  相似文献   

20.
Sex-specific influence of aging on exercising leg blood flow.   总被引:1,自引:0,他引:1  
Our previous work suggests that healthy human aging is associated with sex-specific differences in leg vascular responses during large muscle mass exercise (2-legged cycling) (Proctor DN, Parker BA. Microcirculation 13: 315-327, 2006). The present study determined whether age x sex interactions in exercising leg hemodynamics persist during small muscle mass exercise that is not limited by cardiac output. Thirty-one young (20-30 yr; 15 men/16 women) and 31 older (60-79 yr; 13 men/18 women) healthy, normally active adults performed graded single-leg knee extensions to maximal exertion. Femoral artery blood velocity and diameter (Doppler ultrasound), heart rate (ECG), and beat-to-beat arterial blood pressure (mean arterial pressure, radial artery tonometry) were measured during each 3-min work rate (4.8 and 8 W/stage for women and men, respectively). The results (means +/- SE) were as follows. Despite reduced resting leg blood flow and vascular conductance, older men exhibited relatively preserved exercising leg hemodynamic responses. Older women, by contrast, exhibited attenuated hyperemic (young: 52 +/- 3 ml.min(-1).W(-1); vs. older: 40 +/- 4 ml.min(-1).W(-1); P = 0.02) and vasodilatory responses (young: 0.56 +/- 0.06 ml.min(-1).mmHg(-1).W(-1) vs. older: 0.37 +/- 0.04 ml.min(-1).mmHg(-1) W(-1); P < 0.01) to exercise compared with young women. Relative (percentage of maximal) work rate comparisons of all groups combined also revealed attenuated vasodilator responses in older women (P < 0.01 for age x sex x work rate interaction). These sex-specific age differences were not abolished by consideration of hemoglobin, quadriceps muscle, muscle recruitment, and mechanical influences on muscle perfusion. Collectively, these findings suggest that local factors contribute to the sex-specific effects of aging on exercising leg hemodynamics in healthy adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号