首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 18q deletion syndrome can be caused by several terminal and interstitial deletions of which terminal deletions of the distal part of 18q are the most frequent and known as the DeCroughy syndrome. The neuropsychiatric phenotype is not well documented and includes disorganised and disinhibited behaviours as well as language difficulties. Non development of language seems to be specific for cases with a more proximally located interstitial deletions. In the present paper a 18-year-old severely mentally retarded male with an interstitial deletion of 18q is described (46.XY,del(18)(q12.1q22.1) who was referred for behavioural problems and neuropsychiatric evaluation. No categorical psychiatric diagnosis could be established. Given this and other reports, it is advocated to describe the psychopathological phenotype of 18q deletions in a dimensional way that will result in a clinical picture characterised mainly by symptoms from the motor and motivation domains. Treatment should include primarily behavioural measures, combined if necessary with symptomatic psychopharmacotherapy.  相似文献   

2.
We have used a panel of 13 DNA markers in the distal region of chromosome 14q to characterize deletions in three patients determined cytogenetically to have a ring or terminally deleted chromosome 14. We have characterized one patient with a ring chromosome 14 [r (14) (p13q32.33)] and two with terminal deletions [del (14) (pterq32.3:)]. The two patients with cytogenetically identical terminal deletions of chromosome 14 were found to differ markedly when characterized with molecular markers. In one patient, none of the markers tested were deleted, indicating that the apparent terminal deletion is actually due to either an undetected interstitial deletion or a cryptic translocation event. In the other patient, the deletion was consistent with the cytogenetic observations. The deleted chromosome was shown to be of paternal origin. The long-arm breakpoint of the ring chromosome was mapped to within a 350-kb region of the immunoglobulin heavy chain gene cluster (IGH). This breakpoint was used to localize markers D14S20 and D14S23, previously thought to lie distal to IGH, to a more proximal location. The ring chromosome represents the smallest region of distal monosomy 14q yet reported.  相似文献   

3.
Molecular characterization of patients with 18q23 deletions.   总被引:3,自引:0,他引:3       下载免费PDF全文
The 18q- syndrome is a deletion syndrome that is characterized by mental retardation, hearing loss, midfacial hypoplasia, growth deficiency, and limb anomalies. Most patients with this syndrome have deletions from 18q21-qter. We report on three patients with deletions of 18q23. A mother and daughter with identical deletions of 18q23 have many of the typical features of the 18q- syndrome, including midfacial hypoplasia and hearing loss. In contrast, the third patient has few of the symptoms of the 18q- syndrome. A contig of the 18q23 region was generated to aid in the mapping of the breakpoints. FISH was used to map both breakpoints to the same YAC clone. Furthermore, somatic-cell hybrids from the daughter and the third patient were isolated. The mapping results of sequence-tagged sites relative to the two breakpoints were identical, suggesting that the two deletion breakpoints map very close to one another. The analyses of these patients demonstrate that the critical region for the 18q- syndrome maps to 18q23 but that a deletion of 18q23 does not always lead to the clinical features associated with the syndrome. These patients demonstrate the wide phenotypic variability associated with deletions of 18q.  相似文献   

4.
DiGeorge syndrome in humans is charaterized by immunodeficiency, heart defects, mental retardation and facial dysmorphism; cytogenetic analysis has shown that deletions at 22q11 occur in approximately 25% of cases. To generate DNA markers from this region, we have microdissected and microcloned band q11 of human Chromosome (Chr) 22. Nineteen thousand clones were obtained from material dissected from 20 chromosome fragments. Seventeen of 61 clones analyzed (28%) were repetitive, 27 (44%) gave no signal, and 17 (28%) detected single copy sequences of which ten mapped to Chr 22. Two of these were found to be deleted in patients with DiGeorge syndrome and either monosomy for 22q11-pter or visible interstitial deletions of 22q11. These two markers are also hemizygous in patients with no visible chromosomal abnormality, demonstrating that submicroscopic deletions are common in DiGeorge syndrome patients.  相似文献   

5.
In this study, we used deletions at 22q13, which represent a substantial source of human pathology (Phelan/McDermid syndrome), as a model for investigating the molecular mechanisms of terminal deletions that are currently poorly understood. We characterized at the molecular level the genomic rearrangement in 44 unrelated patients with 22q13 monosomy resulting from simple terminal deletions (72%), ring chromosomes (14%), and unbalanced translocations (7%). We also discovered interstitial deletions between 17-74 kb in 9% of the patients. Haploinsufficiency of the SHANK3 gene, confirmed in all rearrangements, is very likely the cause of the major neurological features associated with PMS. SHANK3 mutations can also result in language and/or social interaction disabilities. We determined the breakpoint junctions in 29 cases, providing a realistic snapshot of the variety of mechanisms driving non-recurrent deletion and repair at chromosome ends. De novo telomere synthesis and telomere capture are used to repair terminal deletions; non-homologous end-joining or microhomology-mediated break-induced replication is probably involved in ring 22 formation and translocations; non-homologous end-joining and fork stalling and template switching prevail in cases with interstitial 22q13.3. For the first time, we also demonstrated that distinct stabilizing events of the same terminal deletion can occur in different early embryonic cells, proving that terminal deletions can be repaired by multistep healing events and supporting the recent hypothesis that rare pathogenic germline rearrangements may have mitotic origin. Finally, the progressive clinical deterioration observed throughout the longitudinal medical history of three subjects over forty years supports the hypothesis of a role for SHANK3 haploinsufficiency in neurological deterioration, in addition to its involvement in the neurobehavioral phenotype of PMS.  相似文献   

6.
We characterized by fluorescence in situ hybridization and Southern blotting 14 partial Xq monosomies, 11 due to terminal deletions and 3 secondary to X/autosome translocations. Three cases were mosaics with a XO cell line. In view of the possible role played by telomeres in chromosome segregation, we hypothesize a relationship between the loss of telomeric sequences in terminal deletions and the presence of 45,X cells. A correlation between phenotype and extent of deletion revealed that there is no correspondence between the size of the deletion and impairment of gonadal function. Turner stigmata are absent in patients without an XO cell line, when the breakpoint is distal to Xg24. A low birthweight is present whenever the breakpoint is at q22 or more proximal.  相似文献   

7.
We have obtained lymphoblastoid cell lines from three patients with Langer-Giedion syndrome who have overlapping deletions in 8q24.1. To isolate the deletion chromosomes from their normal homologs, patient cell lines were fused with hamster cells and hybrid cells were selected for retention of human chromosome 8. These hybrid cell lines were screened for the presence of chromosome 8 by fluorescence in situ hybridization and by Southern blot hybridization. We have hybridized 31 recombinant DNA clones derived from the 8q22-qter region to Southern blots of the hybrid cell lines; 8 were found to lie within the deletion of at least one patient. One clone identified sequences that were missing from one copy of chromosome 8 in all three patients. These clones help to further define the deletions in these patients and will serve as starting points for detailed characterization of the region.  相似文献   

8.
The mechanism(s) for the origin of jumping translocations (JTs) are unknown. To assess the possible involvement of telomeric sequences in the jumping process, metaphases of a patient with hydrops fetalis having a JT were analyzed for the presence of interstitial telomeres. Telomere DNA sequences were detected at the junction sites of the donor and the recipient chromosomes. Interstitial telomeric sequences have so far only been detected in JTs involving chromosome 15q in patients with Prader-Willi syndrome. Our finding of interstitial telomeric sequences in a JT with a chromosome different from chromosome arm 15q in a patient without Prader-Willi syndrome implies that telomere sequences may be common to all telomeric JTs. The possible role of telomeric sequences as a cause of the observed chromosomal mosaicism is discussed. Received: 24 September 1996 / Revised: 15 December 1996  相似文献   

9.
Deletions in the long arm of chromosome 7 are common recurrent abnormalities in secondary leukemias and myelodysplastic syndromes. To learn more about the basic mechanisms involved, we used Southern blot analysis to study four patients with different 7q--deletions to determine the exact break-points and to define the extent of the deletions. Several genes and DNA sequences from 16 different loci were found to be deleted, as judged by the absence or considerable weakening of an allelic band in granulocytic DNA in patients with constitutional heterozygosity. A terminal segment was present in each of the partially deleted chromosomes, as shown by heterozygosity for probes from the region 7q35----qter in granulocyte DNA. This indicated that the chromosome 7q deletions were interstitial, rather than terminal, in each of these patients. The length of the preserved terminal segment varied among the patients. Our results support gene loss as a mechanism contributing to leukemogenesis. Since the deletions are interstitial, hybrid genes may be formed at the junction, but the variation in breakpoints argues against the existence of a common hybrid gene of importance to the malignant process.  相似文献   

10.
Terminal inversion duplications of the short arm of chromosome 8 are one of the more common chromosome rearrangements in humans. We report an infant with multiple congenital anomalies, in whom karyotype analysis showed a terminal inversion duplication of 8p including additional material at the distal end of the derivative chromosome, shown to be of chromosome 18q origin. Terminal inversion duplications of 8p are the result of meiotic recombination between inverted olfactory gene receptor repeats in 8p. This recombination generates a dicentric intermediate that breaks during anaphase, and the broken chromosome end is stabilized by telomere healing or telomere capture. The origin of the telomeric region in the majority of constitutional chromosome deletions studied to date was shown to be from telomere healing; the de novo addition of telomeric repeats. In the proband a cytogenetically detectable piece of chromosome 18q was present on the distal end of the derivative 8, suggesting that this chromosome was stabilized by telomere capture of 18q. FISH analyses of additional cases may yield information as to whether telomere capture or telomere-healing events are the predominant mechanism of chromosome stabilization in terminal inversion duplications of 8p.  相似文献   

11.
An Aegilops cylindrica chromosome induces terminal deletions of chromosomes in wheat as identified by C-banding. We are constructing high-density physical maps of wheat chromosomes and have detected additional chromosome rearrangements. Among 63 lines with chromosomal subarm deletions in group 7 chromosomes, 7 lines (11.1%) were shown to harbor additional chromosome rearrangements. Two other lines were also omitted from the physical mapping because of the nature of the breakpoint calculations. The presence or absence of chromosome-specific restriction fragment length polymorphism (RFLP) or random amplified polymorphic DNA (RAPD) markers indicated that additional interstitial deletions are present in 3 lines (4.8%) with deletions in the short chromosome arms and in 4 lines (6.3%) with deletions in the long chromosome arms. We also used chromosome pairing analysis of F1 plants of deletion lines with double ditelosomic lines of Chinese Spring wheat to detect small terminal deletions. The deletion of the most distal 1% of chromosome arm 7AL was associated with a pairing reduction of 60%.  相似文献   

12.
Velocardiofacial syndrome, DiGeorge syndrome, and conotruncal anomaly face syndrome, now collectively referred to as 22q11deletion syndrome (22q11DS) are caused by microdeletions on chromosome 22q11. The great majority ( approximately 90%) of these deletions are 3 Mb in size. The remaining deleted patients have nested break-points resulting in overlapping regions of hemizygosity. Diagnostic testing for the disorder is traditionally done by fluorescent in situ hybridization (FISH) using probes located in the proximal half of the region common to all deletions. We developed a novel, high-resolution single-nucleotide polymorphism (SNP) genotyping assay to detect 22q11 deletions. We validated this assay using DNA from 110 nondeleted controls and 77 patients with 22q11DS that had previously been tested by FISH. The assay was 100% sensitive (all deletions were correctly identified). Our assay was also able to detect a case of segmental uniparental disomy at 22q11 that was not detected by the FISH assay. We used Bayesian networks to identify a set of 17 SNPs that are sufficient to ascertain unambiguously the deletion status of 22q11DS patients. Our SNP based assay is a highly accurate, sensitive, and specific method for the diagnosis of 22q11 deletion syndrome.  相似文献   

13.
The 18q- syndrome is one of several terminal deletion disorders that occur in humans. Previous G-banding studies suggest that the loss of a critical band, 18q21.3, results in mental retardation, craniofacial anomalies, and metabolic defects. However, it is difficult to reconcile the consistent loss of a single region with the large variability in clinical phenotype. The purpose of this study was to reassess the extent of chromosomal loss in a cohort of 17 18q- syndrome patients by using fluorescent-activated chromosome sorting, PCR, and FISH. Bivariate flow karyotypes revealed heterogeneity among the deletions; they ranged in size from 9 to 26 Mb. To confirm this heterogeneity at a molecular level, deleted and normal chromosomes 18 of six patients were collected by flow sorting, preamplified by random priming, and assayed for marker content by the PCR. This analysis defined five unique breakpoints among the six patients. We conclude that the terminal deletions in the 18q- syndrome occur over a broad region spanning the interval from 18q21.2 to 18q22.2. Our results suggest that the variability in clinical phenotype may be more representative of a contiguous-gene syndrome with a baseline deficit of 18q22.2-qter than of the loss of a single critical region within 18q21.3.  相似文献   

14.
High-resolution chromosome analysis and multiple banding techniques were performed on blood samples from 40 patients with Prader-Willi syndrome (PWS) as a follow-up to our recent report in which we found interstitial deletions of 15q in four of five patients with this syndrome. Of the 40 new patients, 19 had interstitial del(15q), one had an apparently balanced 15;15 translocation, and one was mos46,XX/47,XX+idic(15) (pter leads to q11::q11 leads to pter). These data confirm our previous report and demonstrate that half of all patients with the clinical diagnosis of PWS have chromosome abnormalities involving chromosome 15 detectable by high-resolution methods. Although the majority of these involve a specific deletion of bands 15q11-q12, other alterations of chromosome 15 may be present.  相似文献   

15.
A number of human telomeres have been successfully cloned using a modified yeast artificial chromosome (YAC) vector (half-YAC) cloning strategy, but to date, human chromosome 22q has not been identified by this approach. We used an alternative approach of genomic walking, starting from a subtelomeric sequence, TelBam3.4, present on a number of human chromosomes including 22q. This approach was successful in the development of a cosmid contig representing the terminal 140 kb of human chromosome 22q, providing telomeric closure of the genetic and physical maps for 22q. The most distal region of the contig contains subtelomeric repeats which crosshybridize to a number of chromosomes, while the proximal sequences are unique for 22q. The unique sequence cosmid was used as a 22qter-specific probe for fluorescence in situ hybridization (FISH) analysis, which confirmed that this cosmid was distal to the most telomeric marker previously available for chromosome 22. In addition, this cosmid was used to document a 22q terminal deletion that was not detectable by conventional cytogenetic analysis. Unique telomere-specific FISH probes such as this one will have significant diagnostic value in the detection of cryptic deletions and translocations in patients with unexplained mental retardation and other patient populations. Received: 21 November 1995  相似文献   

16.
This study is the first to describe age-related changes in a large cohort of patients with Phelan–McDermid syndrome (PMS), also known as 22q13 deletion syndrome. Over a follow-up period of up to 12 years, physical examinations and structured interviews were conducted for 201 individuals diagnosed with PMS, 120 patients had a focused, high-resolution 22q12q13 array CGH, and 92 patients’ deletions were assessed for parent-of-origin. 22q13 genomic anomalies include terminal deletions of 22q13 (89 %), terminal deletions and interstitial duplications (9 %), and interstitial deletions (2 %). Considering different age groups, in older patients, behavioral problems tended to subside, developmental abilities improved, and some features such as large or fleshy hands, full or puffy eyelids, hypotonia, lax ligaments, and hyperextensible joints were less frequent. However, the proportion reporting an autism spectrum disorder, seizures, and cellulitis, or presenting with lymphedema or abnormal reflexes increased with age. Some neurologic and dysmorphic features such as speech and developmental delay and macrocephaly correlated with deletion size. Deletion sizes in more recently diagnosed patients tend to be smaller than those diagnosed a decade earlier. Seventy-three percent of de novo deletions were of paternal origin. Seizures were reported three times more often among patients with a de novo deletion of the maternal rather than paternal chromosome 22. This analysis improves the understanding of the clinical presentation and natural history of PMS and can serve as a reference for the prevalence of clinical features in the syndrome.  相似文献   

17.
Gorlin syndrome is an autosomal dominant disorder characterized by multiple basal cell carcinomas, medulloblastomas, ovarian fibromas, and a variety of developmental defects. All affected individuals share certain key features, but there is significant phenotypic variability within and among kindreds with respect to malformations. The gene (NBCCS) maps to chromosome 9q22, and allelic loss at this location is common in tumors from Gorlin syndrome patients. Two recessive cancer-predisposition syndromes, xeroderma pigmentosum group A (XPAC) and Fanconi anemia group C (FACC), map to the NBCCS region; and unusual, dominant mutations in these genes have been proposed as the cause of Gorlin syndrome. This study presents cytogenetic and molecular characterization of germ-line deletions in one patient with a chromosome 9q22 deletion and in a second patient with a deletion of 9q22-q3l. Both have typical features of Gorlin syndrome plus additional findings, including mental retardation, conductive hearing loss, and failure to thrive. That Gorlin syndrome can be caused by null mutations (deletions) rather than by activating mutations has several implications. First, in conjunction with previous analyses of allelic loss in tumors, this study provides evidence that associated neoplasms arise with homozygous inactivation of the gene. In addition, dominant mutations of the XPAC and FACC1 genes can be ruled out as the cause of Gorlin syndrome, since the two patients described have null mutations. Finally, phenotypic features that show variable expression must be influenced by genetic background, epigenetic effects, somatic mutations, or environmental factors, since these two patients with identical alterations (deletions) of the Gorlin syndrome gene have somewhat different manifestations of Gorlin syndrome.  相似文献   

18.
Malignant rhabdoid tumors are highly aggressive neoplasms found primarily in infants and young children. The majority of rhabdoid tumors arise as a result of homozygous inactivating deletions or mutations of the INI1 gene located in chromosome band 22q11.2. Germline mutations of INI1 predispose to the development of rhabdoid tumors of the brain, kidney and extra-renal tissues, consistent with its function as a tumor suppressor gene. We now describe five patients with germline deletions in chromosome band 22q11.2 that included the INI1 gene locus, leading to the development of rhabdoid tumors. Two patients had phenotypic findings that were suggestive but not diagnostic for DiGeorge/Velocardiofacial syndrome (DGS/VCFS). The other three infants had highly aggressive disease with multiple tumors at the time of presentation. The extent of the deletions was determined by fluorescence in situ hybridization and high-density oligonucleotide based single nucleotide polymorphism arrays. The deletions in the two patients with features of DGS/VCFS were distal to the region typically deleted in patients with this genetic disorder. The three infants with multiple primary tumors had smaller but overlapping deletions, primarily involving INI1. The data suggest that the mechanisms underlying the deletions in these patients may be similar to those that lead to DGS/VCFS, as they also appear to be mediated by related, low copy repeats (LCRs) in 22q11.2. These are the first reported cases in which an association has been established between recurrent, interstitial deletions mediated by LCRs in 22q11.2 and a predisposition to cancer. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Mutational mechanisms of Williams-Beuren syndrome deletions   总被引:6,自引:0,他引:6       下载免费PDF全文
Williams-Beuren syndrome (WBS) is a segmental aneusomy syndrome that results from a heterozygous deletion of contiguous genes at 7q11.23. Three large region-specific low-copy repeat elements (LCRs), composed of different blocks (A, B, and C), flank the WBS deletion interval and are thought to predispose to misalignment and unequal crossing-over, causing the deletions. In this study, we have determined the exact deletion size and LCR copy number in 74 patients with WBS, as well as precisely defined deletion breakpoints in 30 of them, using LCR-specific nucleotide differences. Most patients (95%) exhibit a 1.55-Mb deletion caused by recombination between centromeric and medial block B copies, which share approximately 99.6% sequence identity along 105-143 kb. In these cases, deletion breakpoints were mapped at several sites within the recombinant block B, with a cluster (>27%) occurring at a 12 kb region within the GTF2I/GTF2IP1 gene. Almost one-third (28%) of the transmitting progenitors were found to be heterozygous for an inversion between centromeric and telomeric LCRs. All deletion breakpoints in the patients with the inversion occurred in the distal 38-kb block B region only present in the telomeric and medial copies. Finally, only four patients (5%) displayed a larger deletion ( approximately 1.84 Mb) caused by recombination between centromeric and medial block A copies. We propose models for the specific pairing and precise aberrant recombination leading to each of the different germline rearrangements that occur in this region, including inversions and deletions associated with WBS. Chromosomal instability at 7q11.23 is directly related to the genomic structure of the region.  相似文献   

20.
Williams syndrome (WS) is considered a contiguous gene syndrome, with most patients having a 1.5-Mb deletion of chromosome 7q11.23 containing the elastin gene and flanking genes. Studies of the frequency, extent, and origin of these deletions are ongoing in many labs to discover ultimately the molecular and pathogenetic basis for WS. An analysis of 9 sporadic WS families with typical phenotypes was performed by genotyping polymorphisms in the region. This study revealed deletions in all 9 patients, with one showing a novel deletion extending much further centromeric than any other WS deletions yet reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号