首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT. Cartwheel complexes reassembled in a fraction derived by treating isolated oral apparatuses from Tetrahymena with 1.0 M KC1 for 12 h. Approximately 40% of the KCl-soluble protein reassembled into cartwheel complexes. The reassembly reaction was protein-concentration dependent, and reassembled cartwheels were stable at 3° C. Sucrose gradient centrifugation resolved 3 high molecular mass protein complexes from the KCl-soluble fraction. Each of the 3 complexes has a different mass, but each contains the same 5 polypeptides, 2 of which arc probably tubulins. When these complexes were removed from the KCl-soluble fraction by high speed centrifugation, cartwheel reassembly did not occur. The 5 polypeptides in the high molecular mass complexes were among several other polypeptides resolved from reassembled cartwheels by 2-dimensional gel electrophoresis. The high molecular mass complexes are probably essential for cartwheel formation. The electrophorctic data also show that several polypeptides in the KCL-soluble fraction do not appear to be incorporated into cartwheels. These polypeptides are probably non-essential for cartwheel formation.  相似文献   

2.
Cartwheel complexes reassembled in a fraction derived by treating isolated oral apparatuses from Tetrahymena with 1.0 M KCl for 12 h. Approximately 40% of the KCl-soluble protein reassembled into cartwheel complexes. The reassembly reaction was protein-concentration dependent, and reassembled cartwheels were stable at 3 degrees C. Sucrose gradient centrifugation resolved 3 high molecular mass protein complexes from the KCl-soluble fraction. Each of the 3 complexes has a different mass, but each contains the same 5 polypeptides, 2 of which are probably tubulins. When these complexes were removed from the KCl-soluble fraction by high speed centrifugation, cartwheel reassembly did not occur. The 5 polypeptides in the high molecular mass complexes were among several other polypeptides resolved from reassembled cartwheels by 2-dimensional gel electrophoresis. The high molecular mass complexes are probably essential for cartwheel formation. The electrophoretic data also show that several polypeptides in the KCL-soluble fraction do not appear to be incorporated into cartwheels. These polypeptides are probably non-essential for cartwheel formation.  相似文献   

3.
Disruption of the coat of coated vesicles is accompanied by the release of clathrin and other proteins in soluble form. The ability of solubilized coated vesicle proteins to reassemble into empty coats is influenced by Mg2+, Tris ion concentration, pH, and ionic strength. The proteins solubilized by 2 M urea spontaneously reassemble into empty coats following dialysis into isolation buffer (0.1 M MES–1 mM EGTA–1 mM MgCl2–0.02% NaN3, pH 6.8). Such reassembled coats have sedimentation properties similar to untreated coated vesicles. Clathrin is the predominant protein of reassembled coats; most of the other proteins present in native coated vesicles are absent. We have found that Mg2+ is important in the coat assembly reaction. At pH 8 in 0.01 M or 0.1 M Tris, coats dissociate; however, 10 mM MgCl2 prevents dissociation. If the coats are first dissociated at pH 8 and then the MgCl2 raised to 10 mM, reassembly occurs. These results suggest that Mg2+ stabilizes the coat lattice and promotes reassembly. This hypothesis is supported by our observations that increasing Mg2+ (10 μM–10 mM) increases reassembly whereas chelation of Mg2+ by (EGTA) inhibits reassembly. Coats reassembled in low-Tris (0.01 M, pH 8) supernatants containing 10 mM MgCl2 do not sediment, but upon dialysis into isolation buffer (pH 6.8), these coats become sedimentable. Nonsedimentable coats are noted also either when partially purified clathrin (peak I from Sepharose CL4B columns) is dialyzed into low-ionic-strength buffer or when peaks I and II are dialyzed into isolation buffer. Such nonsedimentable coats may represent intermediates in the assembly reaction which have normal morphology but lack some of the physical properties of native coats. We present a model suggesting that tightly intertwined antiparallel clathrin dimers form the edges of the coat lattice.  相似文献   

4.
The denatured monomers of an integral membrane protein OmpF porin were refolded and reassembled into its sodium dodecyl sulfate-resistant trimer in mixtures of n-octyl β-d-glucopyranoside and lipids. Effective reassembly was observed with a yield of 60–70% when the denatured monomers (0.1 mg/mL) were solubilized at 25 °C for 24 h in a refolding medium (pH 6.9) containing 7 mg/mL n-octyl β-d-glucopyranoside, 1 mg/mL sodium dodecyl sulfate and 2–2.5 mg/mL soybean asolectin. The reassembled species was characterized in the presence of sodium dodecyl sulfate by physicochemical methods. Low-angle laser light scattering measurements revealed that the molecular weight of the reassembled species is 115,000 ± 3,500 which corresponds to that of the trimer of this protein. Circular dichroism spectra suggested that the reassembled species is composed of the same β-structure as the native one. Synchrotron radiation small-angle X-ray scattering measurements confirmed that the reassembled species is a trimer that has the same compactness as the native one.  相似文献   

5.
The in vitro selfassembly of apoferritin after previous dissociation and unfolding in 7.2M guanidinium chloride, pH 3.5, yields up to 80% of a protein complex exhibiting the molecular mass of the native icositetramer of greater than or equal to 450 kDa. After removal of high molecular mass byproducts, the final reassembly product proves to be indistinguishable from native apoferritin with respect to its functional and conformational properties. These refer to the intrinsic fluorescence and to the far and near UV circular dichroism. The unfolding transitions of the native and reassembled protein in aqueous guanidinium chloride or at acid pH coincide within the range of error. The reassembled protein is also able to catalyze the oxidation of Fe(II). Higher polymers of the apoferritin complex represent most of the residual 20% of the reconstituted protein. They are stabilized by non-covalent (preferentially hydrophobic) interactions, and may be disassembled to the icositetramer by preferential solvation of the protein in the presence of less than or equal to 50% (v/v) ethylene glycol. The change in fluorescence emission accompanying polymerization reflects altered surface properties of the apoferritin subunits compatible with those reported for the ferritin----hemosiderin transition.  相似文献   

6.
Viral capsids act as molecular containers for the encapsulation of genomic nucleic acid. These protein cages can also be used as constrained reaction vessels for packaging and entrapment of synthetic cargos. The icosahedral Cowpea chlorotic mottle virus (CCMV) is an excellent model for understanding the encapsulation and packaging of both genomic and synthetic materials. High-resolution structural information of the CCMV capsid has been invaluable for evaluating structure-function relationships in the assembled capsid but does not allow insight into the capsid dynamics. The dynamic nature of the CCMV capsid might play an important role in the biological function of the virus. The CCMV capsid undergoes a pH and metal ion dependent reversible structural transition where 60 separate pores in the capsid open or close, exposing the interior of the protein cage to the bulk medium. In addition, the highly basic N-terminal domain of the capsid, which is disordered in the crystal structure, plays a significant role in packaging the viral cargo. Interestingly, in limited proteolysis and mass spectrometry experiments the N-terminal domain is the first part of the subunit to be cleaved, confirming its dynamic nature. Based on our fundamental understanding of the capsid dynamics in CCMV, we have utilized these aspects to direct packaging of a range of synthetic materials including drugs and inorganic nanoparticles.  相似文献   

7.
Phosphorylation of neurofilament-L protein (NF-L) by the catalytic subunit of cAMP-dependent protein kinase (A-kinase) inhibits the reassembly of NF-L and disassembles filamentous NF-L. The effects of phosphorylation by A-kinase on native neurofilaments (NF) composed of three distinct subunits: NF-L, NF-M, and NF-H, however, have not yet been described. In this paper, we examined the effects of phosphorylation of NF proteins by A-kinase on both native and reassembled filaments containing all three NF subunits. In the native NF, A-kinase phosphorylated each NF subunit with stoichiometries of 4 mol/mol for NF-L, 6 mol/mol for NF-M, and 4 mol/mol for NF-H. The extent of NF-L phosphorylation in the native NF was nearly the same as that of purified NF-L. However, phosphorylation did not cause the native NFs to disassemble into oligomers, as was the case for purified NF-L. Instead, partial fragmentation was detected in sedimentation experiments and by electron microscopic observations. This is probably not due to the presence of the three NF subunits in NF or to differences in phosphorylation sites because reassembled NF containing all three NF subunits were disassembled into oligomeric forms by phosphorylation with A-kinase and the phosphorylation by A-kinase occurred at the head domain of NF-L whether NF were native or reassembled. Disassembling intermediates of reassembled NF containing all three NF subunits were somewhat different from disassembling intermediates of NF-L. Thinning and loosening of filaments was frequently observed preceding complete disassembly. From the fact that the thinning was also observed in the native filaments phosphorylated by A-kinase, it is reasonable to propose the native NF is fragmented through a process of thinning that is stimulated by phosphorylation in the head domain of the NF subunits.  相似文献   

8.
In vitro reassembly of vesicular stomatitis virus skeletons.   总被引:19,自引:11,他引:8       下载免费PDF全文
  相似文献   

9.
Strongylocentrotus purpuratus outer doublet microtubules were prepared by extraction of sperm tail axonemes with 0.6 m-KCl. Sonication of the outer doublet microtubules in 5 mm-2-(N-morpholino)ethanesulphonic acid, 1 mm-ethyleneglycol-bis-(β-aminoethyl ether) N,N′-tetraacetic acid, 1 inm-MgSO4 (pH 6.7) solubilized up to 35% of the outer doublet protein, depending on the power input, in a manner which was non-selective for either subfiber. Tubulin comprised 75 to 85% of the total solubilized protein in a 200,000 g supernatant obtained from the sonicated suspension. Colchicine-binding assays demonstrated that the tubulin was largely in a native form (KA = 106, liters mole?; 0.74 mole of colchicine bound per mole of tubulin at infinite concentration of colchicine).Microtubule self-assembly from the 200,000 g supernatants in the absence of added seeds or glycerol was quantitated by light-scattering at 350 nm. The critical protein concentration for assembly was 0.55 mg ml?1 at 37 °C and the reaction occurred optimally in the presence of 2 mm-GTP and 150 mm-KCl. The solubilized outer doublet tubulin formed singlet microtubules upon reassembly under our in vitro conditions. The authenticity of the microtubules was verified by both negative stain and thin-section electron microscopy. Polymerization was prevented by colchicine and podophyllotoxin, and depolymerization occurred rapidly on cooling the microtubules to 0 °C.The susceptibility of the reassembled microtubules to low temperature suggested that they could be “recycled” by the warm assembly-cold disassembly procedure developed for vertebrate brain (Borisy et al., 1974). Twice recycled outer doublet tubulin was devoid of high molecular weight microtubule-associated proteins, as judged by gel electrophoresis in the presence of sodium dodecyl sulfate. However, trace amounts (less than 5%) of intermediate molecular weight material was visible on heavily overloaded gels. The function of this material is uncertain, but it is not chemically equivalent to the tau factor of vertebrate brain (Weingarten et al., 1975), since it cannot be separated from the tubulin by phosphocellulose adsorption. In addition, phosphocellulose-treated tubulin reassembled to the same extent as untreated tubulin, suggesting that the reassembly of outer doublet tubulin does not require the protein equivalents of brain microtubule-associated proteins or tau factor. If accessory proteins are required for the reassembly of outer doublet tubulin, they are not removed by phosphocellulose under the conditions employed, and they must comprise less than 5% of the total protein.  相似文献   

10.
Amide hydrogen exchange and mass spectrometry have been used to study the pH-induced structural changes in the capsid of brome mosaic virus (BMV). Capsid protein was labeled in a structurally sensitive way by incubating intact viral particles in D(2)O at pH 5.4 and 7.3. Deuterium levels in the intact coat protein and its proteolytic fragments were determined by mass spectrometry. The largest deuterium increases induced by structural alteration occurred in the regions around the quasi-threefold axes, which are located at the center of the asymmetric unit. The increased levels of deuterium indicate loosening of structure in these regions. This observation confirms the previously proposed swelling model for BMV and cowpea chlorotic mottle virus (CCMV) and is consistent with the structure of swollen CCMV recently determined by cryo-electron microscopy and image reconstruction. Structural changes in the extended N- and C-terminal arms were also detected and compared with the results obtained with other swollen plant viruses. This study demonstrates that protein fragmentation/amide hydrogen exchange is a useful tool for probing structural changes in viral capsids.  相似文献   

11.
Electrostatic properties of cowpea chlorotic mottle virus (CCMV) and cucumber mosaic virus (CMV) were investigated using numerical solutions to the Poisson-Boltzmann equation. Experimentally, it has been shown that CCMV particles swell in the absence of divalent cations when the pH is raised from 5 to 7. CMV, although structurally homologous, does not undergo this transition. An analysis of the calculated electrostatic potential confirms that a strong electrostatic repulsion at the calcium-binding sites in the CCMV capsid is most likely the driving force for the capsid swelling process during the release of calcium. The binding interaction between the encapsulated genome material (RNA) inside of the capsid and the inner capsid shell is weakened during the swelling transition. This probably aids in the RNA release process, but it is unlikely that the RNA is released through capsid openings due to unfavorable electrostatic interaction between the RNA and capsid inner shell residues at these openings. Calculations of the calcium binding energies show that Ca(2+) can bind both to the native and swollen forms of the CCMV virion. Favorable binding to the swollen form suggests that Ca(2+) ions can induce the capsid contraction and stabilize the native form.  相似文献   

12.
《The Journal of cell biology》1983,97(5):1339-1347
A protein activity has been identified in extracts of coated vesicles that enables purified clathrin triskelions to reassemble in vitro into coat structures of uniform size. Coats formed in the presence of this preparation, regardless of the buffer system employed, are uniform in size with a mean diameter of 78 nm (+/- 5 nm SD) and a sedimentation coefficient (S20,w) of approximately 250S. Analysis of the reassembled coats on dodecyl sulfate acrylamide gels reveals that they have specifically incorporated three polypeptides from the preparation: those of Mr congruent to 52,000, 100,000, and 110,000. The 52,000-, 100,000-, and 110,000-mol-wt polypeptides are incorporated in molar ratios of 0.85, 1.11, and 0.26, respectively, per three clathrin monomers (equivalent to one triskelion). We therefore designate these as assembly polypeptides (AP). In contrast, coats formed from clathrin alone, under permissive buffer conditions, are larger (400S), more heterogeneous in size (101 nm +/- 15 nm SD), and are composed only of clathrin and its associated light chains. These biochemical and biophysical characteristics distinguish AP-reassembled coats from coats formed by triskelions alone. AP-reassembled coats can be isolated, dissociated, then reassembled in the absence of any other factors. This recycling indicates that all the information needed for reassembly is present in the coat-incorporated polypeptides themselves. Reassembly is stoichiometric and saturable with respect to both clathrin and AP concentration. In the presence of AP, significant coat reassembly occurs at clathrin concentrations as low as 0.06 mg/ml. AP-mediated reassembly proceeds at 4 degrees, 22 degrees, and 37 degrees C. Coat formation also proceeds efficiently at intracellular pH values (7.2- 7.5) in the presence of AP. In its absence, reassembly does not occur at all above pH 6.7. In summary, AP promotes clathrin reassembly into coat structures of uniform size and distinctive composition under physiologically relevant salt, temperature, and pH conditions. In addition, the close similarity in size between AP-reassembled coats in vitro and coated membranes in the Golgi region in vivo raises the possibility that AP in the cell may be associated with this subpopulation of coat structures.  相似文献   

13.
The human papillomavirus (HPV) capsid is primarily composed of a structural protein denoted L1, which forms both pentameric capsomeres and capsids composed of 72 capsomeres. The L1 protein alone is capable of self-assembly in vivo into capsidlike structures referred to as viruslike particles (VLPs). We have determined conditions for the quantitative disassembly of purified HPV-11 L1 VLPs to the level of capsomeres, demonstrating that disulfide bonds alone are essential to maintaining long-term HPV-11 L1 VLP structure at physiological ionic strength. The ionic strength of the disassembly reaction was also important, as increased NaCl concentrations inhibited disassembly. Conversely, chelation of cations had no effect on disassembly. Quantitative reassembly to a homogeneous population of 55-nm, 150S VLPs was reliably achieved by the re-formation of disulfide linkages following removal of reducing agent at near-neutral pH and moderate NaCl concentration. HPV-11 L1 VLPs could also be dissociated by treatment with carbonate buffer at pH 9.6, but VLPs could not be regenerated following carbonate treatment. When probed with conformationally sensitive and/or neutralizing monoclonal antibodies, both capsomeres generated by disulfide reduction of purified VLPs and reassembled VLPs formed from capsomeres upon removal of reducing agents exhibited epitopes found on the surface of authentic HPV-11 virions. Antisera raised against either purified VLP starting material or reassembled VLPs similarly neutralized infectious HPV-11 virions. The ability to disassemble and reassemble VLPs in vitro and in bulk allows basic features of capsid assembly to be studied and also opens the possibility of packaging selected exogenous compounds within the reassembled VLPs.  相似文献   

14.
The extent and kinetics of reassembly of the four groups of linkers L1-L4 with 213 kDa subassemblies of twelve globin chains D, (bac)3(d)3, isolated from the approximately 3.6 MDa hexagonal bilayer (HBL) hemoglobin (Hb) of Lumbricus terrestris, was investigated using gel filtration. The reassembled HBL's were characterized by scanning transmission electron microscopic (STEM) mass mapping and their subunit content determined by reversed-phase chromatography. In reassembly by method (A), the linkers isolated by RP-HPLC at pH approximately 2.2 were added to D at neutral pH; in method (B), the linkers were renatured at neutral pH and then added to D. With method (A) the percentage of HBL reassembly varied from >/=13% in the absence of Ca(II) to /=75%), with ternary and binary linker combinations (40-50%) and with individual linkers producing yields increasing in the following order: L1=1-3%, L2 approximately L3=10-20% and L4=35-55%. The yield was two- to eightfold lower with method (B), except in the case of linkers L1-L3. Although the reassembly kinetics were always biphasic, with t1/2=0.3-3.3 hours and 10-480 hours, the ratio of the amplitudes fast:slow was 1:0.6 with method (A) and 1:2.5 with method (B). These results are consistent with a scheme in which the slow HBL reassembly is dependent on a slow conversion of linker conformation at neutral pH from a reassembly incompetent to a reassembly competent conformation. Although all the linkers self-associate extensively at neutral pH, forming complexes ranging from dimers to >18-mers, the size of the complex does not affect the extent or rate of reassembly. The oxygen binding affinity of reassembled HBLs was similar to that of the native Hb, but their cooperativity was lower. A model of HBL reassembly was proposed which postulates that binding of linker dimers to two of the three T subunits of D causes conformational alterations resulting in the formation of complementary binding sites which permit lateral self-association of D subassemblies, and thus dictate the formation of a hexagonal structure due to the 3-fold symmetry of D.  相似文献   

15.
A method was developed for the reassembly of membranous vesicle from the sodium dcoxycholate-dissociated outer membrane components of Escherichia coli. The removal of the detergent by dialysis and the presence of Mg2+ were essential for the reassembly.Membrane protein alone did not form any membranous structure. Closed membranous vesicles similar to the native outer membrane were reassembled only when protein was mixed with both lipopolysaccharide and phospholipid in deoxycholate solution and subsequently dialyzed. The membrane showed a distinct trilaminar structure with a center-to-center distance between two dark lines of 53 Å, which is a characteristic of the native outer membrane. This characteristic trilaminar structure was shown to be due to the presence of lipopolysaccharide. Phospholipd was required for the vesicularization of membrane. Lipopolysaccharide and/or phospholipid formed a membranous structure in the absence of protein, while the morphology of their negatively stained sample was quite different from that of the native outer membrane unless the outer membrane protein was added to the reassembly mixture.The protein from the cytoplasmic membrane was unable to reform membranous vesicle with lipopolysaccharide and phospholipid, indicating that the reassembly system discriminated outer membrane proteins from cytoplasmic membrane proteins.  相似文献   

16.
The structure of cucumber mosaic virus (CMV; strain Fny) has been determined to a 3.2-A resolution using X-ray crystallography. Despite the fact that CMV has only 19% capsid protein sequence identity (34% similarity) to cowpea chlorotic mottle virus (CCMV), the core structures of these two members of the Bromoviridae family are highly homologous. As suggested by a previous low-resolution structural study, the 305-A diameter (maximum) of CMV is approximately 12 A larger than that of CCMV. In CCMV, the structures of the A, B, and C subunits are nearly identical except in their N termini. In contrast, the structures of two loops in subunit A of CMV differ from those in B and C. These loops are 6 and 7 residues longer than the analogous regions in CCMV. Unlike that of CCMV, the capsid of CMV does not undergo swelling at pH 7.0 and is stable at pH 9.0. This may be partly due to the fact that the N termini of the B and C subunits form a unique bundle of six amphipathic helices oriented down into the virion core at the threefold axes. In addition, while CCMV has a cluster of aspartic acid residues at the quasi-threefold axis that are proposed to bind metal in a pH-dependent manner, this cluster is replaced by complementing acids and bases in CMV. Finally, this structure clearly demonstrates that the residues important for aphid transmission lie at the outermost portion of the betaH-betaI loop and yields details of the portions of the virus that are hypothesized to mediate binding to aphid mouthparts.  相似文献   

17.
It has been generally proved impossible to reassemble ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from fully denatured subunits in vitro in higher plant,because large subunit of fullydenatured Rubisco is liable to precipitate when the denaturant is removed by common methods of directdilution and one-step dialysis.In our experiment,the problem of precipitation was resolved by an improvedgradual dialysis method,which gradually decreased the concentration of denaturant.However,fully denaturedRubisco subunits still could not be reassembled into holoenzyme using gradual dialysis unless chaperonin 60was added.The restored activity of reassembled Rubisco was approximately 8% of natural enzyme.Thequantity of reassembled Rubisco increased greatly when heat shock protein 70 was present in the reassemblyprocess.ATP and Mg~(2 ) were unnecessary for in vitro reassembly of Rubisco,and Mg~(2 ) inhibited the reassemblyprocess.The reassembly was weakened when ATP,Mg~(2 ) and K~ existed together in the reassembly process.  相似文献   

18.
Initial experiments in our laboratory have successfully reassembled infectious polyoma virions from dissociated virion products. Virions treated with ethyleneglycol-bis-N,N'-tetraacetic acid and the reducing agent beta-mercaptoethanol at pH 7.5 were dissociated to a 48S DNA-protein complex and capsomere subunits. The virion dissociation products were not infectious by plaque assay and lacked hemagglutination activity. These virion dissociation products were reassembled to intact virions by overnight dialysis against a reassembly buffer containing CaCl2, dimethyl sulfoxide, and Triton X-100 in phosphate-buffered saline at pH 7.4. The biophysical characteristics of the reassembled virions were identical to those of untreated virions in that the reassembled virions had a sedimentation value of 240S in sucrose gradients and a buoyant density of 1.315 g/cm3 in CsCl isopycnic gradients. The reassembled virions were intact as determined by electron microscopy and were found to be 60% resistant to DNase I treatment. Biologically, the reassembled purified virions were found to partially regain both hemagglutinating activity and plaque-forming ability.  相似文献   

19.
Cowpea chlorotic mottle virus (CCMV), which is stable at pH 5.0, has been modified at this pH with 0.5--0.7 pyridoxal 5'-phosphate molecules per protein subunit. The fluorescence properties of the labelled CCMV protein in different aggregation states of the virus provide information about the labelled part of the protein and the changes induced in its environment, when the nucleo-protein particles are swollen or dissociated. Fluorescence excitation and emission spectra indicate the presence of radiationless energy transfer from the aromatic amino acid residues to the label. Comparison of the fluorescence lifetimes of the labelled and the unlabelled protein confirms the existence of energy transfer. The mobility of the labelled part, which can be estimated from the fluorescence polarization of pyridoxal phosphate chromophore, is higher than expected from the dimensions of the virus and the protein subunits. Polarization values and the fluorescence lifetimes depend on the presence of small amounts of NaCl or MgCl2 in the buffer solution at pH 7.5. This is due to structural changes in the vicinity of the pyridoxal phosphate label of the RNA and of the protein part.  相似文献   

20.
Coat protein of the cowpea chlorotic mottle virus (CCMV), a plant bromovirus, has been expressed in a soluble form in a prokaryote, Pseudomonas fluorescens, and assembled into virus-like particles (VLPs) in vivo that were structurally similar to the native CCMV particles derived from plants. The CCMV VLPs were purified by PEG precipitation followed by separation on a sucrose density gradient and analyzed by size exclusion chromatography, UV spectrometry, and transmission electron microscopy. DNA microarray experiments revealed that the VLPs encapsulated very large numbers of different host RNAs in a non-specific manner. The development of a P. fluorescens expression system now enables production of CCMV VLPs by bacterial fermentation for use in pharmaceutical or nanotechnology applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号