首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the relative effect of top predators and primary producers on intermediate trophic levels is a key question in ecology. Most previous work, however, has not considered either realistic nonlinearities in feedback between trophic levels or the effect of mutualists on trophic cascades. Here, we develop a realistic model for a protection mutualism that explicitly includes interactions between a protected herbivore and both its food plant and generalist predators. In the absence of protection, herbivores and plant resources approach a stable equilibrium, provided that predation is not so high as to cause herbivore extinction. In contrast, adding protection by mutualists increases the range of dynamical outcomes to include unstable equilibria, stable and unstable limit cycles, and heteroclinic orbits. By reducing the impact of predators, protection by mutualists can allow herbivores to exert strong negative effects on their host plants, which in turn can lead to repeated cycles of overexploitation and recovery. Our results indicate that it may be essential to consider protection mutualisms to understand the dynamics of trophic cascades. Conversely, it may be essential to explicitly include dynamical feedback between plants and herbivores to fully understand the population and community dynamical consequences of protection mutualism.  相似文献   

2.
Conditions are derived that we conjecture are necessary and sufficient for the existence of stationary densities for a class of two-dimensional diffusion processes. The derivation of the conditions rests on the assumption that a two-dimensional stationary density (which can be viewed as a stable “internal equilibrium”) exists if and only if all “boundary equilibria” are unstable in the sense that small perturbations lead to moving away from the boundaries with high probability. For the models considered, the boundary equilibria are one-dimensional stationary densities and equilibrium points. To demonstrate the usefulness of the conditions, three random environment models are analyzed: a three-allele selection model, a two-species competition model, and a two-locus selection model. Several of the results obtained have been verified by alternate methods.  相似文献   

3.
Structured models of metapopulation dynamics   总被引:2,自引:0,他引:2  
I develop models of metapopulation dynamics that describe changes in the numbers of individuals within patches. These models are analogous to structured population models, with patches playing the role of individuals. Single species models which do not include the effect of immigration on local population dynamics of occupied patches typically lead to a unique equilibrium. The models can be used to study the distributions of numbers of individuals among patches, showing that both metapopulations with local outbreaks and metapopulations without outbreaks can occur in systems with no underlying environmental variability. Distributions of local population sizes (in occupied patches) can vary independently of the total population size, so both patterns of distributions of local population sizes are compatible with either rare or common species. Models which include the effect of immigration on local population dynamics can lead to two positive equilibria, one stable and one unstable, the latter representing a threshold between regional extinction and persistence.  相似文献   

4.
A mathematical model has been set up to investigate the changes in frequency of a gene inducing Batesian mimicry, due to selective predation. The selective force acting on this gene is frequency dependent since the tendency of predators to eat the mimic varies with the abundance of the mimic itself relative to the appropriate distasteful model. Cases have been investigated both where the mimicry is limited to one sex only and where both sexes can be mimetic. This kind of selection can eventually lead to three different results: (a) fixation of the mimetic gene; (b) an interval of neutral equilibria; (c) a unique, nontrivial equilibrium. In the last case, both the trivial equilibria are unstable, both locally and globally, whereas the intermediate equilibrium can be stable or unstable. When this occurs, the gene frequency eventually undergoes stable oscillations. The results actually obtained depend mainly on the behavior of the predators and the abundance of the mimic relative to the model.  相似文献   

5.
We examined the levels and apportionment of genetic variation of the 11 known subpopulations of Atractylis preauxiana at 95 RAPD loci to help streamline a conservation strategy for this Canarian endemic taxon, which is in a critical situation because of the constant exposure of plants to intensive, uncontrolled anthropic action in the last few decades. Our results revealed low genetic variation levels that match with the general picture of demographic and habitat degradation that this taxon is undergoing. Although geographic isolation between Tenerife and Gran Canaria is an effective barrier to gene flow, genetic heterogeneity within islands is also substantial, plausibly due to the negative impact of fragmentation on genetic variation. Our genetic results, together with declining population sizes, poor seedling survival, and recent population extinctions, compellingly indicate that A. preauxiana is undergoing an extinction ratchet, whereby every further local extinction will add up to the probability of total species’ extinction. Our genetic results suggest that mitigating the deleterious consequences of this effect entails urgent mixed reinforcements of all sub-populations with sub-populations from the same island and urgent translocation of the two sub-populations from Tenerife that are doomed to extinction to ecologically suitable areas, together with seed collection and preservation in a convenient ex situ banking facility.  相似文献   

6.
We studied the dynamics of the Ricker population model under perturbations by the discrete random variable epsilon which follows distribution P?epsilon=a(i)?=p(i),i=1,ellipsis,n,0/=1. Under the perturbations, n+1 blurred orbits appeared in the bifurcation diagram. Each of the n+1 blurred orbits consisted of n sub-orbits. The asymptotes of the n sub-orbits in one of the n+1 blurred orbits were N(t)=a(i) for i=1,ellipsis,n. For other n blurred orbits, the asymptotes of the n sub-orbits were N(t)=a(i)exp[r(1-a(i))]+a(j),j=1,2,ellipsis,n, for i=1,ellipsis,n, respectively. The effects of variances of the random variable epsilon on the bifurcation diagrams were examined. As the variance value increased, the bifurcation diagram became more blurred. Perturbation effects of the approximate continuous uniform random variable and random error were compared. The effects of the two perturbations on dynamics of the Ricker model were similar, but with differences. Under different perturbations, the attracting equilibrium points and two-cycle periods in the Ricker model were relatively stable. However, some dynamic properties, such as the periodic windows and the n-cycle periods (4), could not be observed even when the variance of a perturbation variable was very small. The process of reversal of the period-doubling, an important feature of the Ricker and other population models observed under constant perturbations, was relatively unstable under random perturbations.  相似文献   

7.
Perturbations are relatively large shocks to state variables that can drive transitions between stable states, while drift in parameter values gradually alters equilibrium magnitudes. This latter effect can lead to equilibrium bifurcation, the generation, or annihilation of equilibria. Equilibrium annihilations reduce the number of equilibria and so are associated with catastrophic population collapse. We study the combination of perturbations and parameter drift, using a two-species intraguild predation (IGP) model. For example, we use bifurcation analysis to understand how parameter drift affects equilibrium number, showing that both competition and predation rates in this model are bifurcating parameters. We then introduce a stochastic process to model the effects of population perturbations. We demonstrate how to evaluate the joint effects of perturbations and drift using the common currency of mean first passage time to transitions between stable states. Our methods and results are quite general, and for example, can relate to issues in both pest control and sustainable harvest. Our results show that parameter drift (1) does not importantly change the expected time to reach target points within a basin of attraction, but (2) can dramatically change the expected time to shift between basins of attraction, through its effects on equilibrium resilience.  相似文献   

8.
Single-species metapopulation dynamics: concepts, models and observations   总被引:24,自引:0,他引:24  
This paper outlines a conceptual and theoretical framework for single-species metapopulation dynamics based on the Levins model and its variants. The significance of the following factors to metapopulation dynamics are explored: evolutionary changes in colonization ability; habitat patch size and isolation; compensatory effects between colonization and extinction rates; the effect of immigration on local dynamics (the rescue effect); and heterogeneity among habitat patches. The rescue effect may lead to alternative stable equilibria in metapopulation dynamics. Heterogeneity among habitat patches may give rise to a bimodal equilibrium distribution of the fraction of patches occupied in an assemblage of species (the core-satellite distribution). A new model of incidence functions is described, which allows one to estimate species' colonization and extinction rates on islands colonized from mainland. Four distinct kinds of stochasticity affecting metapopulation dynamics are discussed with examples. The concluding section describes four possible scenarios of metapopulation extinction.  相似文献   

9.
Under haploid selection, a multi-locus, diallelic, two-niche Levene (1953) model is studied. Viability coefficients with symmetrically opposing directional selection in each niche are assumed, and with a further simplification that the most and least favored haplotype in each niche shares no alleles in common, and that the selection coefficients monotonically increase or decrease with the number of alleles shared. This model always admits a fully polymorphic symmetric equilibrium, which may or may not be stable.We show that a stable symmetric equilibrium can become unstable via either a supercritical or subcritical pitchfork bifurcation. In the supercritical bifurcation, the symmetric equilibrium bifurcates to a pair of stable fully polymorphic asymmetric equilibria; in the subcritical bifurcation, the symmetric equilibrium bifurcates to a pair of unstable fully polymorphic asymmetric equilibria, which then connect to either another pair of stable fully polymorphic asymmetric equilibria through saddle-node bifurcations, or to a pair of monomorphic equilibria through transcritical bifurcations. As many as three fully polymorphic stable equilibria can coexist, and jump bifurcations can occur between these equilibria when model parameters are varied.In our Levene model, increasing recombination can act to either increase or decrease the genetic diversity of a population. By generating more hybrid offspring from the mating of purebreds, recombination can act to increase genetic diversity provided the symmetric equilibrium remains stable. But by destabilizing the symmetric equilibrium, recombination can ultimately act to decrease genetic diversity.  相似文献   

10.
Multiple attractors and boundary crises in a tri-trophic food chain   总被引:3,自引:0,他引:3  
The asymptotic behaviour of a model of a tri-trophic food chain in the chemostat is analysed in detail. The Monod growth model is used for all trophic levels, yielding a non-linear dynamical system of four ordinary differential equations. Mass conservation makes it possible to reduce the dimension by 1 for the study of the asymptotic dynamic behaviour. The intersections of the orbits with a Poincaré plane, after the transient has died out, yield a two-dimensional Poincaré next-return map. When chaotic behaviour occurs, all image points of this next-return map appear to lie close to a single curve in the intersection plane. This motivated the study of a one-dimensional bi-modal, non-invertible map of which the graph resembles this curve. We will show that the bifurcation structure of the food chain model can be understood in terms of the local and global bifurcations of this one-dimensional map. Homoclinic and heteroclinic connecting orbits and their global bifurcations are discussed also by relating them to their counterparts for a two-dimensional map which is invertible like the next-return map. In the global bifurcations two homoclinic or two heteroclinic orbits collide and disappear. In the food chain model two attractors coexist; a stable limit cycle where the top-predator is absent and an interior attractor. In addition there is a saddle cycle. The stable manifold of this limit cycle forms the basin boundary of the interior attractor. We will show that this boundary has a complicated structure when there are heteroclinic orbits from a saddle equilibrium to this saddle limit cycle. A homoclinic bifurcation to a saddle limit cycle will be associated with a boundary crisis where the chaotic attractor disappears suddenly when a bifurcation parameter is varied. Thus, similar to a tangent local bifurcation for equilibria or limit cycles, this homoclinic global bifurcation marks a region in the parameter space where the top-predator goes extinct. The 'Paradox of Enrichment' says that increasing the concentration of nutrient input can cause destabilization of the otherwise stable interior equilibrium of a bi-trophic food chain. For a tri-trophic food chain enrichment of the environment can even lead to extinction of the highest trophic level.  相似文献   

11.
A large-scale model of the immune network is analyzed, using the shape-space formalism. In this formalism, it is assumed that the immunoglobulin receptors on B cells can be characterized by their unique portions, or idiotypes, that have shapes that can be represented in a space of a small finite dimension. Two receptors are assumed to interact to the extent that the shapes of their idiotypes are complementary. This is modeled by assuming that shapes interact maximally whenever their coordinates in the space-space are equal and opposite, and that the strength of interaction falls off for less complementary shapes in a manner described by a Gaussian function of the Euclidean "distance" between the pair of interacting shapes. The degree of stimulation of a cell when confronted with complementary idiotypes is modeled using a log bell-shaped interaction function. This leads to three possible equilibrium states for each clone: a virgin, an immune, and a suppressed state. The stability properties of the three possible homogeneous steady states of the network are examined. For the parameters chosen, the homogeneous virgin state is stable to both uniform and sinusoidal perturbations of small amplitude. A sufficiently large perturbation will, however, destabilize the virgin state and lead to an immune reaction. Thus, the virgin system is both stable and responsive to perturbations. The homogeneous immune state is unstable to both uniform and sinusoidal perturbations, whereas the homogeneous suppressed state is stable to uniform, but unstable to sinusoidal, perturbations. The non-uniform patterns that arise from perturbations of the homogeneous states are examined numerically. These patterns represent the actual immune repertoire of an animal, according to the present model. The effect of varying the standard deviation sigma of the Gaussian is numerically analyzed in a one-dimensional model. If sigma is large compared to the size of the shape-space, the system attains a fixed non-uniform equilibrium. Conversely if sigma is small, the system attains one out of many possible non-uniform equilibria, with the final pattern depending on the initial conditions. This demonstrates the plasticity of the immune repertoire in this shape-space model. We describe how the repertoire organizes itself into large clusters of clones having similar behavior. These results are extended by analyzing pattern formation in a two-dimensional (2-D) shape-space.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
 The asymptotic behavior of a tri-trophic food chain model is studied. The analysis is carried out numerically, by finding both local and global bifurcations of equilibria and limit cycles. The existence of transversal homoclinic orbits to a limit cycle is shown. The appearance of homoclinic orbits, by moving through a homoclinic bifurcation point, is associated with the sudden disappearance of a chaotic attractor. A homoclinic bifurcation curve, which bounds a region of extinction, is continued through a two-dimensional parameter space. Heteroclinic orbits from an equilibrium to a limit cycle are computed. The existence of these heteroclinic orbits has important consequences on the domains of attraction. Continuation of non-transversal heteroclinic orbits through parameter space shows the existence of two codimension-two bifurcations points, where the saddle cycle is non-hyperbolic. The results are summarized by dividing the parameter space in subregions with different asymptotic behavior. Received: 25 February 1998 / Revised version: 19 August 1998  相似文献   

13.
Global dispersal reduces local diversity   总被引:3,自引:0,他引:3  
Metapopulation models and stepping-stone models in genetics are based on very different underlying dispersal structures, yet it can be difficult to distinguish the behaviour of the two kinds of models. We demonstrate a striking qualitative difference in the equilibrium behaviour possible with these two kinds of dispersal. If, in a local patch, there are multiple stable equilibria (and consequently an unstable equilibrium), we demonstrate that, for the spatial system with a metapopulation structure, at equilibrium every patch has to be near one of the stable equilibria. This contrasts with the clinal structure possible with a stepping-stone or continuous space model; thus the result can be used to deduce qualitative information about the form of dispersal from observations of allele frequencies.  相似文献   

14.
Turing instability in pioneer/climax species interactions   总被引:1,自引:0,他引:1  
Systems of pioneer and climax species are used to model interactions of species whose reproductive capacity is sensitive to population density in their shared ecosystem. Intraspecies interaction coefficients can be adjusted so that spatially homogeneous solutions are stable to small perturbations. In a reaction-diffusion pioneer/climax model we will determine the critical value of the diffusion rate of the climax species, below which the equilibrium solution is unstable to non-homogeneous perturbations. For diffusion rates smaller than this critical value, an equilibrium solution remains stable to spatially homogeneous perturbations but is unstable to non-homogeneous perturbations. A Turing (diffusional) bifurcation leads to the formation of spatial patterns in species' densities. Forcing, interpreted as stocking or harvesting of the species, can reverse the bifurcation and establish equilibrium solutions which are stable to small perturbations. The implicit function theorem is used to determine whether stocking or harvesting of one of the species in the model is the appropriate remedy for diffusional instability. The use of stocking or harvesting by a natural resource manager thus influences the long-term dynamics and spatial distribution of species in a pioneer/climax ecosystem.  相似文献   

15.
We study the equilibrium structure of a well-known two-locus model in which two diallelic loci contribute additively to a quantitative trait that is under Gaussian stabilizing selection. The population is assumed to be infinitely large, randomly mating, and having discrete generations. The two loci may have arbitrary effects on the trait, the strength of selection and the recombination rate may also be arbitrary. We find that 16 different equilibrium patterns exist, having up to 11 equilibria; up to seven interior equilibria may coexist, and up to four interior equilibria, three in negative and one in positive linkage disequilibrium, may be simultaneously stable. Also, two monomorphic and two fully polymorphic equilibria may be simultaneously stable. Therefore, the result of evolution may be highly sensitive to perturbations in the initial conditions or in the underlying genetic parameters. For the special case of equal effects, global stability results are proved. In the general case, we rely in part on numerical computations. The results are compared with previous analyses of the special case of extremely strong selection, of an approximate model that assumes linkage equilibrium, and of the much simpler quadratic optimum model.  相似文献   

16.
Chai C  Jiang J 《PloS one》2011,6(2):e16467
A sexually-transmitted disease model for two strains of pathogen in a one-sex, heterogeneously-mixing population has been studied completely by Jiang and Chai in (J Math Biol 56:373-390, 2008). In this paper, we give a analysis for a SIS STD with two competing strains, where populations are divided into three differential groups based on their susceptibility to two distinct pathogenic strains. We investigate the existence and stability of the boundary equilibria that characterizes competitive exclusion of the two competing strains; we also investigate the existence and stability of the positive coexistence equilibrium, which characterizes the possibility of coexistence of the two strains. We obtain sufficient and necessary conditions for the existence and global stability about these equilibria under some assumptions. We verify that there is a strong connection between the stability of the boundary equilibria and the existence of the coexistence equilibrium, that is, there exists a unique coexistence equilibrium if and only if the boundary equilibria both exist and have the same stability, the coexistence equilibrium is globally stable or unstable if and only if the two boundary equilibria are both unstable or both stable.  相似文献   

17.
Models for the transmission of the chikungunya virus to human population are discussed. The chikungunya virus is an alpha arbovirus, first identified in 1953. It is transmitted by Aedes mosquitoes and is responsible for a little documented uncommon acute tropical disease. Models describing the mosquito population dynamics and the virus transmission to the human population are discussed. Global analysis of equilibria are given, which use on the one hand Lyapunov functions and on the other hand results of the theory of competitive systems and stability of periodic orbits.  相似文献   

18.
The global analysis of a two-allele mating system is provided. One allele is dominant to the other. Mating is random, but mating between unlike phenotypes has a lower fertility than that between like phenotypes. The generations are discrete and non-overlapping. The population is considered to be infinite, and the model is deterministic. There are three equilibria of the difference equations. Two of the equilibria are the (two) homozygous states, and these are asymptotically stable. The third equilibrium is polymorphic but is unstable. It is proven that almost all populations converge to one of the two homozygous states. The remaining populations converge to the unstable equilibrium, and lie on a curve that separates the basins of attraction for the other two equilibria. This curve is shown to satisfy some simple properties.  相似文献   

19.
本文研究了一类具有不同生存能力竞争效应的差分方程生态模型中的同步二点周期环现象.结果表明,当存活率为密度制约时,除始终存在唯一的一个正奇点外,还同时存在唯一的一个同步二点周期环,其稳定性正好与这一正奇点的性态相反.  相似文献   

20.
In this research article, an epidemiological model is formulated for mosaic disease considering plant and vector populations. Plant host population has been divided into three compartments namely healthy, latently infected and infected ones, and vector population is divided into two compartments: non-infective and infective vectors. The system possesses three equilibria: plant-only, disease-free and endemic equilibrium. Plant-only equilibrium is always unstable; disease-free equilibrium is stable when the basic reproduction number, R0, is less than unity and unstable for when it crosses unity, and ensure existence of an endemic equilibrium which may be stable or can undergo a Hopf bifurcation. Finally, impulse periodic roguing with varied rate and time interval is adopted for cost effective and eco-friendly disease control and future direction of agriculture management. The dynamics of the impulsive system has also been analysed. Detailed numerical simulations are employed to support the analytical results. We found that roguing is most cost effective and useful management for mosaic disease eradication of plants if applied at proper rate and interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号