首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Membrane-bounded nucleoids in microbial symbionts of marine sponges   总被引:2,自引:0,他引:2  
In thin sections of resin-embedded samples of glutaraldehyde- and osmium tetroxide-fixed tissue from five genera of marine sponges, Stromatospongia, Astrosclera, Jaspis, Pseudoceratina and Axinyssa, cells of a bacteria-like symbiont microorganism which exhibit a membrane-bounded nuclear region encompassing the fibrillar nucleoid have been observed within the sponge mesohyl. The nuclear region in these cells is bounded by a single bilayer membrane, so that the cell cytoplasm is divided into two distinct regions. The cell wall consists of subunits analogous to those in walls of some Archaea. Cells of the sponge symbionts observed here are similar to those of the archaeal sponge symbiont Cenarchaeum symbiosum.  相似文献   

2.
从深圳大鹏湾南澳赤潮爆发海域的表层海水中分离得到1株对海洋原甲藻(Prorocentrum micans)具有溶藻活性的海洋细菌,菌株编号为N10。利用液相感染法研究了该溶藻细菌的溶藻效果和溶藻作用方式。结果表明,菌株N10能使藻细胞失去运动活性,并膨胀变形,细胞膜内物质聚集于一端,藻细胞最终破裂死亡。菌悬液接种到藻液中的量越大,初始细菌密度越高,其溶藻效果越强。菌悬液以1∶10的体积比接种到藻液中时,藻细胞在24 h的死亡率为83%,至72 h全部溶解死亡;体积比为1∶20的藻细胞在24 h的死亡率为71%,之后藻细胞密度略有波动,120 h时死亡率达77%;而体积比为1∶100的藻细胞密度在前24 h有所下降,死亡率达39%,之后藻细胞密度又开始明显上升;对照组的藻细胞密度均呈明显上升趋势。菌悬液过滤液和高温加热处理后的菌悬液过滤液对海洋原甲藻均无溶藻活性,表明菌株N10的溶藻方式为直接溶藻。通过16S rRNA序列分析并与GenBank数据进行同源性检索,并结合细菌形态及生理生化特征,菌株N10隶属于黄杆菌科(Flavobacteriaceae)中的Muricauda sp.。  相似文献   

3.
Carposporogenesis in Caloglossa leprieurii is divided into three cytological stages. At stage I, the young spores have few plastids and little starch. Abundant dictyosomes secrete a gelatinous wall layer in scale-like units. At stage II, dictyosomes produce a second fibrillar wall component in addition to the gelatinous constituent. Large fibrillar vesicles accumulate in the cytoplasm. Production of gelatinous material decreases in this stage. By stage III, starch grains and fully developed plastids are abundant. Rough endoplasmic reticulum occupies much of the peripheral cytoplasm. A dense, granular proteinaceous component appears in the wall in association with the fibrillar layer. Arrays of randomly oriented tubules are scattered in the cytoplasm. The mature carpospore is surrounded by an outer gelatinous wall layer and an inner fibrillar layer. Few dictyosomes persist in the mature spore. Carposporogenesis in Caloglossa is compared with that in other red algae.  相似文献   

4.
We have examined the bioavailability of Fe complexed to a siderophore produced by the heterotrophic marine bacterium Vibrio alginolyticus isolate PWH3a and Fe from ligand-complexes present in virus-mediated lysates (using phage PWH3a-P1) of this same bacterium. Fe-binding functional groups, stability constants and the bioavailability of Fe associated with these two separate ligand pools were determined and contrasted to previous work. Under low-Fe growth conditions, axenic cultures of V. alginolyticus PWH3a were shown to produce catecholate siderophores, while neither catecholate nor hydroxamate-type Fe-binding moieties were detected in virus-generated cell lysates. Analysis of the overall binding strength using electrochemical techniques revealed that the siderophore-containing organic extract and the organics in the virus-mediated lysates had Fe-binding constants comparable to the weaker L2-type ligands found throughout the water column in seawater. A further purification of the siderophore-containing extract revealed a ligand with a stability constant of logK′FeL,Fe3+ = 22.3, typical for siderophores and L1-type of ligands found in marine surface waters. In assimilation studies, the Fe in the lysate was found to be more bioavailable to our model heterotrophic bacterium, autotrophic cyanobacterium and eukaryotic diatom cultures than the catecholate siderophore produced by the Vibrio sp. This work demonstrates that the Fe-containing components of virus-mediated cell lysates are different than siderophores secreted by these same cells, and as such continues to build the argument supporting the importance of virus-mediated Fe regeneration in marine surface waters.  相似文献   

5.
The fine structure of the hemocytes and nephrocytes in Argas (Persicargas) arboreus is described and compared with that of similar cells in other tick species and insects. The hemocytes are of three types: prohemocytes, with a relatively undifferentiated cytoplasm lacking granular inclusions and probably serving as progenitors of the other hemolymph cell types; plasmatocytes, containing abundant mitochondria, cisternae of rough endoplasmic reticulum (RER), and free ribosomes, as well as some small granular inclusions; granulocytes, the predominant cell type in the hemolymph, containing numerous granules of variable electron density and maturity, and pseudopodia-like processes on the cell surface. Plasmatocytes and granulocytes are phagocytic and possibly also have other functions in the tick body. Cells with intermediate features appear to be in a stage of transition from plasmatocyte to granulocyte. Nephrocytes contain vacuoles enclosing fibrillar material, some electrondense granules, and moderate amounts of the active organelles—mitochondria, RER, and ribosomes. The nephrocyte is surrounded by a basal lamina and its plasma membrane infolds to form many deep invaginations coated by a fine fibrillar material. Openings to these invaginations are closed by membranous diaphragms. Coated tubular elements connect the surface invaginations with large coated vesicles, which appear to be specialized for internalization of proteins from the hemolymph. The dense granules may represent an advanced stage of condensation of ingested protein and thus may be lysosomal residual bodies, or they may develop by accumulation of secretory products.  相似文献   

6.
Diatoms and dinoflagellates not only have extensive distribution and a huge biomass in marine ecosystems, but also have high lipid accumulation in nature or after physiological and genetic modification, which indicates that these organisms may be optimal candidate algal strains for biodiesel production. In this study, we determined the content of intracellular neutral lipids (triacylglycerol [TAG]) in the dinoflagellate Prorocentrum micans and in the diatom Phaeodactylum tricornutum using NR and BODIPY 505/515 staining. The freshwater green alga Scenedesmus obliquus was used as a control. Optimum concentrations of 1.000 and 1.500 μg mL?1 were determined for neutral lipid Nile red (NR) staining in P. micans and P. tricornutum. Unlike NR staining, the optimal concentrations of BODIPY 505/515 staining in P. micans and P. tricornutum were lower, at 0.100 and 0.075 μg mL?1, respectively. High correlation coefficients of R 2?=?0.990 and R 2?=?0.989 were obtained for P. micans and P. tricornutum intracellular neutral lipid content and the relative fluorescence intensity with NR staining, while the reference alga, S. obliquus, had a relatively low correlation coefficient of R 2?=?0.908 when stained with NR. The neutral lipid content determined by thin-layer chromatography-flame ionization detector matched the analytical data from fluorescence measurements. These results indicated that NR and BODIPY 505/515 staining can be used as an excellent high-throughput approach to screen marine diatoms and dinoflagellates.  相似文献   

7.
We found recently that polar flagellated marine bacterium Vibrio alginolyticus is capable of exhibiting taxis toward a chemical source in both forward and backward swimming directions. How the microorganism coordinates these two swimming intervals, however, is not known. The work presented herein is aimed at determining the response functions of the bacterium by applying a stepwise chemoattractant stimulus while it is swimming forward or backward. The important finding of our experiment is that the bacterium responds to an identical chemical signal similarly during the two swimming intervals. For weak stimuli, the difference is mainly in the amplitudes of the response functions while the reaction and adaptation times remain unchanged. In this linear-response regime, the amplitude in the forward swimming interval is approximately a factor of two greater than in the backward direction. Our observation suggests that the cell processes chemical signals identically in both swimming intervals, but the responses of the flagellar motor to the output of the chemotaxis network, the regulator CheY-P concentration, are different. The biological significance of this asymmetrical response in polar flagellated marine bacteria is discussed.  相似文献   

8.
Lang, Norma J. (U. Texas, Austin.) Electron microscopy of the Volvocaceae and Astrephomenaceae. Amer. Jour. Bot. 50(3): 280-300. Illus. 1963.—Clonal cultures of Gonium sociale, G. pectorale, Pandorina morum, Eudorina elegans, Eudorina sp., Volvulina steinii, V. pringsheimii, Platydorina caudata, Pleodorina illinoisensis, P. californica, Volvox aureus, V. tertius, V. globator, V. barberi, and Astrephomene gubernaculifera representing the Volvocaceae and Astrephomenaceae in the Volvocales were examined with the electron microscope and their ultrastructure compared. The ultrastructure of the various organelles is basically similar in the species studied and no increase in cellular complexity is found to accompany the evolutionary trends evidenced in the Volvocaceae. The ultrastructure of a colonial cell is basically that of Chlamydotnonas. A cytoplasmic membrane having a unit membrane structure encompasses a cell and is continuous with the double-membraned flagellar sheaths. The flagella contain the typical 9 + 2 fibril arrangement with the 2 axial fibrils terminating in a cylinder at the flagellar base and the 9 peripheral pairs continuing into the cytoplasm as a basal body. The organelles comprising the cytoplasm are: mitochondria with plate-like cristae; dictyosomes composed of stacks of agranular cisternae; small, rough or smooth-surfaced vesicles; an endoplasmic reticulum of granule-bearing and agranular tubules, lamellae and broad cisternae; vacuoles which are either contractile, contain fine granular and fibrillar material, or have dense contents probably representing polyphosphate; lipid bodies; and dense granules 100–150 A which have been called ribosomes. The finely granular nucleoplasm is surrounded by a porous, double-membraned nuclear envelope and contains a centric nucleolus composed of dense, spherical granules. The outer membrane of the nuclear envelope bears granules and may have granular extensions into the perinuclear cytoplasm. Each extension appears to encompass one or several dictyosomes and has been termed an “amplexus.” The amplexi are agranular on the surface contiguous to a dictyosome. A double-membraned chloroplast envelope is continuous around the single, cup-shaped chloroplast. The basic chloroplast units are discs closed at each end, occurring in stacks of varying number parallel to the envelope. The presumed proteinaceous matrix of the basal pyrenoid is penetrated by elongated, tubular elements which connect with the lamellar discs. Multiple rows of granules, associated with individual discs, form the anterior stigma within the chloroplast envelope. The colonial matrix is not a structureless, mucilaginous material uniting the cells in colonies, but it has rather a highly complex structure especially around the periphery of the colony and the flagellar channels. The apparent substitution of a fibrillar layer of the colonial matrix for the discrete compact cell wall, such as is found in Chlamydomonas, implies a greater degree of complexity in the evolution of these colonial genera than is generally assumed.  相似文献   

9.
The nucleolar organization in ciliate Didinium nasutum somatic interphase nuclei was studied using serial ultrathin sections and compared for various physiological states of the cell, namely, fed ciliates, starved ciliates, and dormant cysts. It has been shown that the interphase nucleoli are large structures with a complex architecture: the fibrillar component forms an intricate network in the macronucleus space, while the granular component is located inside this network. The structures looking as individual nucleoli in single sections are actually parts of branched nucleolar networks. The intricate nucleolar networks do not disintegrate after a 30-h starvation; however, the granular component becomes denser and develops numerous cavities filled with fine fibrils of a nonribonucleoprotein nature. In fed D. nasutum, the fibrillar structures on the periphery of nucleoli contain numerous pores (virtually absent in starved cell nucleoli), which can potentially serve for transporting newly synthesized rRNP. Branched nucleolar networks are undetectable in cysts. Their nucleoli are individual structures consisting mainly of the fibrogranular component.  相似文献   

10.
Fish are particularly sensitive to metabolites produced by Raphidophyte species and these have caused intensive fish kills in several countries. However, the effects on embryos of marine fish are unknown but could probably provoke an important impact on new stock recruitment and hence on fisheries. We evaluated the toxic effects of Chattonella spp. strains from the Gulf of California on three development stages of spotted sand bass (Paralabrax maculatofasciatus): embryo in segmentation stage (ES), embryo (EM), and eleutheroembryo (EL). Embryos (ES) were exposed to different cell concentrations of Chattonella subsalsa, Chattonella marina, Prorocentrum micans, and f/2 medium as control. Also, one set of embryos was tested with cell-free media for C. subsalsa cultures. Incubation lasted until embryos reached apterolarva phase. The ES was the most sensitive stage reaching 98% mortality with C. subsalsa, followed by cell-free media of C. subsalsa cultures, with mortalities close to 90%, whereas EM and EL phases presented mortalities below 60%. This work demonstrates that larval stages of P. maculatofasciatus are highly sensitive to short time exposure to all Chattonella spp. strains tested, that direct physical contact with cells is not required to cause mortality, and that the toxic effect is more pronounced when embryos hatch.  相似文献   

11.
An electron cytochemical study of glycoproteins and glycolipids was made for the mature sarcocysts of Sarcocystis muris. Glycoprotein structures as branched fibrilles were seen on the surface of the sarcocyst wall. The fibrillar and granular glycoprotein structures were found in the ground substance of sarcocysts near the cyst wall and in the septae. In the plasmalemma of two types of cyst stages (merozoites and intermediate cells), glycoprotein fibrillar structures were revealed connecting these two cell types with each other. The third type cyst stages, i.e. the metrocytes, are situated separately without any fibrillar connections between them and other cyst stages being observed. This question is discussed in terms of the problem of cytodifferentiation. The fibrillar and granular glycoprotein material is scattered over the cytoplasm of the cyst stages, being especially concentrated in micronemes, rhoptries and around amylopectin granules. The control ultrathin sections were treated with saliva or pronase for the aims of protein identification in the material under study. In addition to glycoprotein, some glycolipids material was detected in the sarcocysts in the form of drops surrounded with thin glycoproteinaceous layers. Glycolipids were found in the ground substance of sarcocysts near the cyst stages and in the parasite cell cytoplasm around the micronemes and rhoptries. The data obtained are discussed in connection with the functional role glycoproteins and glycolipids play in S. muris.  相似文献   

12.
The epidermis of Ostariophysi fish is composed of 4 main cell types: epidermal cells (or filament containing cells), mucous cells, granular cells and club cells. The morphological analysis of the epidermis of the catfish Pimelodella lateristriga revealed the presence of only two types of cells: epidermal and club cells. The latter were evident in the middle layer of the epidermis, being the largest cells within the epithelium. Few organelles were located in the perinuclear region, while the rest of the cytoplasm was filled with a non-vesicular fibrillar substance. Club cells contained two irregular nuclei with evident nucleoli and high compacted peripheral chromatin. Histochemical analysis detected prevalence of protein within the cytoplasm other than carbohydrates, which were absent. These characteristics are similar to those described to most Ostariophysi studied so far. On the other hand, the epidermal cells differ from what is found in the literature. The present study described three distinct types, as follows: superficial, abundant and dense cells. Differences among them were restricted to their cytoplasm and nucleus morphology. Mucous cells were found in all Ostariophysi studied so far, although they were absent in P. lateristriga, along with granular cells, also typical of other catfish epidermis. The preset study corroborates the observations on club cells'' morphology in Siluriformes specimens, and shows important differences in epidermis composition and cell structure of P. lateristriga regarding the literature data.  相似文献   

13.
为探讨广西北部湾海洋原甲藻(Prorocentrum micans)的形态特征及其系统进化意义,利用光学显微镜、分子生物学方法,对海洋原甲藻BBW-01 藻株的形态特征进行了描述,并分析了其分子系统进化关系.结果表明,各地理株系的海洋原甲藻的形态特征相似,仅在细胞大小上存在差异.海洋原甲藻BBW-01 与采自于广东大亚湾的海洋原甲藻形态特征最为接近,其壳板后端的7 个呈“V”字形对称排列的大孔可作为海洋原甲藻鉴定的重要指标.18S rDNA 序列同源检索和系统进化分析表明,海洋原甲藻BBW-01 与源自中国南海的海洋原甲藻的亲缘关系最近,并与其他2 株海洋原甲藻聚成一支,属于浮游、兼性浮游类原甲藻.因此,对赤潮原因种的准确识别有助于预防和减轻赤潮对海洋环境和人类带来的危害.  相似文献   

14.
Addition of eserine salicylate, a synaptic metabolic inhibitor, to marine algal cultures of Sketetonema costatum (Greville) Cleve, Dunaliella tertiolecta Butcher, and Prorocentrum micans Ehrenberg had a varied effect on the rate of respiration; α (the initial slope of the light saturation curve) and PBm (the saturation curve) and P (the specific production rate at optimal light intensity). As these effects were either concentration dependent, species specific or both, we find that it is not possible to manipulate photosynthesis-light relationships in a predictable manner by eserine salicylate treatment.  相似文献   

15.
Prorocentrum is a common dinoflagellate genus along the Chinese seacoast, which frequently causes harmful algal blooms. Efforts to understand and prevent blooms caused by these harmful species require the development of methods for rapid and precise identification and quantification so that an adequate early warning of harmful algal blooms may be given. Here, we report the development and application of rRNA-targeted oligonucleotide probes for fluorescence in situ hybridization (FISH) to aid in the detection of Prorocentrum micans. The hypervariable D1–D2 regions of a large subunit rDNA of a strain isolated from East China Sea identified as P. micans were first sequenced to design species-specific probes. Analysis of sequences identified as P. micans and deposited in GenBank revealed significant base differences among them and phylogenetic analyses revealed multiple clades within the taxon P. micans. Thus, it is likely that more than one taxonomic and genetically distinct entity has been identified as P. micans, if not misidentified. A series of probes were identified to one of these clades and tested for their specificity. Second, whole cell in situ hybridization procedures were established and the optimal probes were screened among the candidate probes. Next, cross-reactivity was performed to test the specificity of the probes and the detection reliability under various culture conditions, including different nutrient levels, temperatures, and light intensities. Finally, an improved protocol for natural samples was applied to the field material. The designed rRNA-targeted probe was specific, showing no cross-reactivity with other microalgae. The optimized detection protocol could be completed within 1.5 h. All target cells were speculated to be identified during all stages of their whole growth cycle under different culture conditions because the difference in fluorescence intensities throughout the experiment was not significant (p?>?0.05). The cell densities determined by FISH and light microscopy (LM) were comparable, without any significant difference (p?>?0.05) between them. In general, the established FISH probe was promising for specific, rapid, precise detection of a selected set of P. micans in natural samples and served as a good detection model for other Prorocentrum in the future.  相似文献   

16.
Summary The development of the bacteriod is traced from thin sections of slices of nodules fixed in KMnO4 and OsO4. While in the infection thread the Rhizobium cell has the ultrastructure characteristic of gram-negative bacteria, with two unit membranes bounding a granular cytoplasm containing dense bodies, a nucleoid area and inclusion granules. A 10–12 fold increase in size, a loss of inclusion granules and the formation of a membrane envelope around each Rhizobium cell follows the dispersal of the rhizobia through the host cytoplasm. As the bacteriods develop there is a loss of fibrillar material from the nucleoid region and changes occur in the distribution of ribosome-like particles in both host and bacterial cells. When fully differentiated and presumably fixing nitrogen the bacteroids from the red zone of subterraneum clover nodules but not barrel medic have a well developed intra-cytoplasmic membrane system.  相似文献   

17.
In order to assess the phenomena possibly underlying population dynamics and species succession in the sea, the following phytoplankton culture experiments were made. In uni-algal and in multi-algal batch cultures, generation times and cell yields gained during logarithmic growth were determined for the diatomsBiddulphia regia andCoscinodiscus concinnus, as well as for the dinoflagellates,Ceratium horridum andProrocentrum micans. In multi-species cultures, none of the tested organisms showed any influence on generation time, compared with uni-algal cultures. In contrast, the cell yield of different species showed considerable changes depending on the species concerned and the species-combination used. The dinoflagellatesC. horridum reached, if cultivated together withB. regia orB. regia andC. concinnus, only 10% of the cell number of uni-algal cultures. In the combinations tested,B. regia produced always more than half of the cell number attained in uni-algal cultures. In multi-species cultures,C. concinnus cell production was not affected. Addition of nitrate and phosphate to stationary-phase multi-species cultures induced further growth. Thus it is concluded that growth is limited by nutrient competition in the multi-species experiments conducted. Possible mechanisms of nutrient competition are discussed.  相似文献   

18.
In this work we carried out an ultrastructural analysis of the cell interface between oocyte and follicle cells during the oogenesis of the amphibian Ceratophrys cranwelli, which revealed a complex cell-cell interaction. In the early previtellogenic follicles, the plasma membrane of the follicle cells lies in close contact with the plasma membrane of the oocyte, with no interface between them. In the mid-previtellogenic follicles the follicle cells became more active and their cytoplasm has vesicles containing granular material. Their apical surface projects cytoplasmic processes (macrovilli) that contact the oocyte, forming gap junctions. The oocyte surface begins to develop microvilli. At the interface both processes delimit lacunae containing granular material. The oocyte surface has endocytic vesicles that incorporate this material, forming cortical vesicles that are peripherally arranged. In the late previtellogenic follicle the interface contains fibrillar material from which the vitelline envelope will originate. During the vitellogenic period, there is an increase in the number and length of the micro- and macrovilli, which become regularly arranged inside fibrillar tunnels. At this time the oocyte surface exhibits deep crypts where the macrovilli enter, thus increasing the follicle cell-oocyte junctions. In addition, the oocyte displays coated pits and vesicles evidencing an intense endocytic activity. At the interface of the fully grown oocyte the fibrillar network of the vitelline envelope can be seen. The compact zone contains a fibrillar electron-dense material that fills the spaces previously occupied by the now-retracted microvilli. The macrovilli are still in contact with the surface of the oocyte, forming gap junctions.  相似文献   

19.
Mitomycin C and ultraviolet light were found to induce the formation of microcysts in Spirillum itersonii. These forms, as well as spontaneously occurring microcysts in this species, were found to contain phage tail parts, rhapidosomes, and a granular substance not seen in normal cells. It is suggested that microcysts are formed as the result of the induction of a defective phage. The production of phage lysozyme within the cell could lead to the formation of spherical forms as the cells lose their structural mucopeptide layer. Complete virus particles were not seen, nor was any biological activity demonstrated when the induced cultures were tested against two other strains of S. itersonii. The other strains of this bacterium also formed microcysts and phage tail parts when induced with mitomycin. Attempts to isolate an organism lacking the defective phage have been unsuccessful.  相似文献   

20.
《The Journal of cell biology》1990,111(6):2979-2988
Shortly after Listeria is phagocytosed by a macrophage, it dissolves the phagosomal membrane and enters the cytoplasm. 1 h later, actin filaments coat the Listeria and then become rearranged to form a tail with which the Listeria moves to the macrophage surface as a prelude to spreading. If infected macrophages are treated with cytochalasin D, all the actin filaments associated with the Listeria break down leaving a fine, fibrillar material that does not decorate with subfragment 1 of myosin. This material is associated with either the surface of the Listeria (the cloud stage) or one end (the tail stage). If the cytochalasin-treated infected macrophages are detergent extracted and then incubated in nuclei-free monomeric actin under polymerizing conditions, actin filaments assemble from the fine, fibrillar material, the result being that each Listeria has actin filaments radiating from its surface like the spokes of a wheel (cloud form) or possesses a long tail of actin filaments formed from the fine, fibrillar material located at one end of the Listeria. Evidence that the fine fibrillar material is involved in nucleating actin assembly comes from a Listeria mutant. Although the mutant replicates at a normal rate in macrophages, actin filaments do not form on its surface (cloud stage) or from one end (tail stage), nor does the bacterium spread. Furthermore it does not form the fine fibrillar material. Evidence that the nucleating material is a secretory product of Listeria and not the macrophage comes from experiments using chloramphenicol, which inhibits protein synthesis in Listeria but not in macrophages. If chloramphenicol is applied 1 h after infection, a time before actin filaments are found attached to the Listeria in untreated macrophages, actin filaments never assemble on the Listeria even when fixed 3 h later. Furthermore the fine fibrillar material is absent, although there is a coat of dense granular material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号