首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 632 毫秒
1.
Myxobacteria - survivalists in soil Myxobacteria like Myxococccus xanthus are soil-living microorganisms featuring a complex lifestyle, including movement by coordinated swarming on surfaces, predatory feeding on other microorganisms, and the formation of multicellular fruiting bodies when unfavorable environmental conditions are encountered. Bioinformatic analysis of the large myxobacterial genomes has enabled fascinating insights into the molecular basis for the biosynthesis of complex secondary metabolite structures by myxobacteria, and has set the stage for the discovery of novel natural products. Moreover, well-characterized myxobacteria like M. xanthus increasingly play a role as “biochemical factories” for the biotechnological production of bioactive molecules using synthetic biology approaches.  相似文献   

2.
Members of the Planctomycetes clade share many unusual features for bacteria. Their cytoplasm contains membrane-bound compartments, they lack peptidoglycan and FtsZ, they divide by polar budding, and they are capable of endocytosis. Planctomycete genomes have remained enigmatic, generally being quite large (up to 9 Mb), and on average, 55% of their predicted proteins are of unknown function. Importantly, proteins related to the unusual traits of Planctomycetes remain largely unknown. Thus, we embarked on bioinformatic analyses of these genomes in an effort to predict proteins that are likely to be involved in compartmentalization, cell division, and signal transduction. We used three complementary strategies. First, we defined the Planctomycetes core genome and subtracted genes of well-studied model organisms. Second, we analyzed the gene content and synteny of morphogenesis and cell division genes and combined both methods using a “guilt-by-association” approach. Third, we identified signal transduction systems as well as sigma factors. These analyses provide a manageable list of candidate genes for future genetic studies and provide evidence for complex signaling in the Planctomycetes akin to that observed for bacteria with complex life-styles, such as Myxococcus xanthus.  相似文献   

3.
《Genomics》2022,114(1):398-408
Here the pangenome analysis of Burkholderia sensu lato (s.l.) was performed for the first time, together with an updated analysis of the pangenome of Burkholderia sensu stricto, and Burkholderia cepacia complex (Bcc) focusing on the Bcc B. catarinensis specific features of its re-sequenced genome. The pangenome of Burkholderia s.l., Burkholderia s.s., and of the Bcc was open, composed of more than 96% of accessory genes, and more than 62% of unknown genes. Functional annotations showed that secondary metabolism genes belonged to the variable portion of genomes, which might explain their production of several compounds with varied bioactivities. Taken together, this work showed the great variability and uniqueness of these genomes and revealed an underexplored unknown potential in poorly characterized genes. Regarding B. catarinensis 89T, its genome harbors genes related to hydrolases production and plant growth promotion. This draft genome will be valuable for further investigation of its biotechnological potentials.  相似文献   

4.
The PVC superphylum is a grouping of distinct phyla of the domain bacteria proposed initially on the basis of 16S rRNA gene sequence analysis. It consists of a core of phyla Planctomycetes, Verrucomicrobia and Chlamydiae, but several other phyla have been considered to be members, including phylum Lentisphaerae and several other phyla consisting only of yet-to-be cultured members. The genomics-based links between Planctomycetes, Verrucomicrobia and Chlamydiae have been recently strengthened, but there appear to be other features which may confirm the relationship at least of Planctomycetes, Verrucomicrobia and Lentisphaerae. Remarkably these include the unique planctomycetal compartmentalized cell plan differing from the cell organization typical for bacteria. Such a shared cell plan suggests that the common ancestor of the PVC superphylum members may also have been compartmentalized, suggesting this is an evolutionarily homologous feature at least within the superphylum. Both the PVC endomembranes and the eukaryote-homologous membrane-coating MC proteins linked to endocytosis ability in Gemmata obscuriglobus and shared by PVC members suggest such homology may extend beyond the bacteria to the Eukarya. If so, either our definition of bacteria may have to change or PVC members admitted to be exceptions. The cases for and against considering the PVC superphylum members as exceptions to the bacteria are discussed, and arguments for them as exceptions presented. Recent critical analysis has favoured convergence and analogy for explaining eukaryote-like features in planctomycetes and other PVC organisms. The case is made for constructing hypotheses leaving the possibility of homology and evolutionary links to eukaryote features open. As the case of discovery of endocytosis-like protein uptake in planctomycetes has suggested, this may prove a strong basis for the immediate future of experimental research programs in the PVC scientific community.  相似文献   

5.
6.
7.
The microbiome of freshwater sponges is rarely studied, and not a single novel bacterial species has been isolated and subsequently characterized from a freshwater sponge to date. A previous study showed that 14.4% of the microbiome from Ephydatia fluviatilis belong to the phylum Planctomycetes. Therefore, we sampled an Ephydatia sponge from a freshwater lake and employed enrichment techniques targeting bacteria from the phylum Planctomycetes. The obtained strain spb1T was subject to genomic and phenomic characterization and found to represent a novel planctomycetal species proposed as Planctopirus ephydatiae sp. nov. (DSM 106606 = CECT 9866). In the process of differentiating spb1T from its next relative Planctopirus limnophila DSM 3776T, we identified and characterized the first phage – Planctopirus phage vB_PlimS_J1 – infecting planctomycetes that was only mentioned anecdotally before. Interestingly, classical chemotaxonomic methods would have failed to distinguish Planctopirus ephydatiae strain spb1T from Planctopirus limnophila DSM 3776T. Our findings demonstrate and underpin the need for whole genome-based taxonomy to detect and differentiate planctomycetal species.  相似文献   

8.
Symbiotic plant-microbe metabolic interactions not only have beneficial effects on plants but also contribute to rich, unmatched and complex chemical biodiversity with biological potential. Systematic delineated bioprospecting of fungal diversity associated with Ficus pumila Linn (Moraceae) for antimicrobial metabolite revealed Xylaria sp. FPL-25(M). The present study describes bioactivity guided fractionation prioritized for antimicrobial potential. Thus, chemical investigation of culture broth of Xylaria sp. FPL-25(M) by bioactivity guided fractionation with spectroscopic techniques revealed bioactive metabolite xylobovide-9-methyl ester. The xylobovide-9-methyl ester exhibited broad-spectrum antimicrobial activity. However, Gram-positive bacteria and fungi were more susceptible than Gram-negative bacteria. The present study results represent bioassay-based screening strategy which facilitates rapid, efficient and reliable approach for endophytic strain prioritization for novel bioactive molecules.  相似文献   

9.
An intricate network of hormone signals regulates plant development and responses to biotic and abiotic stress. Salicylic acid (SA), derived from the shikimate/isochorismate pathway, is a key hormone in resistance to biotrophic pathogens. Several SA derivatives and associated modifying enzymes have been identified and implicated in the storage and channeling of benzoic acid intermediates or as bioactive molecules. However, the range and modes of action of SA-related metabolites remain elusive. In Arabidopsis, Enhanced Disease Susceptibility 1 (EDS1) promotes SA-dependent and SA-independent responses in resistance against pathogens. Here, we used metabolite profiling of Arabidopsis wild type and eds1 mutant leaf extracts to identify molecules, other than SA, whose accumulation requires EDS1 signaling. Nuclear magnetic resonance and mass spectrometry of isolated and purified compounds revealed 2,3-dihydroxybenzoic acid (2,3-DHBA) as an isochorismate-derived secondary metabolite whose accumulation depends on EDS1 in resistance responses and during ageing of plants. 2,3-DHBA exists predominantly as a xylose-conjugated form (2-hydroxy-3-β-O-d-xylopyranosyloxy benzoic acid) that is structurally distinct from known SA-glucose conjugates. Analysis of DHBA accumulation profiles in various Arabidopsis mutants suggests an enzymatic route to 2,3-DHBA synthesis that is under the control of EDS1. We propose that components of the EDS1 pathway direct the generation or stabilization of 2,3-DHBA, which as a potentially bioactive molecule is sequestered as a xylose conjugate.  相似文献   

10.
Monoterpene indole alkaloids (MIAs) encompass plant natural products with important pharmacological relevance. They include the anti-tumoral MIAs found in Catharanthus roseus and Camptotheca acuminata. The often low yields of bioactive alkaloids in plants has prompted research to identify the factors regulating MIA production. Oxidative stress is a general response associated with biotic and abiotic stresses leading to several secondary responses, including elicitation of MIA production. These changes in secondary metabolism may take place directly or via second messengers, such as Ca2+ and reactive oxygen species (ROS). H2O2 is the main ROS that participates in MIA biosynthesis. This review analyzes the links between oxidative stress, elicitation of bioactive MIA production and their potential roles in antioxidant defense, as well as exploring the implications to developing biotechnological strategies relevant for alkaloid supply.  相似文献   

11.
Microcystis aeruginosa is one of the most common bloom-forming cyanobacteria in freshwater ecosystems worldwide. This species produces numerous secondary metabolites, including microcystins, which are harmful to human health. We sequenced the genomes of ten strains of M. aeruginosa in order to explore the genomic basis of their ability to occupy varied environments and proliferate. Our findings show that M. aeruginosa genomes are characterized by having a large open pangenome, and that each genome contains similar proportions of core and flexible genes. By comparing the GC content of each gene to the mean value of the whole genome, we estimated that in each genome, around 11% of the genes seem to result from recent horizontal gene transfer events. Moreover, several large gene clusters resulting from HGT (up to 19 kb) have been found, illustrating the ability of this species to integrate such large DNA molecules. It appeared also that all M. aeruginosa displays a large genomic plasticity, which is characterized by a high proportion of repeat sequences and by low synteny values between the strains. Finally, we identified 13 secondary metabolite gene clusters, including three new putative clusters. When comparing the genomes of Microcystis and Prochlorococcus, one of the dominant picocyanobacteria living in marine ecosystems, our findings show that they are characterized by having almost opposite evolutionary strategies, both of which have led to ecological success in their respective environments.  相似文献   

12.
Actinomycetes are prolific sources of bioactive molecules. Traditional workflows including bacterial isolation, fermentation, metabolite identification and structure elucidation have resulted in high rates of natural product rediscovery in recent years. Recent advancements in multi-omics techniques have uncovered cryptic gene clusters within the genomes of actinomycetes, potentially introducing vast resources for the investigation of bioactive molecules. While developments in culture techniques have allowed for the fermentation of difficult-to-culture actinomycetes, high-throughput metabolite screening has offered plenary tools to accelerate hits discovery. A variety of new bioactive molecules have been isolated from actinomycetes of unique environmental origins, such as endophytic and symbiotic actinomycetes. Synthetic biology and genome mining have also emerged as new frontiers for the discovery of bioactive molecules. This review covers the highlights of recent developments in actinomycete-derived natural product drug discovery.  相似文献   

13.
The rapid advances in sequencing technologies over the last decade have enabled routine sequencing of microbial genomes. Despite notable achievements, metabolomics/metabolite profiling has not progressed with the same rapidity, which in part is due to the intrinsic complex chemical nature of the metabolome. However, well characterised metabolomes are essential if a comprehensive understanding of biological function and biotechnological applications are to be revealed and implemented. In the present study a hyphenated MS metabolite profiling procedure has been developed, predominantly for Bacillus species. The approach has been systematic in its development, delivering optimised procedures for the quenching of bacterial metabolism, extraction of metabolites, the separation and detection of components as well as data analysis, integration and visualisation workflows. Collectively, the procedure has enabled the detection of 27 % of the predicted Bacillus subtilis metabolome in the industrial HU36 strain. The analytical platform developed has been used to assess the chemotype of commercially used probiotic Bacillus strains, including a novel pigmented Bacillus strain HU36 that has potential either as a probiotic or source of antioxidants. The results are discussed in a biochemical context, revealing: (i), specific metabolic networks associated with pigment biosynthesis in HU36 and (ii), biotechnological applications through the demonstration of substantial equivalence.  相似文献   

14.

Background

The insect order Neuroptera encompasses more than 5,700 described species. To date, only three neuropteran mitochondrial genomes have been fully and one partly sequenced. Current knowledge on neuropteran mitochondrial genomes is limited, and new data are strongly required. In the present work, the mitochondrial genome of the ascalaphid owlfly Libelloides macaronius is described and compared with the known neuropterid mitochondrial genomes: Megaloptera, Neuroptera and Raphidioptera. These analyses are further extended to other endopterygotan orders.

Results

The mitochondrial genome of L. macaronius is a circular molecule 15,890 bp long. It includes the entire set of 37 genes usually present in animal mitochondrial genomes. The gene order of this newly sequenced genome is unique among Neuroptera and differs from the ancestral type of insects in the translocation of trnC. The L. macaronius genome shows the lowest A+T content (74.50%) among known neuropterid genomes. Protein-coding genes possess the typical mitochondrial start codons, except for cox1, which has an unusual ACG. Comparisons among endopterygotan mitochondrial genomes showed that A+T content and AT/GC-skews exhibit a broad range of variation among 84 analyzed taxa. Comparative analyses showed that neuropterid mitochondrial protein-coding genes experienced complex evolutionary histories, involving features ranging from codon usage to rate of substitution, that make them potential markers for population genetics/phylogenetics studies at different taxonomic ranks. The 22 tRNAs show variable substitution patterns in Neuropterida, with higher sequence conservation in genes located on the α strand. Inferred secondary structures for neuropterid rrnS and rrnL genes largely agree with those known for other insects. For the first time, a model is provided for domain I of an insect rrnL. The control region in Neuropterida, as in other insects, is fast-evolving genomic region, characterized by AT-rich motifs.

Conclusions

The new genome shares many features with known neuropteran genomes but differs in its low A+T content. Comparative analysis of neuropterid mitochondrial genes showed that they experienced distinct evolutionary patterns. Both tRNA families and ribosomal RNAs show composite substitution pathways. The neuropterid mitochondrial genome is characterized by a complex evolutionary history.  相似文献   

15.
The 16S rRNA gene has been used in the last decades as a gold standard for determining the phylogenetic position of bacteria and their taxonomy. It is a well conserved gene, with some variations, present in all bacteria and allows the reconstruction of genealogies of microorganisms. Nevertheless, this gene has its limitations when inferring phylogenetic relationships between closely related isolates. To overcome this problem, DNA–DNA hybridization appeared as a solution to clarify interspecies relationships when the sequence similarity of the 16S rRNA gene is above 97 %. However, this technique is time consuming, expensive and laborious and so, researchers developed other molecular markers such as sequencing of housekeeping or functional genes for accurate determination of bacterial phylogeny. One of these genes that have been used successfully, particularly in clinical microbiology, codes for the beta subunit of the RNA polymerase (rpoB). The rpoB gene is sufficiently conserved to be used as a molecular clock, it is present in all bacteria and it is a mono-copy gene. In this study, rpoB gene sequencing was applied to the phylum Planctomycetes. Based on the genomes of 19 planctomycetes it was possible to determine the correlation between the rpoB gene sequence and the phylogenetic position of the organisms at a 95–96 % sequence similarity threshold for a novel species. A 1200-bp fragment of the rpoB gene was amplified from several new planctomycetal isolates and their intra and inter-species relationships to other members of this group were determined based on a 96.3 % species border and 98.2 % for intraspecies resolution.  相似文献   

16.
Fungal genomics revealed a large potential of yet-unexplored secondary metabolites, which are not produced during vegetative growth. The discovery of novel bioactive compounds is increasingly gaining importance. The high number of resistances against established antibiotics requires novel drugs to counteract increasing human and animal mortality rates. In addition, growth of plant pathogens has to be controlled to minimize harvest losses. An additional critical issue is the post-harvest production of deleterious mycotoxins. Fungal development and secondary metabolite production are linked processes. Therefore, molecular regulators of development might be suitable to discover new bioactive fungal molecules or to serve as targets to control fungal growth, development, or secondary metabolite production. The fungal impact is relevant as well for our healthcare systems as for agriculture. We propose here to use the knowledge about mutant strains discovered in fungal model systems for a broader application to detect and explore new fungal drugs or toxins. As examples, mutant strains impaired in two conserved eukaryotic regulatory complexes are discussed. The COP9 signalosome (CSN) and the velvet complex act at the interface between development and secondary metabolism. The CSN is a multi-protein complex of up to eight subunits and controls the activation of CULLIN-RING E3 ubiquitin ligases, which mark substrates with ubiquitin chains for protein degradation by the proteasome. The nuclear velvet complex consists of the velvet-domain proteins VeA and VelB and the putative methyltransferase LaeA acting as a global regulator for secondary metabolism. Defects in both complexes disturb fungal development, light perception, and the control of secondary metabolism. The potential biotechnological relevance of these developmental fungal mutant strains for drug discovery, agriculture, food safety, and human healthcare is discussed.  相似文献   

17.
Bacillus, generally regarded as safe, has emerged as a robust organism that can withstand adverse environmental conditions and grows easily to very high densities. Bacillus has been recognized for its biotechnological applications on an industrial scale. Recent efforts have shown the potential of Bacillus to generate biofuels (hydrogen), biopolymers (polyhydroxyalkanoates), and bioactive molecules (acyl-homoserine lactonases). Bacillus can be considered the dark horse in the race to generate sustainable energy, ecofriendly non-fossil fuel-based polymers, and bioactive molecules for use as therapeutics.  相似文献   

18.
Advances in DNA sequencing technologies have made it possible to sequence large numbers of microbial genomes rapidly and inexpensively. In recent years, genome sequencing initiatives have demonstrated that actinomycetes with large genomes generally have the genetic potential to produce many secondary metabolites, most of which remain cryptic. Since the numbers of new and novel pathways vary considerably among actinomycetes, and the correct assembly of secondary metabolite pathways containing type I polyketide synthase or nonribosomal peptide synthetase (NRPS) genes is costly and time consuming, it would be advantageous to have simple genetic predictors for the number and potential novelty of secondary metabolite pathways in targeted microorganisms. For secondary metabolite pathways that utilize NRPS mechanisms, the small chaperone-like proteins related to MbtH encoded by Mycobacterium tuberculosis offer unique probes or beacons to identify gifted microbes encoding large numbers of diverse NRPS pathways because of their unique function(s) and small size. The small size of the mbtH-homolog genes makes surveying large numbers of genomes straight-forward with less than ten-fold sequencing coverage. Multiple MbtH orthologs and paralogs have been coupled to generate a 24-mer multiprobe to assign numerical codes to individual MbtH homologs by BLASTp analysis. This multiprobe can be used to identify gifted microbes encoding new and novel secondary metabolites for further focused exploration by extensive DNA sequencing, pathway assembly and annotation, and expression studies in homologous or heterologous hosts.  相似文献   

19.

Background

The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden or Tiger milk mushroom (Polyporales, Basidiomycota) is a valuable folk medicine for indigenous peoples in Southeast Asia. Despite the increasing interest in this ethnobotanical mushroom, very little is known about the molecular and genetic basis of its medicinal and nutraceutical properties.

Results

The de novo assembled 34.3 Mb L. rhinocerotis genome encodes 10,742 putative genes with 84.30% of them having detectable sequence similarities to others available in public databases. Phylogenetic analysis revealed a close evolutionary relationship of L. rhinocerotis to Ganoderma lucidum, Dichomitus squalens, and Trametes versicolor in the core polyporoid clade. The L. rhinocerotis genome encodes a repertoire of enzymes engaged in carbohydrate and glycoconjugate metabolism, along with cytochrome P450s, putative bioactive proteins (lectins and fungal immunomodulatory proteins) and laccases. Other genes annotated include those encoding key enzymes for secondary metabolite biosynthesis, including those from polyketide, nonribosomal peptide, and triterpenoid pathways. Among them, the L. rhinocerotis genome is particularly enriched with sesquiterpenoid biosynthesis genes.

Conclusions

The genome content of L. rhinocerotis provides insights into the genetic basis of its reported medicinal properties as well as serving as a platform to further characterize putative bioactive proteins and secondary metabolite pathway enzymes and as a reference for comparative genomics of polyporoid fungi.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-635) contains supplementary material, which is available to authorized users.  相似文献   

20.

Main conclusion

Medicinal and aromatic plants are known to produce secondary metabolites that find uses as flavoring agents, fragrances, insecticides, dyes and drugs. Biotechnology offers several choices through which secondary metabolism in medicinal plants can be altered in innovative ways, to overproduce phytochemicals of interest, to reduce the content of toxic compounds or even to produce novel chemicals. Detailed investigation of chromatin organization and microRNAs affecting biosynthesis of secondary metabolites as well as exploring cryptic biosynthetic clusters and synthetic biology options, may provide additional ways to harness this resource. Plant secondary metabolites are a fascinating class of phytochemicals exhibiting immense chemical diversity. Considerable enigma regarding their natural biological functions and the vast array of pharmacological activities, amongst other uses, make secondary metabolites interesting and important candidates for research. Here, we present an update on changing trends in the biotechnological approaches that are used to understand and exploit the secondary metabolism in medicinal and aromatic plants. Bioprocessing in the form of suspension culture, organ culture or transformed hairy roots has been successful in scaling up secondary metabolite production in many cases. Pathway elucidation and metabolic engineering have been useful to get enhanced yield of the metabolite of interest; or, for producing novel metabolites. Heterologous expression of putative plant secondary metabolite biosynthesis genes in a microbe is useful to validate their functions, and in some cases, also, to produce plant metabolites in microbes. Endophytes, the microbes that normally colonize plant tissues, may also produce the phytochemicals produced by the host plant. The review also provides perspectives on future research in the field.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号