首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The following is a report on software developed to create virtual species for the study of species distribution modelling (SDM). SDMvspecies provides several methods to create virtual species. The package is designed to be simple and intuitive, even for users who are not familiar with the R language. SDMvspecies is available online free of charge from < http://cran.r‐project.org/web/packages/sdmvspecies/ >.  相似文献   

2.
Aim To identify the bioclimatic niche of the endangered Andean cat (Leopardus jacobita), one of the rarest and least known felids in the world, by developing a species distribution model. Location South America, High Andes and Patagonian steppe. Peru, Bolivia, Chile, Argentina. Methods We used 108 Andean cat records to build the models, and 27 to test them, applying the Maxent algorithm to sets of uncorrelated bioclimatic variables from global databases, including elevation. We based our biogeographical interpretations on the examination of the predicted geographic range, the modelled response curves and latitudinal variations in climatic variables associated with the locality data. Results Simple bioclimatic models for Andean cats were highly predictive with only 3–4 explanatory variables. The climatic niche of the species was defined by extreme diurnal variations in temperature, cold minimum and moderate maximum temperatures, and aridity, characteristic not only of the Andean highlands but also of the Patagonian steppe. Argentina had the highest representation of suitable climates, and Chile the lowest. The most favourable conditions were centrally located and spanned across international boundaries. Discontinuities in suitable climatic conditions coincided with three biogeographical barriers associated with climatic or topographic transitions. Main conclusions Simple bioclimatic models can produce useful predictions of suitable climatic conditions for rare species, including major biogeographical constraints. In our study case, these constraints are also known to affect the distribution of other Andean species and the genetic structure of Andean cat populations. We recommend surveys of areas with suitable climates and no Andean cat records, including the corridor connecting two core populations. The inclusion of landscape variables at finer scales, crucially the distribution of Andean cat prey, would contribute to refine our predictions for conservation applications.  相似文献   

3.
  • 1.Selecting the best subset of covariates out of a panel of many candidates is a key and highly influential stage of the species distribution modelling process. Yet, there is currently no commonly accepted and widely adopted standard approach by which to perform this selection.
  • 2.We introduce a two-step “embedded” covariate selection procedure aimed at optimizing the predictive ability and parsimony of species distribution models fitted in a context of high-dimensional candidate covariate space. The procedure combines a collinearity-filtering algorithm (Step A) with three model-specific embedded regularization techniques (Step B), including generalized linear model with elastic net regularization, generalized additive model with null-space penalization, and guided regularized random forest.
  • 3.We evaluated the embedded covariate selection procedure through an example application aimed at modelling the habitat suitability of 50 species in Switzerland from a suite of 123 candidate covariates. We demonstrated the ability of the embedded covariate selection procedure to provide significantly more accurate species distribution models as compared to models obtained with alternative procedures. Model performance was independent of the characteristics of the species data, such as the number of occurrence records or their spatial distribution across the study area.
  • 4.We implemented and streamlined our embedded covariate selection procedure in the covsel R package, paving the way for a ready-to-use, automated, covariate selection tool that was missing in the field of species distribution modelling. All the information required for installing and running the covsel R package is openly available on the GitHub repository https://github.com/N-SDM/covsel.
  相似文献   

4.
5.
Aim The oceans harbour a great diversity of organisms whose distribution and ecological preferences are often poorly understood. Species distribution modelling (SDM) could improve our knowledge and inform marine ecosystem management and conservation. Although marine environmental data are available from various sources, there are currently no user‐friendly, high‐resolution global datasets designed for SDM applications. This study aims to fill this gap by assembling a comprehensive, uniform, high‐resolution and readily usable package of global environmental rasters. Location Global, marine. Methods We compiled global coverage data, e.g. satellite‐based and in situ measured data, representing various aspects of the marine environment relevant for species distributions. Rasters were assembled at a resolution of 5 arcmin (c. 9.2 km) and a uniform landmask was applied. The utility of the dataset was evaluated by maximum entropy SDM of the invasive seaweed Codium fragile ssp. fragile. Results We present Bio‐ORACLE (ocean rasters for analysis of climate and environment), a global dataset consisting of 23 geophysical, biotic and climate rasters. This user‐friendly data package for marine species distribution modelling is available for download at http://www.bio‐oracle.ugent.be . The high predictive power of the distribution model of C. fragile ssp. fragile clearly illustrates the potential of the data package for SDM of shallow‐water marine organisms. Main conclusions The availability of this global environmental data package has the potential to stimulate marine SDM. The high predictive success of the presence‐only model of a notorious invasive seaweed shows that the information contained in Bio‐ORACLE can be informative about marine distributions and permits building highly accurate species distribution models.  相似文献   

6.
The workshop 'Species distribution models: applications, challenges and perspectives' held at Belo Horizonte (Brazil), 29-30 August 2011, aimed to review the state-of-the-art in species distribution modelling (SDM) in the neotropical realm. It brought together researchers in ecology, evolution, biogeography and conservation, with different backgrounds and research interests. The application of SDM in the megadiverse neotropics-where data on species occurrences are scarce-presents several challenges, involving acknowledging the limitations imposed by data quality, including surveys as an integral part of SDM studies, and designing the analyses in accordance with the question investigated. Specific solutions were discussed, and a code of good practice in SDM studies and related field surveys was drafted.  相似文献   

7.
8.
Habitat suitability estimates derived from species distribution models (SDMs) are increasingly used to guide management of threatened species. Poorly estimating species’ ranges can lead to underestimation of threatened status, undervaluing of remaining habitat and misdirection of conservation funding. We aimed to evaluate the utility of a SDM, similar to the models used to inform government regulation of habitat in our study region, in estimating the contemporary distribution of a threatened and declining species. We developed a presence‐only SDM for the endangered New Holland Mouse (Pseudomys novaehollandiae) across Victoria, Australia. We conducted extensive camera trap surveys across model‐predicted and expert‐selected areas to generate an independent data set for use in evaluating the model, determining confidence in absence data from non‐detection sites with occupancy and detectability modelling. We assessed the predictive capacity of the model at thresholds based on (1) sum of sensitivity and specificity (SSS), and (2) the lowest presence threshold (LPT; i.e. the lowest non‐zero model‐predicted habitat suitability value at which we detected the species). We detected P. novaehollandiae at 40 of 472 surveyed sites, with strong support for the species’ probable absence from non‐detection sites. Based on our post hoc optimised SSS threshold of the SDM, 25% of our detection sites were falsely predicted as non‐suitable habitat and 75% of sites predicted as suitable habitat did not contain the species at the time of our survey. One occupied site had a model‐predicted suitability value of zero, and at the LPT, 88% of sites predicted as suitable habitat did not contain the species at the time of our survey. Our findings demonstrate that application of generic SDMs in both regulatory and investment contexts should be tempered by considering their limitations and currency. Further, we recommend engaging species experts in the extrapolation and application of SDM outputs.  相似文献   

9.

Background  

Several data formats have been developed for large scale biological experiments, using a variety of methodologies. Most data formats contain a mechanism for allowing extensions to encode unanticipated data types. Extensions to data formats are important because the experimental methodologies tend to be fairly diverse and rapidly evolving, which hinders the creation of formats that will be stable over time.  相似文献   

10.
Current research in biology uses evermore complex computational and imaging tools. Here we describe Icy, a collaborative bioimage informatics platform that combines a community website for contributing and sharing tools and material, and software with a high-end visual programming framework for seamless development of sophisticated imaging workflows. Icy extends the reproducible research principles, by encouraging and facilitating the reusability, modularity, standardization and management of algorithms and protocols. Icy is free, open-source and available at http://icy.bioimageanalysis.org/.  相似文献   

11.
12.
Motivated by the need to solve ecological problems (climate change, habitat fragmentation and biological invasions), there has been increasing interest in species distribution models (SDMs). Predictions from these models inform conservation policy, invasive species management and disease-control measures. However, predictions are subject to uncertainty, the degree and source of which is often unrecognized. Here, we review the SDM literature in the context of uncertainty, focusing on three main classes of SDM: niche-based models, demographic models and process-based models. We identify sources of uncertainty for each class and discuss how uncertainty can be minimized or included in the modelling process to give realistic measures of confidence around predictions. Because this has typically not been performed, we conclude that uncertainty in SDMs has often been underestimated and a false precision assigned to predictions of geographical distribution. We identify areas where development of new statistical tools will improve predictions from distribution models, notably the development of hierarchical models that link different types of distribution model and their attendant uncertainties across spatial scales. Finally, we discuss the need to develop more defensible methods for assessing predictive performance, quantifying model goodness-of-fit and for assessing the significance of model covariates.  相似文献   

13.
In spite of increasing application of presence-only models in ecology and conservation and the growing number of such models, little is known about the relative performance of different modelling methods, and some of the leading models (e.g. GARP and ENFA) have never been compared with one another. Here we compare the performance of six presence-only models that have been selected to represent an increasing level of model complexity [BIOCLIM, HABITAT, Mahalanobis distance (MD), DOMAIN, ENFA, and GARP] using data on the distribution of 42 species of land snails, nesting birds, and insectivorous bats in Israel. The models were calibrated using data from museum collections and observation databases, and their predictions were evaluated using Cohen's Kappa based on field data collected in a standardized sampling design covering most parts of Israel. Predictive accuracy varied between modelling methods with GARP and MD showing the highest accuracy, BIOCLIM and ENFA showing the lowest accuracy, and HABITAT and DOMAIN showing intermediate accuracy levels. Yet, differences between the various models were relatively small except for GARP and MD that were significantly more accurate than BIOCLIM and ENFA. In spite of large differences among species in prevalence and niche width, neither prevalence nor niche width interacted with the modelling method in determining predictive accuracy. However, species with relatively narrow niches were modelled more accurately than species with wider niches. Differences among species in predictive accuracy were highly consistent over all modelling methods, indicating the need for a better understanding of the ecological and geographical factors that influence the performance of species distribution models.  相似文献   

14.
Most knowledge about species and habitats is in-homogeneously distributed, with biases existing in space, time and taxonomic and functional knowledge. Yet, controversially the total amount of biodiversity data has never been greater. A key challenge is thus how to make effective use of the various sources of biodiversity data in an integrated manner. Particularly for widely used modelling approaches, such as species distribution models (SDMs), the need for integration is urgent, if spatial and temporal predictions are to be accurate enough in addressing global challenges.Here, I present a modelling framework that brings together several ideas and methodological advances for creating integrated species distribution models (iSDM). The ibis.iSDM R-package is a set of modular convenience functions that allows the integration of different data sources, such as presence-only, community survey, expert ranges or species habitat preferences, in a single model or ensemble of models. Further it supports convenient parameter transformations and tuning, data preparation helpers and allows the creation of spatial-temporal projections and scenarios. Ecological constraints such as projection limits, dispersal, connectivity or adaptability can be added in a modular fashion thus helping to prevent unrealistic estimates of species distribution changes.The ibis.iSDM R-package makes use of a series of methodological advances and is aimed to be a vehicle for creating more realistic and constrained spatial predictions. Besides providing convenience functions for a range of different statistical models as well as an increasing number of wrappers for mechanistic modules, ibis.iSDM also introduces several innovative concepts such as sequential or weighted integration, or thresholding by prediction uncertainty. The overall framework will be continued to be improved and further functionalities be added.  相似文献   

15.
Five (or so) challenges for species distribution modelling   总被引:24,自引:3,他引:24  
Species distribution modelling is central to both fundamental and applied research in biogeography. Despite widespread use of models, there are still important conceptual ambiguities as well as biotic and algorithmic uncertainties that need to be investigated in order to increase confidence in model results. We identify and discuss five areas of enquiry that are of high importance for species distribution modelling: (1) clarification of the niche concept; (2) improved designs for sampling data for building models; (3) improved parameterization; (4) improved model selection and predictor contribution; and (5) improved model evaluation. The challenges discussed in this essay do not preclude the need for developments of other areas of research in this field. However, they are critical for allowing the science of species distribution modelling to move forward.  相似文献   

16.
17.
Ecologists and biogeographers are currently expending great effort forecasting shifts in species geographical ranges that may result from climate change. However, these efforts are problematic because they have mostly relied on presence‐only data that ignore within‐species genetic diversity. Technological advances in high‐throughput sequencing have now made it cost‐effective to survey the genetic structure of populations sampled throughout the range of a species. These data can be used to delineate two or more genetic clusters within the species range, and to identify admixtures of individuals within genetic clusters that reflect different patterns of ancestry. Species distribution models (SDMs) applied to the presence and absence of genetic clusters should provide more realistic forecasts of geographical range shifts that take account of genetic variability. High‐throughput sequencing and spatially explicit models may be used to further refine these projections.  相似文献   

18.
19.
Aim The extent of the study area (geographical background, GB) can strongly affect the results of species distribution models (SDMs), but as yet we lack objective and practicable criteria for delimiting the appropriate GB. We propose an approach to this problem using trend surface analysis (TSA) and provide an assessment of the effects of varying GB extent on the performance of SDMs for four species. Location Mainland Spain. Methods Using data for four well known wild ungulate species and different GBs delimited with a TSA, we assessed the effects of GB extent on the predictive performance of SDMs: specifically on model calibration (Miller’s statistic) and discrimination (area under the curve of the receiver operating characteristic plot, AUC; sensitivity and specificity), and on the tendency of the models to predict environmental potential when they are projected beyond their training area. Results In the training area, discrimination significantly increased and calibration decreased as the GB was enlarged. In contrast, as GB was enlarged, both discriminatory power and calibration decreased when assessed in the core area of the species distributions. When models trained using small GBs were projected beyond their training area, they showed a tendency to predict higher environmental potential for the species than those models trained using large GBs. Main conclusions By restricting GB extent using a geographical criterion, model performance in the core area of the species distribution can be significantly improved. Large GBs make models demonstrate high discriminatory power but are barely informative. By delimiting GB using a geographical criterion, the effect of historical events on model parameterization may be reduced. Thus purely environmental models are obtained that, when projected onto a new scenario, depict the potential distribution of the species. We therefore recommend the use of TSA in geographically delimiting the GB for use in SDMs.  相似文献   

20.
Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km2 to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号