首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the past forty years, stable isotope analysis of bone (and tooth) collagen and hydroxyapatite has become a mainstay of archaeological and paleoanthropological reconstructions of paleodiet and paleoenvironment. Despite this method''s frequent use across anthropological subdisciplines (and beyond), the present work represents the first attempt at gauging the effects of inter-laboratory variability engendered by differences in a) sample preparation, and b) analysis (instrumentation, working standards, and data calibration). Replicate analyses of a 14C-dated ancient human bone by twenty-one archaeological and paleoecological stable isotope laboratories revealed significant inter-laboratory isotopic variation for both collagen and carbonate. For bone collagen, we found a sizeable range of 1.8‰ for δ13Ccol and 1.9‰ for δ15Ncol among laboratories, but an interpretatively insignificant average pairwise difference of 0.2‰ and 0.4‰ for δ13Ccol and δ15Ncol respectively. For bone hydroxyapatite the observed range increased to a troublingly large 3.5‰ for δ13Cap and 6.7‰ for δ18Oap, with average pairwise differences of 0.6‰ for δ13Cap and a disquieting 2.0‰ for δ18Oap. In order to assess the effects of preparation versus analysis on isotopic variability among laboratories, a subset of the samples prepared by the participating laboratories were analyzed a second time on the same instrument. Based on this duplicate analysis, it was determined that roughly half of the isotopic variability among laboratories could be attributed to differences in sample preparation, with the other half resulting from differences in analysis (instrumentation, working standards, and data calibration). These findings have serious implications for choices made in the preparation and extraction of target biomolecules, the comparison of results obtained from different laboratories, and the interpretation of small differences in bone collagen and hydroxyapatite isotope values. To address the issues arising from inter-laboratory comparisons, we devise a novel measure we term the Minimum Meaningful Difference (MMD), and demonstrate its application.  相似文献   

2.
3.
Isotopic and molecular analysis on human, fauna and pottery remains can provide valuable new insights into the diets and subsistence practices of prehistoric populations. These are crucial to elucidate the resilience of social-ecological systems to cultural and environmental change. Bulk collagen carbon and nitrogen isotopic analysis of 82 human individuals from mid to late Holocene Brazilian archaeological sites (∼6,700 to ∼1,000 cal BP) reveal an adequate protein incorporation and, on the coast, the continuation in subsistence strategies based on the exploitation of aquatic resources despite the introduction of pottery and domesticated plant foods. These results are supported by carbon isotope analysis of single amino acid extracted from bone collagen. Chemical and isotopic analysis also shows that pottery technology was used to process marine foods and therefore assimilated into the existing subsistence strategy. Our multidisciplinary results demonstrate the resilient character of the coastal economy to cultural change during the late Holocene in southern Brazil.  相似文献   

4.
A longer breastfeeding duration provides various positive effects in subadult health because of abundant immunological factors and nutrients in human breast milk, and decreases the natural fertility of a population through lactational amenorrhea. In this study, we measured stable carbon and nitrogen isotope ratios in the bone collagen of three adults and 45 subadults from the Yuigahama‐minami site (from 12th to 14th century) in Kamakura, the early medieval capital of Japan. Marine foods, C3‐based terrestrial foods, and freshwater fish are the primarily protein sources for adults. The changes in the nitrogen isotope ratios of subadults suggest that the relative dietary protein contribution from breast milk started to decrease from 1.1 years of age and ended at 3.8 years. The age at the end of weaning in the Yuigahama‐minami population was greater than that in the typical non‐industrial populations, a premodern population in the Edo period Japan, and medieval populations in the UK. Skeletons of townspeople from medieval Kamakura indicate severe nutritional stress (e.g., enamel hypoplasia and cribra orbitalia), yet this longer duration of breastfeeding did not compensate adverse effects for nutritional deficiency. The longer breastfeeding period may have been a consequence of complementary food shortage and bad health of subadults. Kamakura experienced urbanization and population increase in the early medieval period. The younger age‐at‐death distribution and high nutritional stresses in the Yuigahama‐minami population and later weaning, which is closely associated with longer inter‐birth interval for mothers, suggests that Kamakura developed and increased its population by immigration during urbanization. Am J Phys Anthropol 156:241–251, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Here we report bone phosphate oxygen (δ18Op) values from perinates/neonates and infants (<3.5 years; n = 32); children (4–12 years; n = 12); unsexed juveniles (16–18 years; n = 2); and adult bones (n = 17) from Wharram Percy, North Yorkshire, England, in order to explore the potential of this method to investigate patterns of past breastfeeding and weaning. In prior studies, δ15N and δ13C analyses of bone collagen have been utilized to explore weaning age in this large and well‐studied assemblage, rendering this material highly appropriate for the testing and development of this alternative method targeting the inorganic phase of bone. Data produced reveal 18O‐enrichment in the youngest perinatal/neonatal and infant samples, and an association between age and bone δ18Op (and previously‐published δ15N values), with high values in both these isotope systems likely due to breastfeeding. After the age of 2–3 years, δ18Op values are lower, and all children between the ages of 4 and 12, along with the vast majority of sub‐adults and adults sampled (aged 16 to >50 years), have δ18Op values consistent with the consumption of local modern drinking water. The implications of this study for the reconstruction of weaning practices in archaeological populations are discussed, including variations observed with bone δ15Ncoll and δ18Op co‐analysis and the influence of culturally‐modified drinking water and seasonality. The use of this method to explore human mobility and palaeoclimatic conditions are also discussed with reference to the data presented. Am J Phys Anthropol 157:226–241, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoë daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17°C nights, 23°C days), the isotope fractionation for both plants is −4‰ (that is, malate is enriched in 13C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0‰ at 27°C/33°C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process.  相似文献   

7.
While trends in tropical deforestation are alarming, conservation biologists are increasingly recognizing the potential for species survival in human‐modified landscapes. Identifying the factors underlying such persistence, however, requires basic ecological knowledge of a species’ resource use. Here, we generate such data to guide conservation of an understudied venomous mammal, the Hispaniolan solenodon (Solenodon paradoxus), that occupies a mosaic landscape of agriculture and forest fragments in the western Dominican Republic. Using feces collected in both wet and dry seasons, we found significant differences in the stable isotope values of carbon (δ13C) between pasture (−24.63 ± 2.31‰, Las Mercedes) and agroforestry (−28.07 ± 2.10‰, Mencia). Solenodon populations in agricultural areas occupied wider isotopic niche spaces, which may be explained by more diverse resource within these patches or individuals combining resources across habitats. We detected elevated δ15N values in the dry season of pasture areas (8.22 ± 2.30‰) as compared to the wet season (5.26 ± 2.44‰) and overall narrower isotopic niche widths in the dry season, suggestive of the impacts of aridity on foraging behavior. Our work highlights the importance of considering a more nuanced view of variations in ‘modified’ or “agricultural” landscapes as compared with strictly protected national parks. We suggest that seasonal differences in foraging should be considered as they intersect with landscape modification by landowners for maintaining resources for focal consumers. This work adds to a growing body of literature highlighting that fecal stable isotopes are a non‐invasive and cost‐effective monitoring tool that is particularly well‐suited for cryptic small mammal species, ensuring actionable and evidenced‐based conservation practices in the tropic''s rapidly changing landscapes.  相似文献   

8.
Stable isotope analysis has provided insights into the trophic ecology of a wide diversity of animals. Knowledge about isotopic incorporation rates and isotopic discrimination between the consumer and its diet for different tissue types is essential for interpreting stable isotope data, but these parameters remain understudied in many animal taxa and particularly in aquatic invertebrates. We performed a 292-day diet shift experiment on 92 individuals of the predatory mantis shrimp, Neogonodactylus bredini, to quantify carbon and nitrogen incorporation rates and isotope discrimination factors in muscle and hemolymph tissues. Average isotopic discrimination factors between mantis shrimp muscle and the new diet were 3.0 ± 0.6 ‰ and 0.9 ± 0.3 ‰ for carbon and nitrogen, respectively, which is contrary to what is seen in many other animals (e.g. C and N discrimination is generally 0–1 ‰ and 3–4 ‰, respectively). Surprisingly, the average residence time of nitrogen in hemolymph (28.9 ± 8.3 days) was over 8 times longer than that of carbon (3.4 ± 1.4 days). In muscle, the average residence times of carbon and nitrogen were of the same magnitude (89.3 ± 44.4 and 72.8 ± 18.8 days, respectively). We compared the mantis shrimps’ incorporation rates, along with rates from four other invertebrate taxa from the literature, to those predicted by an allometric equation relating carbon incorporation rate to body mass that was developed for teleost fishes and sharks. The rate of carbon incorporation into muscle was consistent with rates predicted by this equation. Our findings provide new insight into isotopic discrimination factors and incorporation rates in invertebrates with the former showing a different trend than what is commonly observed in other animals.  相似文献   

9.
Stable isotope analysis (SIA) of highly migratory marine pelagic animals can improve understanding of their migratory patterns and trophic ecology. However, accurate interpretation of isotopic analyses relies on knowledge of isotope turnover rates and tissue-diet isotope discrimination factors. Laboratory-derived turnover rates and discrimination factors have been difficult to obtain due to the challenges of maintaining these species in captivity. We conducted a study to determine tissue- (white muscle and liver) and isotope- (nitrogen and carbon) specific turnover rates and trophic discrimination factors (TDFs) using archived tissues from captive Pacific bluefin tuna (PBFT), Thunnus orientalis, 1–2914 days after a diet shift in captivity. Half-life values for 15N turnover in white muscle and liver were 167 and 86 days, and for 13C were 255 and 162 days, respectively. TDFs for white muscle and liver were 1.9 and 1.1‰ for δ 15N and 1.8 and 1.2‰ for δ 13C, respectively. Our results demonstrate that turnover of 15N and 13C in bluefin tuna tissues is well described by a single compartment first-order kinetics model. We report variability in turnover rates between tissue types and their isotope dynamics, and hypothesize that metabolic processes play a large role in turnover of nitrogen and carbon in PBFT white muscle and liver tissues. 15N in white muscle tissue showed the most predictable change with diet over time, suggesting that white muscle δ 15N data may provide the most reliable inferences for diet and migration studies using stable isotopes in wild fish. These results allow more accurate interpretation of field data and dramatically improve our ability to use stable isotope data from wild tunas to better understand their migration patterns and trophic ecology.  相似文献   

10.
Carbon isotope fractionation by structurally and catalytically distinct ribulose-1,5-bisphosphate carboxylases from one eucaryotic and four procaryotic organisms has been measured under nitrogen. The average fractionation for 40 experiments was −34.1 ‰ with respect to the δ13C of the dissolved CO2 used, although average fractionations for each enzyme varied slightly: spinach carboxylase, −36.5 ‰; Hydrogenomonas eutropha, −38.7 ‰; Agmenellum quadruplicatum, −32.2 ‰; Rhodospirillum rubrum, −32.1 ‰; Rhodopseudomonas sphaeroides peak I carboxylase, −31.4 ‰; and R. sphaeroides peak II carboxylase, −28.3 ‰. The carbon isotope fractionation value was largely independent of method of enzyme preparation, purity, or reaction temperature, but in the case of spinach ribulose-1,5-bisphosphate carboxylase fractionation, changing the metal cofactor used for enzyme activation had a distinct effect on the fractionation value. The fractionation value of −36.5 ‰ with Mg2+ as activator shifted to −29.9 ‰ with Ni2+ as activator and to −41.7 ‰ with Mn2+ as activator. These dramatic metal effects on carbon isotope fractionation may be useful in examining the catalytic site of the enzyme.  相似文献   

11.
BackgroundHyperbaric oxygen therapy (HBOT) is useful in the treatment of complications due to radiotherapy in patients with neoplasm. Its effects on bone metabolism are unclear. In our study, we analyzed the effects of HBOT on bone remodeling in oncological patients with radiotherapy.Materials and methodsProspective clinical study in 23 patients with neoplasms undergoing treatment with HBOT due to complications of radiotherapy (hemorrhagic cystitis, proctitis or radionecrosis) and 25 patients with chronic anal fissure. The average number of HBOT sessions was 20 ± 5 (100% oxygen, 2.3 atmospheres and 90 min per day). Serum levels of aminoterminal propeptide of type I collagen (P1NP), C terminal telopeptide of type I collagen (CTX), alkaline phosphatase (AP), 25hydroxyvitamin D (25-OHD), parathyroid hormone (PTH), were measured at 3 time points: T0 (before beginning HBOT), T1 (at the end of HBOT) and T2 (6 months after HBOT).ResultsAt baseline, the patients with neoplasm have higher bone turnover than those with anal fissure. These differences were 41% in CTX (0.238 ± 0.202 ng/mL in neoplasm and 0.141 ± 0.116 ng/mL in fissure; p = 0.04), 30% for PTH (46 ± 36 pg/mL in neoplasm and 32 ± 17 pg/mL in fissure; p = 0.04) and 15% for alkaline phosphatase (80 ± 24 U/L in neoplasm and 68 ± 16 U/L in fissure; p = 0.04). In the group with neoplasm, the values of P1NP decreased 6% after HBOT (T0: 49 ± 31 ng/mL, T2: 46 ± 12 ng/mL; p = 0.03). Also, there were non-significant decreases in PTH (−34%) and CTX (−30%).ConclusionsPatients with neoplasm and complications with radiotherapy have an increase in bone remodeling that may be diminished after HBOT.  相似文献   

12.
Isotopic variation of food stuffs propagates through trophic systems. But, this variation is dampened in each trophic step, due to buffering effects of metabolic and storage pools. Thus, understanding of isotopic variation in trophic systems requires knowledge of isotopic turnover. In animals, turnover is usually quantified in diet-switch experiments in controlled conditions. Such experiments usually involve changes in diet chemical composition, which may affect turnover. Furthermore, it is uncertain if diet-switch based turnover models are applicable under conditions with randomly fluctuating dietary input signals. Here, we investigate if turnover information derived from diet-switch experiments with dairy cows can predict the isotopic composition of metabolic products (milk, milk components and feces) under natural fluctuations of dietary isotope and chemical composition. First, a diet-switch from a C3-grass/maize diet to a pure C3-grass diet was used to quantify carbon turnover in whole milk, lactose, casein, milk fat and feces. Data were analyzed with a compartmental mixed effects model, which allowed for multiple pools and intra-population variability, and included a delay between feed ingestion and first tracer appearance in outputs. The delay for milk components and whole milk was ∼12 h, and that of feces ∼20 h. The half-life (t½) for carbon in the feces was 9 h, while lactose, casein and milk fat had a t½ of 10, 18 and 19 h. The 13C kinetics of whole milk revealed two pools, a fast pool with a t½ of 10 h (likely representing lactose), and a slower pool with a t½ of 21 h (likely including casein and milk fat). The diet-switch based turnover information provided a precise prediction (RMSE ∼0.2 ‰) of the natural 13C fluctuations in outputs during a 30 days-long period when cows ingested a pure C3 grass with naturally fluctuating isotope composition.  相似文献   

13.
The intramolecular distribution of nitrogen isotopes in N2O is an emerging tool for defining the relative importance of microbial sources of this greenhouse gas. The application of intramolecular isotopic distributions to evaluate the origins of N2O, however, requires a foundation in laboratory experiments in which individual production pathways can be isolated. Here we evaluate the site preferences of N2O produced during hydroxylamine oxidation by ammonia oxidizers and by a methanotroph, ammonia oxidation by a nitrifier, nitrite reduction during nitrifier denitrification, and nitrate and nitrite reduction by denitrifiers. The site preferences produced during hydroxylamine oxidation were 33.5 ± 1.2‰, 32.5 ± 0.6‰, and 35.6 ± 1.4‰ for Nitrosomonas europaea, Nitrosospira multiformis, and Methylosinus trichosporium, respectively, indicating similar site preferences for methane and ammonia oxidizers. The site preference of N2O from ammonia oxidation by N. europaea (31.4 ± 4.2‰) was similar to that produced during hydroxylamine oxidation (33.5 ± 1.2‰) and distinct from that produced during nitrifier denitrification by N. multiformis (0.1 ± 1.7‰), indicating that isotopomers differentiate between nitrification and nitrifier denitrification. The site preferences of N2O produced during nitrite reduction by the denitrifiers Pseudomonas chlororaphis and Pseudomonas aureofaciens (−0.6 ± 1.9‰ and −0.5 ± 1.9‰, respectively) were similar to those during nitrate reduction (−0.5 ± 1.9‰ and −0.5 ± 0.6‰, respectively), indicating no influence of either substrate on site preference. Site preferences of ~33‰ and ~0‰ are characteristic of nitrification and denitrification, respectively, and provide a basis to quantitatively apportion N2O.  相似文献   

14.
Hunter–gatherer population growth rate estimates extracted from archaeological proxies and ethnographic data show remarkable differences, as archaeological estimates are orders of magnitude smaller than ethnographic and historical estimates. This could imply that prehistoric hunter–gatherers were demographically different from recent hunter–gatherers. However, we show that the resolution of archaeological human population proxies is not sufficiently high to detect actual population dynamics and growth rates that can be observed in the historical and ethnographic data. We argue that archaeological and ethnographic population growth rates measure different things; therefore, they are not directly comparable. While ethnographic growth rate estimates of hunter–gatherer populations are directly linked to underlying demographic parameters, archaeological estimates track changes in the long-term mean population size, which reflects changes in the environmental productivity that provide the ultimate constraint for forager population growth. We further argue that because of this constraining effect, hunter–gatherer populations cannot exhibit long-term growth independently of increasing environmental productivity.This article is part of the theme issue ‘Cross-disciplinary approaches to prehistoric demography’.  相似文献   

15.
Apex marine predators alter their foraging behavior in response to spatial and/or seasonal changes in natural prey distribution and abundance. However, few studies have identified the impacts of aquaculture that represents a spatially and temporally predictable and abundant resource on their foraging behavior. Using satellite telemetry and stable isotope analysis we examined the degree of spatial overlap between the South American sea lion (SASL) and salmon farms, and quantify the amount of native prey versus farmed salmonids in SASL diets. We instrumented eight SASL individuals with SRDL-GPS tags. Vibrissae, hair and skin samples were collected for δ13C and δ15N analyses from five of the tagged individuals and from four males captured in a haul-out located adjacent to salmon farms. Tracking results showed that almost all the foraging areas of SASL are within close proximity to salmon farms. The most important prey for the individuals analyzed was farmed salmonids, with an estimated median (±SD) contribution of 19.7 ± 13.5‰ and 15.3 ± 9.6‰ for hair and skin, respectively. Using vibrissae as a temporal record of diet for each individual, we observed a remarkable switch in diet composition in two SASL, from farmed salmonids to pelagic fishes, which coincided with the decrease of salmon production due to the infectious salmon anemia virus that affected salmon farms in Chile at the end of 2008. Our study demonstrates the usefulness of integrating stable isotope derived dietary data with movement patterns to characterize the impacts of a non-native prey on the foraging ecology of an apex marine predator, providing important applied implications in situations where interactions between aquaculture and wildlife are common.  相似文献   

16.
Szarek SR 《Plant physiology》1976,58(3):367-370
A year round study of photosynthesis and carbon isotope fractionation was conducted with plants of Opuntia phaeacantha Engelm. and Yucca baccata Torr. occurring in natural stands at elevations of 525, 970, 1450 and 1900 m. Plant water potentials and the daytime pattern of 14CO2 photosynthesis were similar for all cacti along the elevational gradient, despite significant differences in temperature regime and soil water status. Carbon isotope ratios of total tissue and soluble extract fractions were relatively constant throughtout the entire year. Additionally, the σ13C values were similar in all plants of the same species along the elevational gradient, i.e. −12.5 ± 0.86 ‰ for O. phaeacantha and −15.7 ± 0.95 ‰ for Y. baccata. The results of this study indicate Crassulacean acid metabolism predominates as the major carbon pathway of these plants, which do not facultatively utilize the reductive pentose phosphate cycle of photosynthesis as the primary carboxylation reaction.  相似文献   

17.
Carbon isotope ratios of mature leaves from the C3 angiosperm root hemiparasites Striga hermonthica (Del.) Benth (−26.7‰) and S. asiatica (L.) Kuntze (−25.6‰) were more negative than their C4 host, sorghum (Sorghum bicolor [L.] Moench cv CSH1), (−13.5‰). However, in young photosynthetically incompetent plants of S. hermonthica this difference was reduced to less than 1‰. Differences between the carbon isotope ratios of two C3-C3 associations, S. gesnerioides (Willd.) Vatke—Vigna unguiculata (L.) Walp. and Oryza sativa L.—Rhamphicarpa fistulosa (Hochst.) Benth differed by less than 1‰. Theoretical carbon isotope ratios for mature leaves of S. hermonthica and S. asiatica, calculated from foliar gas exchange measurements, were −31.8 and −32.0‰, respectively. This difference between the measured and theoretical δ13C-values of 5 to 6‰ suggests that even in mature, photosynthetically active plants, there is substantial input of carbon from the C4 host. We estimate this to be approximately 28% of the total carbon in S. hermonthica and 35% in S. asiatica. This level of carbon transfer contributes to the host's growth reductions observed in Striga-infected sorghum.  相似文献   

18.
Stable isotope analyses for paleodiet investigations require good preservation of bone protein, the collagen, to obtain reliable stable isotope values. Burial environments cause diagenetic alterations to collagen, especially in the leaching of the organic bone content. The survival of bone protein may be assessed by the weight % collagen, % carbon and % nitrogen yields, but these values are achieved only after destructive chemical processing. A non-destructive method of determining whether bone is suitably preserved would be desirable, as it would be less costly than chemical processing, and would also preserve skeletal collections. Raman analysis is one such potential non-destructive screening method. In previous applications, Raman spectroscopy has been used to test both the alteration of the mineral portion of bone, as well as to indicate the relative amount of organic material within the bone structure. However, there has been no research to test the relationship between the Raman spectroscopic results and the survival of bone protein. We use a set of 41 bone samples from the prehistoric archaeological site of Ban Non Wat, Northeast Thailand, to assess if Raman spectroscopy analysis of the organic-phosphate ratio has a significant correlation with the weight % collagen, and carbon and nitrogen yields obtained by isotopic analysis. The correlation coefficients are highly statistically significant in all cases (r = 0.716 for collagen, r = 0.630 for carbon and r = 0.706 for nitrogen, p≤0.001 for all) with approximately or close to half of the variation in each explained by variation in the organic-phosphate ratio (51.2% for collagen, 39.6% for carbon, and 49.8% for nitrogen). Although the Raman screening method cannot directly quantify the extent of collagen survival, it could be of use in the selection of bone most likely to have viable protein required for reliable results from stable isotope analysis.  相似文献   

19.
The δ PDB13C values have been determined for the cellular constituents and metabolic intermediates of autotrophically grown Chromatium vinosum. The isotopic composition of the HCO3- in the medium and the carbon isotopic composition of the bacterial cells change with the growth of the culture. The δ PDB13C value of the HCO3- in the media changes from an initial value of −6.6‰ to +8.1‰ after 10 days of bacterial growth and the δ PDB13C value of the bacterial cells change from −37.5‰ to −29.2‰ in the same period. The amount of carbon isotope fractionation during the synthesis of hexoses by the photoassimilation of CO2 has a range of −15.5‰ at time zero to −22.0‰ after 10 days. This range of fractionation compares to the range of carbon isotope fractionation for the synthesis of sugars from CO2 by ribulose 1,5-diphosphate carboxylase and the Calvin cycle.  相似文献   

20.
Stable oxygen isotopes are increasingly used in ecological research. Here, I present oxygen isotope (δ18O) values for bone carbonate and collagen from howler monkeys (Alouatta palliata), spider monkeys (Ateles geoffroyi) and capuchins (Cebus capucinus) from three localities in Costa Rica. There are apparent differences in δ18Ocarbonate and δ18Ocollagen among species. Monkeys from moist forest have significantly lower isotope values than those from drier localities. Because patterns are similar for both substrates, discrimination (Δ) between δ18Ocarbonate and δ18Ocollagen is relatively consistent among species and localities (17.6 ± 0.9‰). Although this value is larger than that previously obtained for laboratory rats, consistency among species and localities suggests it can be used to compare δ18Ocarbonate and δ18Ocollagen for monkeys, and potentially other medium-bodied mammals. Establishing discrimination for oxygen between these substrates for wild monkeys provides a foundation for future environmental and ecological research on modern and ancient organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号