首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of the study was to enlarge knowledge of discrimination of complex sound signals by the auditory system in masking noise. For that, influence of masking noise on detection of shift of rippled spectrum was studied in normal listeners. The signal was a shift of ripple phase within a 0.5-oct wide rippled spectrum centered at 2 kHz. The ripples were frequency-proportional (throughout the band, ripple spacing was a constant proportion of the ripple center frequency). Simultaneous masker was a 0.5-oct noise below-, on-, or above the signal band. Both the low-frequency (center frequency 1 kHz) and on-frequency (the same center frequency as for the signal) maskers increased the thresholds for detecting ripple phase shift. However, the threshold dependence on the masker level was different for these two maskers. For the on-frequency masker, the masking effect primarily depended on the masker/signal ratio: the threshold steeply increased at a ratio of 5 dB, and no shift was detectable at a ratio of 10 dB. For the low-frequency masker, the masking effect primarily depended on the masker level: the threshold increased at a masker level of 80 dB SPL, and no shift was detectable at a masker level of 90 dB (for a signal level of 50 dB) or 100 dB (for a signal level of 80 dB). The high-frequency masker had little effect. The data were successfully simulated using an excitation-pattern model. In this model, the effect of the on-frequency masker appeared to be primarily due to a decrease of ripple depth. The effect of the low-frequency masker appeared due to widening of the auditory filters at high sound levels.  相似文献   

2.
The auditory system creates a neuronal representation of the acoustic world based on spectral and temporal cues present at the listener''s ears, including cues that potentially signal the locations of sounds. Discrimination of concurrent sounds from multiple sources is especially challenging. The current study is part of an effort to better understand the neuronal mechanisms governing this process, which has been termed “auditory scene analysis”. In particular, we are interested in spatial release from masking by which spatial cues can segregate signals from other competing sounds, thereby overcoming the tendency of overlapping spectra and/or common temporal envelopes to fuse signals with maskers. We studied detection of pulsed tones in free-field conditions in the presence of concurrent multi-tone non-speech maskers. In “energetic” masking conditions, in which the frequencies of maskers fell within the ±1/3-octave band containing the signal, spatial release from masking at low frequencies (∼600 Hz) was found to be about 10 dB. In contrast, negligible spatial release from energetic masking was seen at high frequencies (∼4000 Hz). We observed robust spatial release from masking in broadband “informational” masking conditions, in which listeners could confuse signal with masker even though there was no spectral overlap. Substantial spatial release was observed in conditions in which the onsets of the signal and all masker components were synchronized, and spatial release was even greater under asynchronous conditions. Spatial cues limited to high frequencies (>1500 Hz), which could have included interaural level differences and the better-ear effect, produced only limited improvement in signal detection. Substantially greater improvement was seen for low-frequency sounds, for which interaural time differences are the dominant spatial cue.  相似文献   

3.
Li AA  Chen QC  Wu FJ 《生理学报》2006,58(2):141-148
有关听中枢神经元纯音前掩蔽效应的神经表征已进行了大量研究,但是,噪声前掩蔽尤其是间断噪声前掩蔽效应的神经表征却鲜有报道。本研究观察了自由声场条件下,昆明小鼠下丘神经元在持续与间断噪声前掩蔽条件下对纯音探测声的反应。共记录到96个下丘神经元,测量了其中51个神经元在不同声刺激条件下的强度一放电率函数。结果显示,掩蔽声强度分布较广(探测声阈下21dB至阈上19dB之间)。在将近一半的神经元中,间断噪声的前掩蔽效应比持续噪声强(Ⅰ型,45.10%,P〈0.001),但也有少数神经元其间断噪声的掩蔽效应较持续噪声的弱(Ⅲ型,17.65%,P〈0.001),部分神经元无显著性差异(Ⅱ型,37.25%,P〉0.05)。无论Ⅰ型还是Ⅲ型神经元,持续噪声和间断噪声均在探测声强度较低时产生较强的抑制效应,随着探测声强度的升高,抑制效应逐渐降低(P〈0.001);同时,持续噪声和间断噪声之间前掩蔽效应差异亦不复存在(P〉0.05)。此外,当掩蔽声由持续噪声换为间断噪声后,部分Ⅰ型神经元掩蔽时相的类型发生转变,其中最主要的转变为由前期抑制转变为均衡抑制(53.85%,7/13)。对下丘神经元声反应的时间域以及强度域,持续与间断噪声具有分化性前掩蔽效应,提示噪声前掩蔽并非简单的神经元发放压抑源,某些主动性神经调制机制可能参与了噪声条件下时相声信息的编码过程。  相似文献   

4.
Unexpected physical increases in the intensity of a frequently occurring “standard” auditory stimulus are experienced as obtrusive. This could either be because of a physical change, the increase in intensity of the “deviant” stimulus, or a psychological change, the violation of the expectancy for the occurrence of the lower intensity standard stimulus. Two experiments were run in which event-related potentials (ERPs) were recorded to determine whether “psychological” increments (violation of an expectancy for a lower intensity) would be processed differently than psychological decrements (violation of an expectancy for a higher intensity). Event-related potentials (ERPs) were recorded while subjects were presented with auditory tones that alternated between low and high intensity. The subjects ignored the auditory stimuli while watching a video. Deviants were created by repeating the same stimulus. In the first experiment, pairs of stimuli alternating in intensity, were presented in separate increment (H-L…H-L…H-H…H-L, in which H = 80 dB SPL and L = 60 dB SPL) and decrement conditions (L-H…L-H…L-L… L-H, in which H = 90 dB SPL and L = 80 dB SPL). The paradigm employed in the second experiment consisted of an alternating intensity pattern (H-L-H-L-H-H-H-L) or (H-L-H-L-L-L-H-L). Importantly, the stimulus prior to the deviant (the standard) and the actual deviants in both increment and decrement conditions in both experiments were physically identical (80 dB SPL tones). The repetition of the lower intensity tone therefore acted as a psychological rather than a physical decrement (a higher intensity tone was expected) while the repetition of the higher intensity tone acted as a psychological increment (a lower intensity tone was expected). The psychological increments in both experiments elicited a larger amplitude mismatch negativity (MMN) than the decrements. Thus, regardless of whether an acoustic change signals a physical increase in intensity or violates an expected decrease in intensity, a large MMN will be elicited.  相似文献   

5.
The presence of non-simultaneous maskers can result in strong impairment in auditory intensity resolution relative to a condition without maskers, and causes a complex pattern of effects that is difficult to explain on the basis of peripheral processing. We suggest that the failure of selective attention to the target tones is a useful framework for understanding these effects. Two experiments tested the hypothesis that the sequential grouping of the targets and the maskers into separate auditory objects facilitates selective attention and therefore reduces the masker-induced impairment in intensity resolution. In Experiment 1, a condition favoring the processing of the maskers and the targets as two separate auditory objects due to grouping by temporal proximity was contrasted with the usual forward masking setting where the masker and the target presented within each observation interval of the two-interval task can be expected to be grouped together. As expected, the former condition resulted in a significantly smaller masker-induced elevation of the intensity difference limens (DLs). In Experiment 2, embedding the targets in an isochronous sequence of maskers led to a significantly smaller DL-elevation than control conditions not favoring the perception of the maskers as a separate auditory stream. The observed effects of grouping are compatible with the assumption that a precise representation of target intensity is available at the decision stage, but that this information is used only in a suboptimal fashion due to limitations of selective attention. The data can be explained within a framework of object-based attention. The results impose constraints on physiological models of intensity discrimination. We discuss candidate structures for physiological correlates of the psychophysical data.  相似文献   

6.
Voltage responses were recorded from outer hair cells (OHCS) in the basal coil of the guinea-pig cochlea in response to tones at frequencies above the characteristic frequency (CF) presented together with a 100 Hz tone at 80 dB or 85 dB sound pressure level (SPL). The amplitude and polarity of voltage responses to a 100 Hz, 85 dB SPL tone were altered when presented together with tones at frequencies above CF according to the frequency and level of the high-frequency tone, OHC phasic (ac) (greater than 500 microV) but not tonic (dc) voltage responses were elicited by the high-frequency tone. Thus the responses of OHCS to low-frequency tones can be altered when presented together with a high-frequency tone without an apparent dc change in membrane potential. Recordings were made from an OHC during cochlear desensitization through exposure to an intense tone. The maximum voltage response to high-level low-frequency tones remained unchanged, although the OHC response to high-frequency tones became less sensitive to low-level stimuli and more linear as a function of level. It is suggested that desensitization is associated with a change in the mechanical properties of the cochlea, possibly associated with the OHCS themselves, and not with inactivation of the transducer channels. The amplitude of the OHC ac voltage response was measured at neural threshold, and the consequences of these measurements on hair cell electromotility are considered.  相似文献   

7.
背景噪声对人感知声音时间信息的影响   总被引:1,自引:0,他引:1  
对声音时间信息的分辨在人和动物感知声音信息的过程中至关重要.在自然声环境中,声音信息总处于一定的噪声背景下.文章以间隔探测阈值为指标测定了人对纯音和噪声的间隔探测阈值,以及持续噪声背景对间隔探测阈值的影响.声音信号采用1000~10000 Hz的纯音信号和白噪声信号,声音强度为70 dB SPL.背景噪声为持续白噪声,强度分别为45、55、65 dB SPL.结果表明,对纯音信号,随着背景噪声强度增加,间隔探测阈值有升高的趋势.对噪声信号来说,45、55 dB SPL的背景噪声对噪声信号的间隔探测阈值无显著影响,但65 dB SPL的背景噪声使间隔探测阈值显著升高.研究结果提示,背景噪声能够在一定程度上影响人对声音时间信息的感知,影响的程度与背景噪声的强度有关.  相似文献   

8.
Brain-stem auditory evoked potentials (BAEP) recorded from the seagull were large-amplitude, short-latency, vertex-positive deflections which originate in the eighth nerve and several brain-stem nuclei. BAEP waveforms were similar in latency and configurations to that reported for certain other lower vertebrates and some mammals. BAEP recorded at several pure tone frequencies throughout the seagull's auditory spectrum showed an area of heightened auditory sensitivity between 1 and 3 kHz. This range was also found to be the primary bandwidth of the vocalization output of young seagulls. Masking by white noise and pure tones had remarkable effects on several parameters of the BAEP. In general, the tone- and click-induced BAEP were either reduced or obliterated by both pure tone and white noise maskers of specific signal to noise ratios and high intensity levels. The masking effects observed in this study may be related to the manner in which seagulls respond to intense environmental noise. One possible conclusion is that intense environmental noise, such as aircraft engine noise, may severely alter the seagull's localization apparatus and induce sonogenic stress, both of which could cause collisions with low-flying aircraft.  相似文献   

9.
Humans routinely segregate a complex acoustic scene into different auditory streams, through the extraction of bottom-up perceptual cues and the use of top-down selective attention. To determine the neural mechanisms underlying this process, neural responses obtained through magnetoencephalography (MEG) were correlated with behavioral performance in the context of an informational masking paradigm. In half the trials, subjects were asked to detect frequency deviants in a target stream, consisting of a rhythmic tone sequence, embedded in a separate masker stream composed of a random cloud of tones. In the other half of the trials, subjects were exposed to identical stimuli but asked to perform a different task—to detect tone-length changes in the random cloud of tones. In order to verify that the normalized neural response to the target sequence served as an indicator of streaming, we correlated neural responses with behavioral performance under a variety of stimulus parameters (target tone rate, target tone frequency, and the “protection zone”, that is, the spectral area with no tones around the target frequency) and attentional states (changing task objective while maintaining the same stimuli). In all conditions that facilitated target/masker streaming behaviorally, MEG normalized neural responses also changed in a manner consistent with the behavior. Thus, attending to the target stream caused a significant increase in power and phase coherence of the responses in recording channels correlated with an increase in the behavioral performance of the listeners. Normalized neural target responses also increased as the protection zone widened and as the frequency of the target tones increased. Finally, when the target sequence rate increased, the buildup of the normalized neural responses was significantly faster, mirroring the accelerated buildup of the streaming percepts. Our data thus support close links between the perceptual and neural consequences of the auditory stream segregation.  相似文献   

10.

Background

Prepulse inhibition (PPI) depicts the effects of a weak sound preceding strong acoustic stimulus on acoustic startle response (ASR). Previous studies suggest that PPI is influenced by physical parameters of prepulse sound such as intensity and preceding time. The present study characterizes the impact of prepulse tone frequency on PPI.

Methods

Seven female C57BL mice were used in the present study. ASR was induced by a 100 dB SPL white noise burst. After assessing the effect of background sounds (white noise and pure tones) on ASR, PPI was tested by using prepulse pure tones with the background tone of either 10 or 18 kHz. The inhibitory effect was assessed by measuring and analyzing the changes in the first peak-to-peak magnitude, root mean square value, duration and latency of the ASR as the function of frequency difference between prepulse and background tones.

Results

Our data showed that ASR magnitude with pure tone background varied with tone frequency and was smaller than that with white noise background. Prepulse tone systematically reduced ASR as the function of the difference in frequency between prepulse and background tone. The 0.5 kHz difference appeared to be a prerequisite for inducing substantial ASR inhibition. The frequency dependence of PPI was similar under either a 10 or 18 kHz background tone.

Conclusion

PPI is sensitive to frequency information of the prepulse sound. However, the critical factor is not tone frequency itself, but the frequency difference between the prepulse and background tones.  相似文献   

11.
Klinge A  Beutelmann R  Klump GM 《PloS one》2011,6(10):e26124
The amount of masking of sounds from one source (signals) by sounds from a competing source (maskers) heavily depends on the sound characteristics of the masker and the signal and on their relative spatial location. Numerous studies investigated the ability to detect a signal in a speech or a noise masker or the effect of spatial separation of signal and masker on the amount of masking, but there is a lack of studies investigating the combined effects of many cues on the masking as is typical for natural listening situations. The current study using free-field listening systematically evaluates the combined effects of harmonicity and inharmonicity cues in multi-tone maskers and cues resulting from spatial separation of target signal and masker on the detection of a pure tone in a multi-tone or a noise masker. A linear binaural processing model was implemented to predict the masked thresholds in order to estimate whether the observed thresholds can be accounted for by energetic masking in the auditory periphery or whether other effects are involved. Thresholds were determined for combinations of two target frequencies (1 and 8 kHz), two spatial configurations (masker and target either co-located or spatially separated by 90 degrees azimuth), and five different masker types (four complex multi-tone stimuli, one noise masker). A spatial separation of target and masker resulted in a release from masking for all masker types. The amount of masking significantly depended on the masker type and frequency range. The various harmonic and inharmonic relations between target and masker or between components of the masker resulted in a complex pattern of increased or decreased masked thresholds in comparison to the predicted energetic masking. The results indicate that harmonicity cues affect the detectability of a tonal target in a complex masker.  相似文献   

12.
Whiplash injuries are common following rear-end collisions. During such collisions, initially relaxed occupants exhibit brisk, stereotypical muscle responses consisting of postural and startle responses that may contribute to the injury. Using prestimulus inhibition, we sought to determine if the startle response elicited during a rear-end collision contributes to head stabilization or represents a potentially harmful overreaction of the body. Three experiments were performed. In the first two experiments, two groups of 14 subjects were exposed to loud tones (124 dB) preceded by prestimulus tones at either four interstimulus intervals (100-1,000 ms) or five prestimulus intensities (80-124 dB). On the basis of the results of the first two experiments, 20 subjects were exposed to a simulated rear-end collision (peak sled acceleration = 2 g; speed change = 0.75 m/s) preceded by one of the following: no prestimulus tone, a weak tone (85 dB), or a loud tone (105 dB). The prestimulus tones were presented 250 ms before sled acceleration onset. The loud prestimulus tone decreased the amplitude of the sternocleidomastoid (16%) and cervical paraspinal (29%) muscles, and key peak kinematics: head retraction (17%), horizontal head acceleration (23%), and head angular acceleration in extension (23%). No changes in muscle amplitude or kinematics occurred for the weak prestimulus. The reduced muscle and kinematic responses observed with loud tones suggest that the startle response represents an overreaction that increases the kinematics in a way that potentially increases the forces and strains in the neck tissues. We propose that minimizing this overreaction during a car collision may decrease the risk of whiplash injuries.  相似文献   

13.
Perceptual decision making is prone to errors, especially near threshold. Physiological, behavioural and modeling studies suggest this is due to the intrinsic or ‘internal’ noise in neural systems, which derives from a mixture of bottom-up and top-down sources. We show here that internal noise can form the basis of perceptual decision making when the external signal lacks the required information for the decision. We recorded electroencephalographic (EEG) activity in listeners attempting to discriminate between identical tones. Since the acoustic signal was constant, bottom-up and top-down influences were under experimental control. We found that early cortical responses to the identical stimuli varied in global field power and topography according to the perceptual decision made, and activity preceding stimulus presentation could predict both later activity and behavioural decision. Our results suggest that activity variations induced by internal noise of both sensory and cognitive origin are sufficient to drive discrimination judgments.  相似文献   

14.
For deaf individuals with residual low-frequency acoustic hearing, combined use of a cochlear implant (CI) and hearing aid (HA) typically provides better speech understanding than with either device alone. Because of coarse spectral resolution, CIs do not provide fundamental frequency (F0) information that contributes to understanding of tonal languages such as Mandarin Chinese. The HA can provide good representation of F0 and, depending on the range of aided acoustic hearing, first and second formant (F1 and F2) information. In this study, Mandarin tone, vowel, and consonant recognition in quiet and noise was measured in 12 adult Mandarin-speaking bimodal listeners with the CI-only and with the CI+HA. Tone recognition was significantly better with the CI+HA in noise, but not in quiet. Vowel recognition was significantly better with the CI+HA in quiet, but not in noise. There was no significant difference in consonant recognition between the CI-only and the CI+HA in quiet or in noise. There was a wide range in bimodal benefit, with improvements often greater than 20 percentage points in some tests and conditions. The bimodal benefit was compared to CI subjects’ HA-aided pure-tone average (PTA) thresholds between 250 and 2000 Hz; subjects were divided into two groups: “better” PTA (<50 dB HL) or “poorer” PTA (>50 dB HL). The bimodal benefit differed significantly between groups only for consonant recognition. The bimodal benefit for tone recognition in quiet was significantly correlated with CI experience, suggesting that bimodal CI users learn to better combine low-frequency spectro-temporal information from acoustic hearing with temporal envelope information from electric hearing. Given the small number of subjects in this study (n = 12), further research with Chinese bimodal listeners may provide more information regarding the contribution of acoustic and electric hearing to tonal language perception.  相似文献   

15.
Frequency selectivity of hearing was measured in the green treefrog, Hyla cinerea. A psychophysical technique based on reflex modification was used to obtain masked threshold estimates for pure tones (300-5,400 Hz) presented against two levels of broadband masking noise. A pure tone (S-1) presented 200 ms prior to a reflex-eliciting stimulus (S-2) inhibited the motor reflex response to S-2. The magnitude of this reflex modification effect varied systematically with the sound pressure level (SPL) of S-1, and threshold was defined as the SPL of S-1 at which the reflex modification effect disappeared. Masked thresholds were used to calculate critical ratios, an index of the auditory system's frequency selectivity. The frequency selectivity of the treefrog's hearing is greatest and critical ratios are lowest (22-24 dB) at about 900 and 3,000 Hz, the two spectral regions dominant in the male treefrog's species-specific advertisement call. These results suggest that the treefrog's auditory system may be specialized to reject noise at biologically-relevant frequencies. As in other vertebrates, critical ratios remain constant when background noise level is varied; however, the shape of the treefrog's critical ratio function across frequencies differs from the typical vertebrate function that increases with increasing frequency at a slope of about 3 dB/octave. Instead, the treefrog's critical ratio function resembles its pure tone audiogram. Although the shape of the treefrog's critical ratio function is atypical, the critical ratio values themselves are comparable to those of many other vertebrates in the same frequency range. Critical ratio values here measured behaviorally do not match critical ratio values previously measured physiologically in single eighth nerve fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
This study investigated the perception of three Cantonese level tones produced by speakers with dysarthria associated with cerebral palsy. Four speakers with dysarthria were selected on the basis of their distinctive patterns of fundamental frequency (F0) values observed in the level tones they produced, which showed errors in either F0 level or, F0 contour, or both. Monosyllabic words which contrasted in tone level were used as stimuli in an identification task. Five expert listeners identified the tones among the six Cantonese contrastive tones. Results showed that the tones produced by the dysarthric speakers were predominantly perceived as level tones; although a majority was perceived as the wrong level tone. The most important finding is that only the level tones produced by dysarthric speakers could be identified as rising or falling contour tones. The frequent perceptual confusion among the level tones, and the perception of contour tones, shows that a disorder in the production of pitch-based linguistic contrasts can have a substantial impact on the communication abilities of individuals with cerebral palsy.  相似文献   

17.

Background

Understanding the time course of how listeners reconstruct a missing fundamental component in an auditory stimulus remains elusive. We report MEG evidence that the missing fundamental component of a complex auditory stimulus is recovered in auditory cortex within 100 ms post stimulus onset.

Methodology

Two outside tones of four-tone complex stimuli were held constant (1200 Hz and 2400 Hz), while two inside tones were systematically modulated (between 1300 Hz and 2300 Hz), such that the restored fundamental (also knows as “virtual pitch”) changed from 100 Hz to 600 Hz. Constructing the auditory stimuli in this manner controls for a number of spectral properties known to modulate the neuromagnetic signal. The tone complex stimuli only diverged on the value of the missing fundamental component.

Principal Findings

We compared the M100 latencies of these tone complexes to the M100 latencies elicited by their respective pure tone (spectral pitch) counterparts. The M100 latencies for the tone complexes matched their pure sinusoid counterparts, while also replicating the M100 temporal latency response curve found in previous studies.

Conclusions

Our findings suggest that listeners are reconstructing the inferred pitch by roughly 100 ms after stimulus onset and are consistent with previous electrophysiological research suggesting that the inferential pitch is perceived in early auditory cortex.  相似文献   

18.
In the psychophysical experiments reported here, cochlear compression function was derived by comparing on-frequency and off-frequency masking. The signal was rippled spectrum noise. The ripple density discrimination threshold was measured in the ripple phase reversion test. An increase in masker intensity led to a decrease in a resolvable ripple density threshold. The on-frequency masker level at threshold increased proportionally to the signal intensity. The off-frequency masker level at threshold also increased proportionally to the signal at signal intensity levels below 50 dB, whereas at signal levels above 60 dB SPL, the ratio of the masker level at threshold gradient to signal level gradient was 1 : 5 dB/dB, revealing cochlear compression.  相似文献   

19.
Recent studies have investigated the structure of perceptual relations among musical instrument timbres by multidimensional scaling (MDS) techniques. These studies have employed both acoustically produced tones and digitally synthesized imitations and hybrids of acoustic instrument tones. The analyses of dissimilarity ratings for all pairs of a set of tones are usually represented as geometrical structures in a two- or three-dimensional Euclidean space in which the shared 'perceptual' axes are shown to have a qualitative correspondence to acoustic properties such as spectral energy distribution, onset characteristics and degree of change in spectral distribution over the duration of the tone. The present study took as a point of departure a MDS analysis for complex, synthetic tones with the aim of testing whether musician and non-musician listeners used the relations defined by the perceptual space to perform an analogies task of the sort: timbre A is to timbre B as timbre C is to which of two possible timbres, D or D'? A parallelogram model was used to select the D timbres: if the relation between A and B is represented as a vector with both magnitude and direction components, then the appropriate D should form a vector with C having similar magnitude and direction in the timbre space. Aside from conceptual difficulties with the task for both non-musicians and composers, choices for both groups provide support for the parallelogram model indicating a capacity in listeners to perceive abstract relations among the timbres of complex sounds without specific training in such a task.  相似文献   

20.
The human auditory system is sensitive in detecting “mistuned” components in a harmonic complex, which do not match the frequency pattern defined by the fundamental frequency of the complex. Depending on the frequency configuration, the mistuned component may be perceptually segregated from the complex and may be heard as a separate tone. In the context of a masking experiment, mistuning a single component decreases its masked threshold. In this study we propose to quantify the ability to detect a single component for fixed amounts of mistuning by adaptively varying its level. This method produces masking release by mistuning that can be compared to other masking release effects. Detection thresholds were obtained for various frequency configurations where the target component was resolved or unresolved in the auditory system. The results from 6 normal-hearing listeners show a significant decrease of masked thresholds between harmonic and mistuned conditions in all configurations and provide evidence for the employment of different detection strategies for resolved and unresolved components. The data suggest that across-frequency processing is involved in the release from masking. The results emphasize the ability of this method to assess integrative aspects of pitch and harmonicity perception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号