首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been reported that reactive oxygen species (ROS) play a role as intracellular signaling molecules in RANKL stimulation. Previously we demonstrated that induction of cytoprotective enzyme expression by Nrf2-gene transfer successfully ameliorated RANKL-dependent osteoclastogenesis. In the present study, we hypothesized that Nrf2 activation by inhibiting ubiquitination and degradation of Nrf2 by ETGE-peptide would induce Nrf2-dependent cytoprotective enzyme expression, attenuate ROS signaling, and thereby inhibit RANKL-dependent osteoclastogenesis. ETGE-peptide containing a cell-permeable sequence (seven consecutive arginine; 7R-ETGE) was applied to a mouse macrophage cell-line RAW 264.7 cell or a primary macrophage culture. ETGE-peptide prevents Keap1 from binding to Nrf2. Nrf2 nuclear translocation and Nrf2-dependent cytoprotective enzyme induction was observed. The effects of 7R-ETGE on RANKL-dependent induction of intracellular ROS levels and osteoclastogenesis were examined. Finally, the protective effect of 7R-ETGE on RANKL-mediated bone destruction was investigated in mice. 7R-ETGE dose-dependently induced nuclear Nrf2, followed by the induction of cytoprotective enzyme expression at both the gene and protein level. 7R-ETGE inhibited upregulation of intracellular ROS levels by RANKL stimulation, and osteoclastogenesis was attenuated. Of particular interest was that local injection of 7R-ETGE ameliorated RANKL-mediated bone destruction. Local induction of nuclear Nrf2 by protein transduction is a potential novel therapeutic target for bone destruction diseases such as periodontitis and rheumatoid arthritis.  相似文献   

2.
3.
Chronic inflammation associated with bone tissues often destructs bones, which is essentially performed by osteoclasts in the presence of immunoregulatory molecules. Hence, regulating osteoclastogenesis is crucial to develop therapeutics for bone-destructive inflammatory diseases. It is believed that reactive oxygen species (ROS) are involved in receptor activator of NF-κB (RANK) ligand (RANKL)-induced osteoclast differentiation, and, therefore, glutathione (GSH), the most abundant endogenous antioxidant, suppresses osteoclast differentiation and bone resorption by RANKL. Interestingly, GSH also contributes to inflammatory responses, and the effects of GSH on osteoclast differentiation and bone destruction under inflammatory conditions have not yet been determined. Here, we investigated how GSH affects inflammatory cytokine-stimulated osteoclast differentiation in vitro and in a mouse model of inflammatory bone destruction. We found that GSH significantly promoted TNFα-stimulated osteoclast formation, while an inhibitor of GSH synthesis, buthionine sulfoximine, suppressed it. GSH facilitated the nuclear localisation of the nuclear factor of activated T cells c1 (NFATc1) protein, a master regulator of osteoclastogenesis, as well as the expression of osteoclast marker genes in a dose-dependent manner. N-acetylcysteine, a substrate of GSH synthesis, also stimulated osteoclast formation and NFATc1 nuclear localisation. GSH did not suppress cell death after osteoclast differentiation. In mouse calvaria injected with lipopolysaccharide, GSH treatment resulted in a fivefold increase in the osteolytic lesion area. These results indicate that GSH accelerates osteoclast differentiation and inflammatory bone destruction, suggesting GSH appears to be an important molecule in the mechanisms responsible for inflammatory bone destruction by osteoclasts.  相似文献   

4.
5.
The differentiation of osteoclasts is regulated by several essential cytokines, such as receptor activator of nuclear factor κB ligand (RANKL) and macrophage colony-stimulating factor. Recently, high mobility group box 1 (HMGB1), a chromatin protein, also has been identified as one of these osteoclast differentiation cytokines. However, the molecular mechanisms that control HMGB1 release from osteoclast precursor cells are not known. Here, we report that RANKL-induced suppression of heme oxygenase-1 (HO-1), a heme-degrading enzyme, promotes HMGB1 release during osteoclastogenesis. In contrast, induction of HO-1 with hemin or curcumin in bone marrow-derived macrophages or RAW-D murine osteoclast precursor cells inhibited osteoclastogenesis and suppressed HMGB1 release. Since an inhibitor for p38 mitogen-activated protein kinase (MAPK) prevented the RANKL-mediated HO-1 suppression and extracellular release of HMGB1, these effects were p38 MAPK-dependent. Moreover, suppression of HO-1 in RAW-D cells by RNA interference promoted the activation of caspase-3 and HMGB1 release, whereas overexpression of HO-1 inhibited caspase-3 activation as well as HMGB1 release. Furthermore, these effects were regulated by redox conditions since antioxidant N-acetylcysteine abolished the HO-1/HMGB1/caspase-3 axis. These results suggest that RANKL-dependent HO-1 suppression leads to caspase-3 activation and HMGB1 release during osteoclastogenesis.  相似文献   

6.
7.
Inhibition of NF-κB is known to be effective in reducing both inflammation and bone destruction in animal models of arthritis. Our previous study demonstrated that a small cell-permeable NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), suppresses expression of proinflammatory cytokines and ameliorates mouse arthritis. It remained unclear, however, whether DHMEQ directly affects osteoclast precursor cells to suppress their differentiation to mature osteoclasts in vivo. The effect of DHMEQ on human osteoclastogenesis also remained elusive. In the present study, we therefore examined the effect of DHMEQ on osteoclastogenesis using a mouse collagen-induced arthritis model, and using culture systems of fibroblast-like synovial cells obtained from patients with rheumatoid arthritis, and of osteoclast precursor cells from peripheral blood of healthy volunteers. DHMEQ significantly suppressed formation of osteoclasts in arthritic joints, and also suppressed expression of NFATc1 along the inner surfaces of bone lacunae and the eroded bone surface, while serum levels of soluble receptor activator of NF-κB ligand (RANKL), osteoprotegerin and macrophage colony-stimulating factor were not affected by the treatment. DHMEQ also did not suppress spontaneous expression of RANKL nor of macrophage colony-stimulating factor in culture of fibroblast-like synovial cells obtained from patients with rheumatoid arthritis. These results suggest that DHMEQ suppresses osteoclastogenesis in vivo, through downregulation of NFATc1 expression, without significantly affecting expression of upstream molecules of the RANKL/receptor activator of NF-κB/osteoprotegerin cascade, at least in our experimental condition. Furthermore, in the presence of RANKL and macrophage colony-stimulating factor, differentiation and activation of human osteoclasts were also suppressed by DHMEQ, suggesting the possibility of future application of NF-κB inhibitors to rheumatoid arthritis therapy.  相似文献   

8.
9.
Metastasis-associated protein 1 (MTA1), belonging to metastasis-associated proteins (MTA) family, which are integral parts of nucleosome remodelling and histone deacetylation (NuRD) complexes. However, the effect of MTA1 on osteoclastogenesis is unknown. Currently, the regulation of MTA1 in osteoclastogenesis was reported for the first time. MTA1 knockout cells (KO) were established by CRISPR/Cas9 genome editing. RAW264.7 cells with WT and KO group were stimulated independently by RANKL to differentiate into mature osteoclasts. Further, western blotting and quantitative qRT-PCR were used to explore the effect of MTA1 on the expression of osteoclast-associated genes (including CTSK, MMP9, c-Fos and NFATc1) during osteoclastogenesis. Moreover, the effects of MTA1 on the expression of reactive oxygen species (ROS) in osteoclastogenesis was determined by 2′, 7′ -dichlorodihydrofluorescein diacetate (DCFH-DA) staining. Nuclear translocation of Nrf2 was assessed by immunofluorescence staining and western blotting. Our results indicated that the MTA1 deletion group could differentiate into osteoclasts with larger volume and more TRAP positive. In addition, compared with WT group, KO group cells generated more actin rings. Mechanistically, the loss of MTA1 increased the expression of osteoclast-specific markers, including c-Fos, NFATc1, CTSK and MMP-9. Furthermore, the results of qRT-PCR and western blotting showed that MTA1 deficiency reduced basal Nrf2 expression and inhibited Nrf2-mediated expression of related antioxidant enzymes. Immunofluorescence staining demonstrated that MTA1 deficiency inhibited Nrf2 nuclear translocation. Taken together, the above increased basal and RANKL-induced intracellular ROS levels, leading to enhanced osteoclast formation.  相似文献   

10.

Background

The Nrf2–Keap1 interaction is the major regulatory pathway for cytoprotective responses against oxidative and electrophilic stresses. Keap1, a substrate protein of a Cul3-dependent E3 ubiquitin ligase complex, is a negative regulator of Nrf2. The use of chemicals to regulate the interaction between Keap1 and Nrf2 has been proposed as a strategy for the chemoprevention of degenerative diseases and cancers.

Results

The interactions between Keap1 and Nrf2 in vitro and in vivo were investigated using fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) strategies in our study. Nrf2 with its N-terminal fused to eGFP and Keap1 with its C-terminal fused to mCherry were expressed and purified in vitro. When purified eGFP-Nrf2 and Keap1-mChrry proteins were mixed together, a strong FRET signal could be detected, indicating an efficient energy transfer from eGFP to mCherry. Moreover, the FRET was detected in vivo using confocal microscopy in colon cancer HCT-116 cells that were co-transfected with eGFP-Nrf2 and Keap1-mCherry. Finally, using an eGFP BiFC approach, the Keap1-Nrf2 interaction was also detected in MCF7 cells by transfecting eGFP N-terminal fused to Nrf2 (eN158-Nrf2) and eGFP C-terminal fused to Keap1 (eC159-Keap1). Using the BiFC and FRET systems, we demonstrated that the prototypical Nrf2-activiting compound tBHQ and the antitumor drug F-dUrd might interfere with the intracellular interaction between Keap1 and Nrf2 whereas the 5-Fu have little role in activating the protective response of Nrf2 pathway in cancer cells.

Conclusions

By analyzing the perturbation of the energy transfer between the donor and acceptor fluorophores and the bimolecular fluorescence complementation of eGFP, we can screen potential inhibitors for the interaction between Keap1 and Nrf2.  相似文献   

11.
12.

Background

Phenylketonuria (PKU) is a rare inborn error of metabolism often complicated by a progressive bone impairment of uncertain etiology, as documented by both ionizing and non- ionizing techniques.

Methodology

Peripheral blood mononuclear cell (PBMC) cultures were performed to study osteoclastogenesis, in the presence or absence of recombinant human monocyte-colony stimulating factor (M-CSF) and receptor activator of NFκB ligand (RANKL). Flow cytometry was utilized to analyze osteoclast precursors (OCPs) and T cell phenotype. Tumour necrosis factor α (TNF-α), RANKL and osteoprotegerin (OPG) were quantified in cell culture supernatants by ELISA. The effects of RANKFc and anti-TNF-α antibodies were also investigated to determine their ability to inhibit osteoclastogenesis. In addition, bone conditions and phenylalanine levels in PKU patients were clinically evaluated.

Principal Findings

Several in vitro studies in PKU patients'' cells identified a potential mechanism of bone formation inhibition commonly associated with this disorder. First, PKU patients disclosed an increased osteoclastogenesis compared to healthy controls, both in unstimulated and M-CSF/RANKL stimulated PBMC cultures. OCPs and the measured RANKL/OPG ratio were higher in PKU patients compared to healthy controls. The addition of specific antagonist RANKFc caused osteoclastogenesis inhibition, whereas anti-TNF-α failed to have this effect. Among PBMCs isolated from PKU patients, activated T cells, expressing CD69, CD25 and RANKL were identified. Confirmatory in vivo studies support this proposed model. These in vivo studies included the analysis of osteoclastogenesis in PKU patients, which demonstrated an inverse relation to bone condition assessed by phalangeal Quantitative Ultrasound (QUS). This was also directly related to non-compliance to therapeutic diet reflected by hyperphenylalaninemia.

Conclusions

Our results indicate that PKU spontaneous osteoclastogenesis depends on the circulating OCP increase and the activation of T cells. Osteoclastogenesis correlates with clinical parameters, suggesting its value as a diagnostic tool for an early assessment of an increased bone resorption in PKU patients.  相似文献   

13.
Tumor necrosis factor-α (TNF) enhances osteoclast formation and activity leading to bone loss in various pathological conditions, but its precise role in osteoclastogenesis remains controversial. Although several groups showed that TNF can promote osteoclastogenesis independently of the receptor activator of NF-κB (RANK) ligand (RANKL), others demonstrated that TNF-mediated osteoclastogenesis needs permissive levels of RANKL. Here, we independently reveal that although TNF cannot stimulate osteoclastogenesis on bone slices, it can induce the formation of functional osteoclasts on bone slices in the presence of permissive levels of RANKL or from bone marrow macrophages (BMMs) pretreated by RANKL. TNF can still promote the formation of functional osteoclasts 2 days after transient RANKL pretreatment. These data have confirmed that TNF-mediated osteoclastogenesis requires priming of BMMs by RANKL. Moreover, we investigated the molecular mechanism underlying the dependence of TNF-mediated osteoclastogenesis on RANKL. RANK, the receptor for RANKL, contains an IVVY535–538 motif that has been shown to play a vital role in osteoclastogenesis by committing BMMs to the osteoclast lineage. We show that TNF-induced osteoclastogenesis depends on RANKL to commit BMMs to the osteoclast lineage and RANKL regulates the lineage commitment through the IVVY motif. Mechanistically, the IVVY motif controls the lineage commitment by reprogramming osteoclast genes into an inducible state in which they can be activated by TNF. Our findings not only provide important mechanistic insights into the action of RANKL in TNF-mediated osteoclastogenesis but also establish that the IVVY motif may serve as an attractive therapeutic target for bone loss in various bone disorders.  相似文献   

14.
Although interleukin-1 (IL-1) has been implicated in the pathogenesis of inflammatory osteolysis, the means by which it recruits osteoclasts and promotes bone destruction are largely unknown. Recently, a cytokine-driven, stromal cell-free mouse osteoclastogenesis model was established. A combination of macrophage colony stimulating factor (M-CSF) and receptor activator of NFkappaB ligand (RANKL) was proven to be sufficient in inducing differentiation of bone marrow hematopoietic precursor cells to bone-resorbing osteoclasts in the absence of stromal cells or osteoblasts. This study utilizes this model to examine the impact of human IL-1beta on in vitro osteoclastogenesis of bone marrow progenitor cells. We found that osteoclast precursor cells failed to undergo osteoclastogenesis when treated with IL-1 alone. In contrast, IL-1 dramatically up-regulated osteoclastogenesis by 2.5- to 4-folds in the presence of RANKL and M-CSF. The effect can be significantly blocked by IL-1 receptor antagonist (p < 0.01). Tumor necrosis factor-alpha (TNF-alpha) was undetectable in the culture medium of differentiating osteoclasts induced by IL-1. Adding exogenous TNF-alpha neutralizing antibody had no influence on the IL-1-induced effect as well. These results show that in the absence of stromal cells, IL-1 exacerbates osteoclastogenesis by cooperating with RANKL and M-CSF, while TNF-alpha is not involved in this IL-1-stimulated osteoclast differentiation pathway.  相似文献   

15.
Cataract-induced by sodium selenite in suckling rats is one of the suitable animal models to study the basic mechanism of human cataract formation. The aim of this present investigation is to study the endoplasmic reticulum (ER) stress-mediated activation of unfolded protein response (UPR), overproduction of reactive oxygen species (ROS), and suppression of Nrf2/Keap1-dependent antioxidant protection through endoplasmic reticulum-associated degradation (ERAD) pathway and Keap1 promoter DNA demethylation in human lens epithelial cells (HLECs) treated with sodium selenite. Lenses enucleated from sodium selenite injected rats generated overproduction of ROS in lens epithelial cells and newly formed lens fiber cells resulting in massive lens epithelial cells death after 1–5 days. All these lenses developed nuclear cataracts after 4–5 days. Sodium selenite treated HLECs induced ER stress and activated the UPR leading to release of Ca2 + from ER, ROS overproduction and finally HLECs death. Sodium selenite also activated the mRNA expressions of passive DNA demethylation pathway enzymes such as Dnmt1, Dnmt3a, and Dnmt3b, and active DNA demethylation pathway enzyme, Tet1 leading to DNA demethylation in the Keap1 promoter of HLECs. This demethylated Keap1 promoter results in overexpression of Keap1 mRNA and protein. Overexpression Keap1 protein suppresses the Nrf2 protein through ERAD leading to suppression of Nrf2/Keap1 dependent antioxidant protection in the HLECs treated with sodium selenite. As an outcome, the cellular redox status is altered towards lens oxidation and results in cataract formation.  相似文献   

16.
Increasing evidence indicates that osteoarthritis (OA) is a musculoskeletal disease affecting the whole joint, including both cartilage and subchondral bone. Reactive oxygen species (ROS) have been demonstrated to be one of the important destructive factors during early‐stage OA development. The objective of this study was to investigate isorhamnetin (Iso) treatment on osteoclast formation and chondrocyte protection to attenuate OA by modulating ROS. Receptor activator of nuclear factor‐kappa B ligand (RANKL) was used to establish the osteoclast differentiation model in bone marrow macrophages (BMMs) in vivo. H2O2 was used to induce ROS, which could further cause chondrocyte apoptosis. We demonstrated that Iso suppressed RANKL‐induced ROS generation, which could mediate osteoclastogenesis. Moreover, we found that Iso inhibited osteoclast formation and function by suppressing the expression of osteoclastogenesis‐related genes and proteins. We proved that Iso inhibited RANKL‐induced activation of mitogen‐activated protein kinase activation of mitogen‐activated protein kinase (MAPK), nuclear factor‐kappa B (NF‐κB) and AKT signalling pathways in BMMs. In addition, Iso inhibited ROS‐induced chondrocyte apoptosis by regulating apoptosis‐related proteins. Moreover, Iso was administered to an anterior cruciate ligament transection (ACLT)‐induced OA mouse model. The results indicated that Iso exerted beneficial effects on inhibiting excessive osteoclast activity and chondrocyte apoptosis, which further remedied cartilage damage. Overall, our data showed that Iso is an effective candidate for treating OA.  相似文献   

17.
Kim K  Kim JH  Moon JB  Lee J  Kwak HB  Park YW  Kim N 《Molecules and cells》2012,33(4):401-406
RANKL induces the formation of osteoclasts, which are responsible for bone resorption. Herein we investigate the role of the transmembrane adaptor proteins in RANKL-induced osteoclastogenesis. LAT positively regulates osteoclast differentiation and is up-regulated by RANKL via c-Fos and NFATc1, whereas LAB and LIME act as negative modulators of osteoclastogenesis. In addition, silencing of LAT by RNA interference or overexpression of a LAT dominant negative in bone marrow-derived macrophage cells attenuates RANKL-induced osteoclast formation. Furthermore, LAT is involved in RANKL-induced PLC(γ) activation and NFATc1 induction. Thus, our data suggest that LAT acts as a positive regulator of RANKL-induced osteoclastogenesis.  相似文献   

18.
Wear particle‐stimulated inflammatory bone destruction and the consequent aseptic loosening remain the primary causes of artificial prosthesis failure and revision. Previous studies have demonstrated that curcumin has a protective effect on bone disorders and inflammatory diseases and can ameliorate polymethylmethacrylate‐induced osteolysis in vivo. However, the effect on immunomodulation and the definitive mechanism by which curcumin reduces the receptor activators of nuclear factor‐kappa B ligand (RANKL)‐stimulated osteoclast formation and prevents the activation of osteoclastic signalling pathways are unclear. In this work, the immunomodulation effect and anti‐osteoclastogenesis capacities exerted by curcumin on titanium nanoparticle‐stimulated macrophage polarization and on RANKL‐mediated osteoclast activation and differentiation in osteoclastic precursor cells in vitro were investigated. As expected, curcumin inhibited RANKL‐stimulated osteoclast maturation and formation and had an immunomodulatory effect on macrophage polarization in vitro. Furthermore, studies aimed to identify the potential molecular and cellular mechanisms revealed that this protective effect of curcumin on osteoclastogenesis occurred through the amelioration of the activation of Akt/NF‐κB/NFATc1 pathways. Additionally, an in vivo mouse calvarial bone destruction model further confirmed that curcumin ameliorated the severity of titanium nanoparticle‐stimulated bone loss and destruction. Our results conclusively indicated that curcumin, a major biologic component of Curcuma longa with anti‐inflammatory and immunomodulatory properties, may serve as a potential therapeutic agent for osteoclastic diseases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号