首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The increase in diversity towards the equator arises from latitudinal variation in rates of cladogenesis, extinction, immigration and/or emigration of taxa. We tested the relative contribution of all four processes to the latitudinal gradient in 26 marine invertebrate orders with extensive fossil records, examined previously by David Jablonski. Coupling Jablonski's estimates of latitudinal variation in cladogenesis with new data on patterns of extinction and current distributions, we show that the present-day gradient in diversity is caused by higher rates of cladogenesis and subsequent range expansion (immigration) at lower latitudes. In contrast, extinction and emigration were not important in the creation of the latitudinal gradient in ordinal richness. This work represents one of the first simultaneous tests of the role of all four processes in the creation of the latitudinal gradient in taxonomic richness, and suggests that low tropical extinction rates are not essential to the creation of latitudinal diversity gradients.  相似文献   

2.
The increase in species richness from the poles to the tropics, referred to as the latitudinal diversity gradient, is one of the most ubiquitous biodiversity patterns in the natural world. Although understanding how rates of speciation and extinction vary with latitude is central to explaining this pattern, such analyses have been impeded by the difficulty of estimating diversification rates associated with specific geographic locations. Here, we use a powerful phylogenetic approach and a nearly complete phylogeny of mammals to estimate speciation, extinction, and dispersal rates associated with the tropical and temperate biomes. Overall, speciation rates are higher, and extinction rates lower, in the tropics than in temperate regions. The diversity of the eight most species-rich mammalian orders (covering 92% of all mammals) peaks in the tropics, except that of the Lagomorpha (hares, rabbits, and pikas) reaching a maxima in northern-temperate regions. Latitudinal patterns in diversification rates are strikingly consistent with these diversity patterns, with peaks in species richness associated with low extinction rates (Primates and Lagomorpha), high speciation rates (Diprotodontia, Artiodactyla, and Soricomorpha), or both (Chiroptera and Rodentia). Rates of range expansion were typically higher from the tropics to the temperate regions than in the other direction, supporting the “out of the tropics” hypothesis whereby species originate in the tropics and disperse into higher latitudes. Overall, these results suggest that differences in diversification rates have played a major role in shaping the modern latitudinal diversity gradient in mammals, and illustrate the usefulness of recently developed phylogenetic approaches for understanding this famous yet mysterious pattern.  相似文献   

3.
The latitudinal gradient of species diversity is one of the oldest recognized patterns in biology. While the cause of the pattern remains debated, the global signal of greater diversity toward the tropics is widely established. Whether the pattern holds for genetic diversity within species, however, has received much less attention. We examine latitudinal variation of intraspecific genetic diversity by contrasting nucleotide distance within low- and high-latitude animal groups. Using mitochondrial DNA markers across 72 vertebrate species that together span six continents, two oceans, and 129 degrees of latitude, we found significantly greater genetic diversity at low latitudes within mammalian species, and trends consistent with this pattern in reptiles, amphibians, fish, and birds. The signal held even after removing species whose current geographic ranges include areas recently covered by glaciers during the late Pleistocene and which presumably have experienced colonization bottlenecks in high latitudes. Higher genetic diversity within species was found at low latitudes also for genera that do not possess higher species richness toward the tropics. Moreover, examination of a subset of species with sufficient sampling across a broad geographic range revealed that genetic variation demonstrates a typical gradient, with mid-latitude populations intermediate in genetic diversity between high and low latitude ones. These results broaden the pattern of the global latitudinal diversity gradient, to now include variation within species. These results are also concordant with other studies indicating that low latitude populations and species are on different evolutionary trajectories than high latitude ones, and we speculate that higher rates of evolution toward the equator are driving the pattern for genetic diversity within species.  相似文献   

4.
We ask whether rates of evolution in traits important for reproductive isolation vary across a latitudinal gradient, by quantifying evolutionary rates of two traits important for pre-mating isolation-avian syllable diversity and song length. We analyse over 2500 songs from 116 pairs of closely related New World passerine bird taxa to show that evolutionary rates for the two main groups of passerines-oscines and suboscines-doubled with latitude in both groups for song length. For syllable diversity, oscines (who transmit song culturally) evolved more than 20 times faster at high latitudes than in low latitudes, whereas suboscines (whose songs are innate in most species and who possess very simple song with few syllable types) show no clear latitudinal gradient in rate. Evolutionary rates in oscines and suboscines were similar at tropical latitudes for syllable complexity as well as for song length. These results suggest that evolutionary rates in traits important to reproductive isolation and speciation are influenced by latitude and have been fastest, not in the tropics where species diversity is highest, but towards the poles.  相似文献   

5.
Understanding what mechanisms shape the diversity and composition of biological assemblages across broad‐scale gradients is central to ecology. Litter‐consuming detritivorous invertebrates in streams show an unusual diversity gradient, with α‐diversity increasing towards high latitudes but no trend in γ‐diversity. We hypothesized this pattern to be related to shifts in nestedness and several ecological processes shaping their assemblages (dispersal, environmental filtering and competition). We tested this hypothesis, using a global dataset, by examining latitudinal trends in nestedness and several indicators of the above processes along the latitudinal gradient. Our results suggest that strong environmental filtering and low dispersal in the tropics lead to often species‐poor local detritivore assemblages, nested in richer regional assemblages. At higher latitudes, dispersal becomes stronger, disrupting the nested assemblage structure and resulting in local assemblages that are generally more species‐rich and non‐nested subsets of the regional species pools. Our results provide evidence that mechanisms underlying assemblage composition and diversity of stream litter‐consuming detritivores shift across latitudes, and provide an explanation for their unusual pattern of increasing α‐diversity with latitude. When we repeated these analyses for whole invertebrate assemblages of leaf litter and for abundant taxa showing reverse or no diversity gradients we found no latitudinal patterns, suggesting that function‐based rather than taxon‐based analyses of assemblages may help elucidate the mechanisms behind diversity gradients.  相似文献   

6.
We reviewed published phylogenies and selected 111 phylogenetic studies representing mammals, birds, insects, and flowering plants. We then mapped the latitudinal range of all taxa to test the relative importance of the tropical conservatism, out of the tropics, and diversification rate hypotheses in generating latitudinal diversity gradients. Most clades originated in the tropics, with diversity peaking in the zone of origin. Transitions of lineages between latitudinal zones occurred at 16–22% of the tree nodes. The most common type of transition was range expansions of tropical lineages to encompass also temperate latitudes. Thus, adaptation to new climatic conditions may not represent a major obstacle for many clades. These results contradict predictions of the tropical conservatism hypothesis (i.e., few clades colonizing extratropical latitudes), but support the out‐of‐the‐tropics model (i.e., tropical originations and subsequent latitudinal range expansions). Our results suggest no difference in diversification between tropical and temperate sister lineages; thus, diversity of tropical clades was not explained by higher diversification rates in this zone. Moreover, lineages with latitudinal stasis diversified more compared to sister lineages entering a new latitudinal zone. This preserved preexisting diversity differences between latitudinal zones and can be considered a new mechanism for why diversity tends to peak in the zone of origin.  相似文献   

7.
Many groups show higher species richness in tropical regions but the underlying causes remain unclear. Despite many competing hypotheses to explain latitudinal diversity gradients, only three processes can directly change species richness across regions: speciation, extinction and dispersal. These processes can be addressed most powerfully using large-scale phylogenetic approaches, but most previous studies have focused on small groups and recent time scales, or did not separate speciation and extinction rates. We investigate the origins of high tropical diversity in amphibians, applying new phylogenetic comparative methods to a tree of 2871 species. Our results show that high tropical diversity is explained by higher speciation in the tropics, higher extinction in temperate regions and limited dispersal out of the tropics compared with colonization of the tropics from temperate regions. These patterns are strongly associated with climate-related variables such as temperature, precipitation and ecosystem energy. Results from models of diversity dependence in speciation rate suggest that temperate clades may have lower carrying capacities and may be more saturated (closer to carrying capacity) than tropical clades. Furthermore, we estimate strikingly low tropical extinction rates over geological time scales, in stark contrast to the dramatic losses of diversity occurring in tropical regions presently.  相似文献   

8.
Central to many explanations of latitudinal diversity gradients is the idea that rates of species diversification increase towards the equator. However, there have been few explicit tests of whether or not this pattern exists. Using sister-group analyses to compare 48 clades of passerine birds and swallowtail butterflies from different latitudes, I found evidence that relative rates of diversification per unit time are indeed higher towards the equator. This pattern is explicable in terms of abiotic factors which vary continuously with latitude, and may be further enhanced by diversity-dependent speciation and extinction processes.  相似文献   

9.
The most ubiquitous and well recognized diversity pattern at large spatial scales is the latitudinal increase in species richness near the equator and decline towards the poles. Although several exceptions to this pattern have been documented, shallow water mollusks, the most specious group of marine invertebrates, are the epitome of the monotonic decline in species diversity toward higher latitudes along the Pacific and Atlantic coasts of North America. Here we analyze the geographic diversity of 629 mollusk species along the Pacific South American shelf. Our analyses are based on the most complete database of invertebrates assembled for this region of the world, consisting of latitudinal ranges of over 95% of all described mollusks between 10° and 55°S. Along this coast, mollusk diversity did not follow the typical latitudinal trend. The number of species remained constant and relatively low at intermediate latitudes and sharply increased toward higher latitudes, south of 42°S. This trend was explained by changes in shelf area, but not by sea surface temperature, unlike the pattern documented for Northern Hemisphere mollusks. Direct sampling of soft bottom communities along the gradient suggests that regional trends in species richness are produced by increased alpha diversity, and not only by artifacts produced by the increase in sampling area. We hypothesize that increased shelf area south of 42°S, geographic isolation produced by divergence of major oceanic currents, and the existence of refugia during glaciations, enabled species diversification. Radiation could have been limited by narrow continental shelves between 10°–42°. Asymmetries in latitudinal diversity trends between hemispheres show that there is not a single general factor determining large-scale diversity patterns.  相似文献   

10.
Numerous hypotheses have been proposed to explain latitudinal gradients in species richness, but all are subject to ongoing debate. Here we examine Rohde's (1978, 1992) hypothesis, which proposes that climatic conditions at low latitudes lead to elevated rates of speciation. This hypothesis predicts that rates of molecular evolution should increase towards lower latitudes, but this prediction has never been tested. We discuss potential links between rates of molecular evolution and latitudinal diversity gradients, and present the first test of latitudinal variation in rates of molecular evolution. Using 45 phylogenetically independent, latitudinally separated pairs of bird species and higher taxa, we compare rates of evolution of two mitochondrial genes and DNA-DNA hybridization distances. We find no support for an effect of latitude on rate of molecular evolution. This result casts doubt on the generality of a key component of Rohde's hypothesis linking climate and speciation.  相似文献   

11.
Aim We tested the hypothesis that shredder detritivores, a key trophic guild in stream ecosystems, are more diverse at higher latitudes, which has important ecological implications in the face of potential biodiversity losses that are expected as a result of climate change. We also explored the dependence of local shredder diversity on the regional species pool across latitudes, and examined the influence of environmental factors on shredder diversity. Location World‐wide (156 sites from 17 regions located in all inhabited continents at latitudes ranging from 67° N to 41° S). Methods We used linear regression to examine the latitudinal variation in shredder diversity at different spatial scales: alpha (α), gamma (γ) and beta (β) diversity. We also explored the effect of γ‐diversity on α‐diversity across latitudes with regression analysis, and the possible influence of local environmental factors on shredder diversity with simple correlations. Results Alpha diversity increased with latitude, while γ‐ and β‐diversity showed no clear latitudinal pattern. Temperate sites showed a linear relationship between γ‐ and α‐diversity; in contrast, tropical sites showed evidence of local species saturation, which may explain why the latitudinal gradient in α‐diversity is not accompanied by a gradient in γ‐diversity. Alpha diversity was related to several local habitat characteristics, but γ‐ and β‐diversity were not related to any of the environmental factors measured. Main conclusions Our results indicate that global patterns of shredder diversity are complex and depend on spatial scale. However, we can draw several conclusions that have important ecological implications. Alpha diversity is limited at tropical sites by local factors, implying a higher risk of loss of key species or the whole shredder guild (the latter implying the loss of trophic diversity). Even if regional species pools are not particularly species poor in the tropics, colonization from adjacent sites may be limited. Moreover, many shredder species belong to cool‐adapted taxa that may be close to their thermal maxima in the tropics, which makes them more vulnerable to climate warming. Our results suggest that tropical streams require specific scientific attention and conservation efforts to prevent loss of shredder biodiversity and serious alteration of ecosystem processes.  相似文献   

12.
Several ecological and evolutionary hypotheses have been proposed to explain the latitudinal diversity gradient (LDG), but a general model for this conspicuous pattern remains elusive. Mid-domain effect (MDE) models generate gradients of species diversity by randomly placing the geographic ranges of species in one- or two-dimensional spaces, thus excluding both evolutionary processes and the effect of contemporary climate. Traditional MDE models are statistical and static because they determine the size of ranges either randomly or based on empirical frequency distributions. Here we present a simple dynamic null model for the LDG that simulates stochastic processes of range shifts, extinction and speciation. The model predicts higher species diversity and higher extinction and speciation rates in the tropics, and a strong influence of range movements in shaping the LDG. These null expectations should be taken into consideration in studies aimed at understanding the many factors that generate latitudinal diversity gradients.  相似文献   

13.
Aim The latitudinal diversity gradient, in which taxonomic richness is greatest at low latitudes and declines towards the poles, is a pervasive feature of the biota through geological time. This study utilizes fossil data to examine how the latitudinal diversity gradient and associated spatial patterns covaried through the major climate shifts at the onset and end of the late Palaeozoic ice age. Location Data were acquired from fossil localities from around the world. Methods Latitudinal patterns of diversity, mean geographical range size and macroevolutionary rates were constructed from a literature‐derived data base of occurrences of fossil brachiopod genera in space and time. The literature search resulted in a total of 18,596 occurrences for 991 genera from 2320 localities. Results Climate changes associated with the onset of the late Palaeozoic ice age (c. 327 Ma) altered the biogeographical structure of the brachiopod fauna by the preferential elimination of narrowly distributed, largely tropical genera when glaciation began. Because the oceans were left populated primarily with widespread genera, the slope of the diversity gradient became gentle at this time, and the gradient of average latitudinal range size weakened. In addition, because narrowly distributed genera had intrinsically high rates of origination and extinction, the gradients of both of these macroevolutionary rates were also reduced. These patterns were reversed when the ice age climate abated in early Permian time (c. 290 Ma): narrowly distributed genera rediversified at low latitudes, restoring steep gradients of diversity, average latitudinal range size and macroevolutionary rates. Main conclusions During late Palaeozoic time, these latitudinal gradients for brachiopods may have been linked by the increased magnitude of seasonality during the late Palaeozoic ice age. Pronounced seasonality would have prevented the existence of genera with narrow latitudinal ranges. These results for the late Palaeozoic ice age suggest a climatic basis for the present‐day latitudinal diversity gradient.  相似文献   

14.
Evidence of a latitudinal gradient in spider diversity in Australian cotton   总被引:1,自引:0,他引:1  
The most common explanation for species diversity increasing towards the tropics is the corresponding increase in habitats (spatial heterogeneity). Consequently, a monoculture (like cotton in Australia) which is grown along a latitudinal gradient, should have the same degree of species diversity throughout its range. We tested to see if diversity in a dominant cotton community (spiders) changed with latitude, and if the community was structurally identical in different parts of Australia. We sampled seven sites extending over 20° of latitude. At each site we sampled 1–3 fields 3–5 times during the cotton growing season using pitfall traps and beatsheets, recording all the spiders collected to family. We found that spider communities in cotton are diverse, including a large range of foraging guilds, making them suitable for a conservation biological control programme. We also found that spider diversity increased from high to low latitudes, and the communities were different, even though the spiders were in the same monocultural habitat. Spider beatsheet communities around Australia were dominated by different families, and responded differently to seasonal changes, indicating that different pest groups would be targeted at different locations. These results show that diversity can increase from high to low latitudes, even if spatial heterogeneity is held constant, and that other factors external to the cotton crop are influencing spider species composition. Other models which may account for the latitudinal gradient, such as non‐equilibrium regional processes, are discussed.  相似文献   

15.
Current ideas about the evolution of bird migration equate its origin with the first appearance of fully migratory populations, and attribute its evolution to a selective advantage generated by increased breeding success, gained through temporary emigration from resident populations to breed in under-exploited seasonal areas. I propose an alternative hypothesis in which migration first appears as a temporary directional shift away from the breeding site outside the reproductive period, in response to seasonal variation in the direction and/or severity of environmental gradients. Fully migratory populations then appear through either extinction of sedentary phenotypes, or colonisation of vacant seasonal areas by migrants. Where colonisation occurs, resident ancestral populations can be driven to extinction by competition from migrants which invade their range outside the breeding season, resulting in fully migratory species. An analogous process drives the evolution of migration between high latitudes and the tropics, since extension of breeding range into higher latitudes may drive low latitude populations to extinction, resulting in an overall shift of breeding range. This process can explain reverse latitudinal gradients in avian diversity in the temperate zone, since the breeding ranges of migratory species concentrate in latitudes where they enjoy the highest breeding success. Near absence of forest-dwelling species among Palaearctic-African migrants is attributable to the lack of forest in northern Africa for much of the Tertiary, which has precluded selection both for southward extension of migration by west Palaearctic forest species, and northward breeding colonisation by African forest species.  相似文献   

16.
It is recognized that biodiversity changes across the planet latitudinally; however, the timing of and reasons for diversity loss at higher latitudes are not well understood. Meseguer and Condamine investigate phylogenies and fossil evidence of reptilian species and determine that global warming and cooling events allowed asymmetric extinction and dispersion across latitudes, suggesting a hypothesis where climate profoundly shapes the latitudinal diversity gradient in certain taxa.  相似文献   

17.
Global biodiversity currently peaks at the equator and decreases toward the poles. Growing fossil evidence suggest this hump-shaped latitudinal diversity gradient (LDG) has not been persistent through time, with similar diversity across latitudes flattening out the LDG during past greenhouse periods. However, when and how diversity declined at high latitudes to generate the modern LDG remains an open question. Although diversity-loss scenarios have been proposed, they remain mostly undemonstrated. We outline the “asymmetric gradient of extinction and dispersal” framework that contextualizes previous ideas behind the LDG under a time-variable scenario. Using phylogenies and fossils of Testudines, Crocodilia, and Lepidosauria, we find that the hump-shaped LDG could be explained by (1) disproportionate extinctions of high-latitude tropical-adapted clades when climate transitioned from greenhouse to icehouse, and (2) equator-ward biotic dispersals tracking their climatic preferences when tropical biomes became restricted to the equator. Conversely, equivalent diversification rates across latitudes can account for the formation of an ancient flat LDG. The inclusion of fossils in macroevolutionary studies allows revealing time-dependent extinction rates hardly detectable from phylogenies only. This study underscores that the prevailing evolutionary processes generating the LDG during greenhouses differed from those operating during icehouses.  相似文献   

18.
A latitudinal gradient in biodiversity has existed since before the time of the dinosaurs, yet how and why this gradient arose remains unresolved. Here we review two major hypotheses for the origin of the latitudinal diversity gradient. The time and area hypothesis holds that tropical climates are older and historically larger, allowing more opportunity for diversification. This hypothesis is supported by observations that temperate taxa are often younger than, and nested within, tropical taxa, and that diversity is positively correlated with the age and area of geographical regions. The diversification rate hypothesis holds that tropical regions diversify faster due to higher rates of speciation (caused by increased opportunities for the evolution of reproductive isolation, or faster molecular evolution, or the increased importance of biotic interactions), or due to lower extinction rates. There is phylogenetic evidence for higher rates of diversification in tropical clades, and palaeontological data demonstrate higher rates of origination for tropical taxa, but mixed evidence for latitudinal differences in extinction rates. Studies of latitudinal variation in incipient speciation also suggest faster speciation in the tropics. Distinguishing the roles of history, speciation and extinction in the origin of the latitudinal gradient represents a major challenge to future research.  相似文献   

19.
Leigh Van Valen famously stated that under constant conditions extinction probability is independent of species age. To test this 'law of constant extinction', we developed a new method using deep learning to infer age‐dependent extinction and analysed 450 myr of marine life across 21 invertebrate clades. We show that extinction rate significantly decreases with age in > 90% of the cases, indicating that most species died out soon after their appearance while those which survived experienced ever decreasing extinction risk. This age‐dependent extinction pattern is stronger towards the Equator and holds true when the potential effects of mass extinctions and taxonomic inflation are accounted for. These results suggest that the effect of biological interactions on age‐dependent extinction rate is more intense towards the tropics. We propose that the latitudinal diversity gradient and selection at the species level account for this exceptional, yet little recognised, macroevolutionary and macroecological pattern.  相似文献   

20.
Several hypotheses attempt to explain the latitudinal gradient of species diversity, but some basic aspects of the pattern remain insufficiently explored, including the effect of scales and the role of beta diversity. To explore such components of the latitudinal gradient, we tested the hypothesis of covariation, which states that the gradient of species diversity should show the same pattern regardless of the scale of analysis. The hypothesis implies that there should be no gradients of beta diversity, of regional range size within regions, and of the slope of the species-area curve. For the fauna of North American mammals, we found contrasting results for bats and non-volant species. We could reject the hypothesis of covariation for non-volant mammals, for which the number of species increases towards lower latitudes, but at different rates depending on the scale. Also, for this group, beta diversity is higher at lower latitudes, the regional range size within regions is smaller at lower latitudes, and z, the slope of the species-area relationship is higher at lower latitudes. Contrarily bats did not show significant deviations from the predictions of the hypothesis of covariation: at two different scales, species richness shows similar trends of increase at lower latitudes, and no gradient can be demonstrated for beta diversity, for regional range size, or for the slopes of the species-area curve. Our results show that the higher diversity of non-volant mammals in tropical areas of North America is a consequence of the increase in beta diversity and not of higher diversity at smaller scales. In contrast, the diversity of bats at both scales is higher at lower latitudes. These contrasting patterns suggest different causes for the latitudinal gradient of species diversity in the two groups that are ultimately determined by differences in the patterns of geographic distribution of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号