共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Yaoqing Chen Kanagalaghatta R. Rajashankar Yang Yang Sudhakar S. Agnihothram Chang Liu Yi-Lun Lin Ralph S. Baric Fang Li 《Journal of virology》2013,87(19):10777-10783
The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) has infected at least 77 people, with a fatality rate of more than 50%. Alarmingly, the virus demonstrates the capability of human-to-human transmission, raising the possibility of global spread and endangering world health and economy. Here we have identified the receptor-binding domain (RBD) from the MERS-CoV spike protein and determined its crystal structure. This study also presents a structural comparison of MERS-CoV RBD with other coronavirus RBDs, successfully positioning MERS-CoV on the landscape of coronavirus evolution and providing insights into receptor binding by MERS-CoV. Furthermore, we found that MERS-CoV RBD functions as an effective entry inhibitor of MERS-CoV. The identified MERS-CoV RBD may also serve as a potential candidate for MERS-CoV subunit vaccines. Overall, this study enhances our understanding of the evolution of coronavirus RBDs, provides insights into receptor recognition by MERS-CoV, and may help control the transmission of MERS-CoV in humans. 相似文献
3.
4.
Jiaming Lan Yao Deng Hong Chen Guangwen Lu Wen Wang Xiaojuan Guo Zhuozhuang Lu George F. Gao Wenjie Tan 《PloS one》2014,9(11)
The development of an effective vaccine is critical for prevention of a Middle East respiratory syndrome coronavirus (MERS-CoV) pandemic. Some studies have indicated the receptor-binding domain (RBD) protein of MERS-CoV spike (S) is a good candidate antigen for a MERS-CoV subunit vaccine. However, highly purified proteins are typically not inherently immunogenic. We hypothesised that humoral and cell-mediated immunity would be improved with a modification of the vaccination regimen. Therefore, the immunogenicity of a novel MERS-CoV RBD-based subunit vaccine was tested in mice using different adjuvant formulations and delivery routes. Different vaccination regimens were compared in BALB/c mice immunized 3 times intramuscularly (i.m.) with a vaccine containing 10 µg of recombinant MERS-CoV RBD in combination with either aluminium hydroxide (alum) alone, alum and polyriboinosinic acid (poly I:C) or alum and cysteine-phosphate-guanine (CpG) oligodeoxynucleotides (ODN). The immune responses of mice vaccinated with RBD, incomplete Freund’s adjuvant (IFA) and CpG ODN by a subcutaneous (s.c.) route were also investigated. We evaluated the induction of RBD-specific humoral immunity (total IgG and neutralizing antibodies) and cellular immunity (ELISpot assay for IFN-γ spot-forming cells and splenocyte cytokine production). Our findings indicated that the combination of alum and CpG ODN optimized the development of RBD-specific humoral and cellular immunity following subunit vaccination. Interestingly, robust RBD-specific antibody and T-cell responses were induced in mice immunized with the rRBD protein in combination with IFA and CpG ODN, but low level of neutralizing antibodies were elicited. Our data suggest that murine immunity following subunit vaccination can be tailored using adjuvant combinations and delivery routes. The vaccination regimen used in this study is promising and could improve the protection offered by the MERS-CoV subunit vaccine by eliciting effective humoral and cellular immune responses. 相似文献
5.
6.
7.
中东呼吸道综合征冠状病毒(Middle East respiratory syndrome coronavirus, MERS-CoV)是继SARS冠状病毒(SARS-CoV)之后新近出现的又一种能够引发严重呼吸道感染的人类新发冠状病毒. MERS-CoV于2012年9月首次在中东一些国家被发现,截至2013年9月7日,MERS-CoV已经引起114例感染病例,其中54人死亡,死亡率约50%. 病毒受体研究为MERS-CoV等人类新发冠状病毒进化和跨种传播机制提供重要依据.最近,Raj等在Nature发表文章,首次报道了二肽基肽酶4(dipeptidyl peptidase 4,DPP4;又名CD26)为MERS-CoV感染细胞的功能性受体.MERS-CoV功能性受体的发现为人类新冠状病毒溯源和跨种进化研究、病毒传染和流行病学特征分析以及抗病毒药物和疫苗研究提供重要基础. 相似文献
8.
9.
Bart L. Haagmans Judith M. A. van den Brand Lisette B. Provacia V. Stalin Raj Koert J. Stittelaar Sarah Getu Leon de Waal Theo M. Bestebroer Geert van Amerongen Georges M. G. M. Verjans Ron A. M. Fouchier Saskia L. Smits Thijs Kuiken Albert D. M. E. Osterhaus 《Journal of virology》2015,89(11):6131-6135
The ability of Middle East respiratory syndrome coronavirus (MERS-CoV) to infect small animal species may be restricted given the fact that mice, ferrets, and hamsters were shown to resist MERS-CoV infection. We inoculated rabbits with MERS-CoV. Although virus was detected in the lungs, neither significant histopathological changes nor clinical symptoms were observed. Infectious virus, however, was excreted from the upper respiratory tract, indicating a potential route of MERS-CoV transmission in some animal species. 相似文献
10.
Daniela Niemeyer Thomas Zillinger Doreen Muth Florian Zielecki Gabor Horvath Tasnim Suliman Winfried Barchet Friedemann Weber Christian Drosten Marcel A. Müller 《Journal of virology》2013,87(22):12489-12495
Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe acute respiratory infection with as yet unclear epidemiology. We previously showed that MERS-CoV counteracts parts of the innate immune response in human bronchiolar cells. Here we analyzed accessory proteins 3, 4a, 4b, and 5 for their abilities to inhibit the type I interferon response. Accessory protein 4a was found to block interferon induction at the level of melanoma differentiation-associated protein 5 (MDA5) activation presumably by direct interaction with double-stranded RNA. 相似文献
11.
正Dear Editor,Middle East respiratory syndrome coronavirus (MERS-CoV), first isolated in 2012, has emerged zoonotically among humans (van Boheemen et al. 2012). Since then,MERS-CoV continues to be a public health concern, with a fatality rate of 35%. On-going MERS-CoV outbreaks highlight the urgent need for the development of inter- 相似文献
12.
13.
Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group
Raoul J. de Groot Susan C. Baker Ralph S. Baric Caroline S. Brown Christian Drosten Luis Enjuanes Ron A. M. Fouchier Monica Galiano Alexander E. Gorbalenya Ziad A. Memish Stanley Perlman Leo L. M. Poon Eric J. Snijder Gwen M. Stephens Patrick C. Y. Woo Ali M. Zaki Maria Zambon John Ziebuhr 《Journal of virology》2013,87(14):7790-7792
14.
Yang Yang Chang Liu Lanying Du Shibo Jiang Zhengli Shi Ralph S. Baric Fang Li 《Journal of virology》2015,89(17):9119-9123
To understand how Middle East respiratory syndrome coronavirus (MERS-CoV) transmitted from bats to humans, we compared the virus surface spikes of MERS-CoV and a related bat coronavirus, HKU4. Although HKU4 spike cannot mediate viral entry into human cells, two mutations enabled it to do so by allowing it to be activated by human proteases. These mutations are present in MERS-CoV spike, explaining why MERS-CoV infects human cells. These mutations therefore played critical roles in the bat-to-human transmission of MERS-CoV, either directly or through intermediate hosts. 相似文献
15.
John E. Pak Chetna Sharon Malathy Satkunarajah Thierry C. Auperin Cheryl M. Cameron David J. Kelvin Jayaraman Seetharaman Francis A. Plummer James M. Rini 《Journal of molecular biology》2009,388(4):815-823
The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for host cell attachment and fusion of the viral and host cell membranes. Within S the receptor binding domain (RBD) mediates the interaction with angiotensin-converting enzyme 2 (ACE2), the SARS-CoV host cell receptor. Both S and the RBD are highly immunogenic and both have been found to elicit neutralizing antibodies. Reported here is the X-ray crystal structure of the RBD in complex with the Fab of a neutralizing mouse monoclonal antibody, F26G19, elicited by immunization with chemically inactivated SARS-CoV. The RBD-F26G19 Fab complex represents the first example of the structural characterization of an antibody elicited by an immune response to SARS-CoV or any fragment of it. The structure reveals that the RBD surface recognized by F26G19 overlaps significantly with the surface recognized by ACE2 and, as such, suggests that F26G19 likely neutralizes SARS-CoV by blocking the virus-host cell interaction. 相似文献
16.
Huihui Mou V. Stalin Raj Frank J. M. van Kuppeveld Peter J. M. Rottier Bart L. Haagmans Berend Jan Bosch 《Journal of virology》2013,87(16):9379-9383
The spike (S) protein of the recently emerged human Middle East respiratory syndrome coronavirus (MERS-CoV) mediates infection by binding to the cellular receptor dipeptidyl peptidase 4 (DPP4). Here we mapped the receptor binding domain in the S protein to a 231-amino-acid fragment (residues 358 to 588) by evaluating the interaction of spike truncation variants with receptor-expressing cells and soluble DPP4. Antibodies to this domain—much less so those to the preceding N-terminal region—efficiently neutralize MERS-CoV infection. 相似文献
17.
Jing Gao Guangwen Lu Jianxun Qi Yan Li Ying Wu Yao Deng Heyuan Geng Hongbin Li Qihui Wang Haixia Xiao Wenjie Tan Jinghua Yan George F. Gao 《Journal of virology》2013,87(24):13134-13140
Middle East respiratory syndrome coronavirus (MERS-CoV) recently emerged as a severe worldwide public health concern. The virus is highly pathogenic, manifesting in infected patients with an approximately 50% fatality rate. It is known that the surface spike (S) proteins of coronaviruses mediate receptor recognition and membrane fusion, thereby playing an indispensable role in initiating infection. In this process, heptad repeats 1 and 2 (HR1 and HR2) of the S protein assemble into a complex called the fusion core, which represents a key membrane fusion architecture. To date, however, the MERS-CoV fusion core remains uncharacterized. In this study, we performed a series of biochemical and biophysical analyses characterizing the HR1/HR2 complexes of this novel virus. The HR sequences were variably truncated and then connected with a flexible amino acid linker. In each case, the recombinant protein automatically assembled into a trimer in solution, displaying a typical α-helical structure. One of these trimers was successfully crystallized, and its structure was solved at a resolution of 1.9 Å. A canonical 6-helix bundle, like those reported for other coronaviruses, was revealed, with three HR1 helices forming the central coiled-coil core and three HR2 chains surrounding the core in the HR1 side grooves. This demonstrates that MERS-CoV utilizes a mechanism similar to those of other class I enveloped viruses for membrane fusion. With this notion, we further identified an HR2-based peptide that could potently inhibit MERS-CoV fusion and entry by using a pseudotyped-virus system. These results lay the groundwork for future inhibitory peptidic drug design. 相似文献
18.
Athanasios Kossyvakis Ying Tao Xiaoyan Lu Vasiliki Pogka Sotirios Tsiodras Mary Emmanouil Andreas F. Mentis Suxiang Tong Dean D. Erdman Antonios Antoniadis 《PloS one》2015,10(4)
Rapid and reliable laboratory diagnosis of persons suspected of Middle East respiratory syndrome coronavirus (MERS-CoV) infection is important for timely implementation of infection control practices and disease management. In addition, monitoring molecular changes in the virus can help elucidate chains of transmission and identify mutations that might influence virus transmission efficiency. This was illustrated by a recent laboratory investigation we conducted on an imported MERS-CoV case in Greece. Two oropharyngeal swab specimens were collected on the 1st and 2nd day of patient hospitalization and tested using two real-time RT-PCR (rRT-PCR) assays targeting the UpE and Orf-1a regions of the MERS-CoV genome and RT-PCR and partial sequencing of RNA-dependent RNA polymerase and nucleocapsid genes. Serum specimens were also collected and serological test were performed. Results from the first swab sample were inconclusive while the second swab was strongly positive for MERS-CoV RNA by rRT-PCR and confirmed positive by RT-PCR and partial gene sequencing. Positive serologic test results further confirmed MERS-CoV infection. Full-length nucleocapsid and spike gene coding sequences were later obtained from the positive swab sample. Phylogenetic analysis revealed that the virus was closely related to recent human-derived MERS-CoV strains obtained in Jeddah and Makkah, Saudi Arabia, in April 2014 and dromedary camels in Saudi Arabia and Qatar. These findings were consistent with the patient’s history. We also identified a unique amino acid substitution in the spike receptor binding domain that may have implications for receptor binding efficiency. Our initial inconclusive rRT-PCR results highlight the importance of collecting multiple specimens from suspect MERS-CoV cases and particularly specimens from the lower respiratory tract. 相似文献
19.
V. Stalin Raj Saskia L. Smits Lisette B. Provacia Judith M. A. van den Brand Lidewij Wiersma Werner J. D. Ouwendijk Theo M. Bestebroer Monique I. Spronken Geert van Amerongen Peter J. M. Rottier Ron A. M. Fouchier Berend Jan Bosch Albert D.M.E. Osterhaus Bart L. Haagmans 《Journal of virology》2014,88(3):1834-1838
Middle East respiratory syndrome coronavirus (MERS-CoV) replicates in cells of different species using dipeptidyl peptidase 4 (DPP4) as a functional receptor. Here we show the resistance of ferrets to MERS-CoV infection and inability of ferret DDP4 to bind MERS-CoV. Site-directed mutagenesis of amino acids variable in ferret DPP4 thus revealed the functional human DPP4 virus binding site. Adenosine deaminase (ADA), a DPP4 binding protein, competed for virus binding, acting as a natural antagonist for MERS-CoV infection. 相似文献