首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
While biological distributions are not static and change/evolve through space and time, nonstationarity of climatic and land‐use conditions is frequently neglected in species distribution models. Even recent techniques accounting for spatiotemporal variation of species occurrence basically consider the environmental predictors as static; specifically, in most studies using species distribution models, predictor values are averaged over a 50‐ or 30‐year time period. This could lead to a strong bias due to monthly/annual variation between the climatic conditions in which species' locations were recorded and those used to develop species distribution models or even a complete mismatch if locations have been recorded more recently. Moreover, the impact of land‐use change has only recently begun to be fully explored in species distribution models, but again without considering year‐specific values. Excluding dynamic climate and land‐use predictors could provide misleading estimation of species distribution. In recent years, however, open‐access spatially explicit databases that provide high‐resolution monthly and annual variation in climate (for the period 1901–2016) and land‐use (for the period 1992–2015) conditions at a global scale have become available. Combining species locations collected in a given month of a given year with the relative climatic and land‐use predictors derived from these datasets would thus lead to the development of true dynamic species distribution models (D‐SDMs), improving predictive accuracy and avoiding mismatch between species locations and predictor variables. Thus, we strongly encourage modelers to develop D‐SDMs using month‐ and year‐specific climatic data as well as year‐specific land‐use data that match the period in which species data were collected.  相似文献   

3.
肠道微生物对于人体健康的重要作用已经得到广泛证实,目前,对肠道微生物的研究大多采用基于扩增细菌16S rRNA基因V3-V4区的高通量测序分析,对古菌的关注较少。本研究选择了一对可以同时扩增细菌和古菌16S rRNA基因的引物,通过比较人为干扰肠道微生物前后的群落变化,说明这对引物适宜分析人类肠道细菌和古菌群落变化并具有一定优越性。采集志愿者粪便样品,同时用仅能扩增细菌引物(B引物)和细菌古菌通用引物(AB引物)进行扩增和高通量测序;使用几个常用的rRNA数据库判断引物对细菌的覆盖度和对古菌的扩增能力。结果表明,AB引物在可以展示B引物扩增出的细菌群落的基础上,可以得到肠道中常见的产甲烷古菌的序列,同时也展示出人为干扰肠道微生物前后的群落结构变化。AB引物可以仅通过一次扩增和测序同时分析肠道中的细菌和古菌群落,更加全面展示肠道微生物群落结构,适用于肠道微生物相关研究。  相似文献   

4.
The need for reliable prediction of species distributions dependent upon traits has been hindered by a lack of model transferability testing. We tested the predictive capacity of trait‐SDMs by fitting hierarchical generalised linear models with three trait and four environmental predictors for 20 eucalypt taxa in a reference region. We used these models to predict occurrence for a much larger set of taxa and target areas (82 taxa across 18 target regions) in south‐eastern Australia. Median predictive performance for new species in target regions was 0.65 (area under receiver operating curve) and 1.24 times random (area under precision recall curve). Prediction in target regions did not worsen with increasing geographic, environmental or community compositional distance from the reference region, and was improved with reliable trait–environment relationships. Transfer testing also identified trait–environment relationships that did not transfer. These results give confidence that traits and transfer testing can assist in the hard problem of predicting environmental responses for new species, environmental conditions and regions.  相似文献   

5.
Aim We explored the effects of prevalence, latitudinal range and spatial autocorrelation of species distribution patterns on the accuracy of bioclimate envelope models of butterflies. Location Finland, northern Europe. Methods The data of a national butterfly atlas survey (NAFI) carried out in 1991–2003 with a resolution of 10 × 10 km were used in the analyses. Generalized additive models (GAM) were constructed, for each of 98 species, to estimate the probability of occurrence as a function of climate variables. Model performance was measured using the area under the curve (AUC) of a receiver operating characteristic (ROC) plot. Observed differences in modelling accuracy among species were related to the species’ geographical attributes using multivariate GAM. Results Accuracies of the climate–butterfly models varied from low to very high (AUC values 0.59–0.99), with a mean of 0.79. The modelling performance was related negatively to the latitudinal range and prevalence, and positively to the spatial autocorrelation of the species distribution. These three factors accounted for 75.2% of the variation in the modelling accuracy. Species at the margin of their range or with low prevalence were better predicted than widespread species, and species with clumped distributions better than scattered dispersed species. Main conclusions The results from this study indicate that species’ geographical attributes highly influence the behaviour and uncertainty of species–climate models, which should be taken into account in biogeographical modelling studies and assessments of climate change impacts.  相似文献   

6.
7.
8.
亚高寒草甸不同生境植物群落物种多度分布格局的拟合   总被引:1,自引:0,他引:1  
刘梦雪  刘佳佳  杜晓光  郑小刚 《生态学报》2010,30(24):6935-6942
物种多度分布是群落生态学研究的核心内容。通过对青藏高原东部亚高寒草甸3种不同生境草本植物群落的抽样调查,结合16个物种多度分布模型的两种曲线拟合优度检验得出如下结果:多种不同模型可以拟合同一生境的物种多度分布。相比于其他可拟合模型,几何级数模型在3种生境中两种拟合优度检验方法下的平均拟合效果是最好的,拟合优度值均在最优拟合优度值10左右波动。次优模型鉴于不同生境不同的检验方法表现不一。除了几何级数模型外,Sugihara分数模型在最小二乘法的拟合方法下,也可以拟合3种生境的物种多度分布。研究结果表明,仅用拟合优度检验区分产生不同物种分布格局的模型和机制是不可靠的,需要做进一步的检验性实验研究。  相似文献   

9.
10.
We present here a comprehensive analysis of the complement of enzymes in a large variety of species. As enzymes are a relatively conserved group there are several classification systems available that are common to all species and link a protein sequence to an enzymatic function. Enzymes are therefore an ideal functional group to study the relationship between sequence expansion, functional divergence and phenotypic changes. By using information retrieved from the well annotated SWISS-PROT database together with sequence information from a variety of fully sequenced genomes and information from the EC functional scheme we have aimed here to estimate the fraction of enzymes in genomes, to determine the extent of their functional redundancy in different domains of life and to identify functional innovations and lineage specific expansions in the metazoa lineage. We found that prokaryote and eukaryote species differ both in the fraction of enzymes in their genomes and in the pattern of expansion of their enzymatic sets. We observe an increase in functional redundancy accompanying an increase in species complexity. A quantitative assessment was performed in order to determine the degree of functional redundancy in different species. Finally, we report a massive expansion in the number of mammalian enzymes involved in signalling and degradation.  相似文献   

11.
12.
Predictive species distribution models are standard tools in ecological research and are used to address a variety of applied and conservation related issues. When making temporal or spatial predictions, uncertainty is inevitable and prediction errors may depend not only on data quality and the modelling algorithm used, but on species characteristics. Here, we applied a standard distribution modelling technique (generalized linear models) using European plant species distribution data and climatic parameters. Predictive performance was calculated using AUC, (Cohen’s) Kappa and true skill statistic (TSS), that were subsequently correlated with biological and life-history traits. After accounting for phylogenetic dependence among species, model performance was poorest for species having a short life span and occurring in human disturbed habitats. Our results clearly indicate that the performance of distribution models can be dependent on functional traits and provide further evidence that a species’ ecology is likely to affect the ability of models to predict its distribution. Biased and less reliable predictions could misguide policy decisions and the management and conservation of our natural heritage.  相似文献   

13.
The identification of core habitat areas and resulting prediction maps are vital tools for land managers. Often, agencies have large datasets from multiple studies over time that could be combined for a more informed and complete picture of a species. Colorado Parks and Wildlife has a large database for greater sage-grouse (Centrocercus urophasianus) including 11 radio-telemetry studies completed over 12 years (1997–2008) across northwestern Colorado. We divided the 49,470-km2 study area into 1-km2 grids with the number of sage-grouse locations in each grid cell that contained at least 1 location counted as the response variable. We used a generalized linear mixed model (GLMM) using land cover variables as fixed effects and individual birds and populations as random effects to predict greater sage-grouse location counts during breeding, summer, and winter seasons. The mixed effects model enabled us to model correlations that may exist in grouped data (e.g., correlations among individuals and populations). We found only individual groupings accounted for variation in the summer and breeding seasons, but not the winter season. The breeding and summer seasonal models predicted sage-grouse presence in the currently delineated populations for Colorado, but we found little evidence supporting a winter season model. According to our models, about 50% of the study area in Colorado is considered highly or moderately suitable habitat in both the breeding and summer seasons. As oil and gas development and other landscape changes occur in this portion of Colorado, knowledge of where management actions can be accomplished or possible restoration can occur becomes more critical. These seasonal models provide data-driven, distribution maps that managers and biologists can use for identification and exploration when investigating greater sage-grouse issues across the Colorado range. Using historic data for future decisions on species management while accounting for issues found from combining datasets allows land managers the flexibility to use all information available. © 2013 The Wildlife Society.  相似文献   

14.
15.
1. Evaluating the distribution of species richness where biodiversity is high but has been insufficiently sampled is not an easy task. Species distribution modelling has become a useful approach for predicting their ranges, based on the relationships between species records and environmental variables. Overlapping predictions of individual distributions could be a useful strategy for obtaining estimates of species richness and composition in a region, but these estimates should be evaluated using a proper validation process, which compares the predicted richness values and composition with accurate data from independent sources. 2. In this study, we propose a simple approach to estimate model performance for several distributional predictions generated simultaneously. This approach is particularly suitable when species distribution modelling techniques that require only presence data are used. 3. The individual distributions for the 370 known amphibian species of Mexico were predicted using maxent to model data on their known presence (66,113 presence-only records). Distributions were subsequently overlapped to obtain a prediction of species richness. Accuracy was assessed by comparing the overall species richness values predicted for the region with observed and predicted values from 118 well-surveyed sites, each with an area of c. 100 km(2), which were identified using species accumulation curves and nonparametric estimators. 4. The derived models revealed a remarkable heterogeneity of species richness across the country, provided information about species composition per site and allowed us to obtain a measure of the spatial distribution of prediction errors. Examining the magnitude and location of model inaccuracies, as well as separately assessing errors of both commission and omission, highlights the inaccuracy of the predictions of species distribution models and the need to provide measures of uncertainty along with the model results. 5. The combination of a species distribution modelling method like maxent and species richness estimators offers a useful tool for identifying when the overall pattern provided by all model predictions might be representing the geographical patterns of species richness and composition, regardless of the particular quality or accuracy of the predictions for each individual species.  相似文献   

16.
17.
Species distribution models (SDMs) have rapidly evolved into one of the most widely used tools to answer a broad range of ecological questions, from the effects of climate change to challenges for species management. Current SDMs and their predictions under anthropogenic climate change are, however, often based on free‐air or synoptic temperature conditions with a coarse resolution, and thus fail to capture apparent temperature (cf. microclimate) experienced by living organisms within their habitats. Yet microclimate operates as soon as a habitat can be characterized by a vertical component (e.g. forests, mountains, or cities) or by horizontal variation in surface cover. The mismatch between how we usually express climate (cf. coarse‐grained free‐air conditions) and the apparent microclimatic conditions that living organisms experience has only recently been acknowledged in SDMs, yet several studies have already made considerable progress in tackling this problem from different angles. In this review, we summarize the currently available methods to obtain meaningful microclimatic data for use in distribution modelling. We discuss the issue of extent and resolution, and propose an integrated framework using a selection of appropriately‐placed sensors in combination with both the detailed measurements of the habitat 3D structure, for example derived from digital elevation models or airborne laser scanning, and the long‐term records of free‐air conditions from weather stations. As such, we can obtain microclimatic data with a relevant spatiotemporal resolution and extent to dynamically model current and future species distributions.  相似文献   

18.
The EU 2020 Biodiversity Strategy requires the gathering of information on biodiversity to aid in monitoring progress towards its main targets. Common species are good proxies for the diversity and integrity of ecosystems, since they are key elements of the biomass, structure, functioning of ecosystems, and therefore of the supply of ecosystem services. In this sense, we aimed to develop a spatially-explicit indicator of habitat quality (HQI) at European level based on the species included in the European Common Bird Index, also grouped into their major habitat types (farmland and forest). Using species occurrences from the European Breeding Birds Atlas (at 50 km × 50 km) and the maximum entropy algorithm, we derived species distribution maps using refined occurrence data based on species ecology. This allowed us to cope with the limitations arising from modelling common and widespread species, obtaining habitat suitability maps for each species at finer spatial resolution (10 km × 10 km grid), which provided higher model accuracy. Analysis of the spatial patterns of local and relative species richness (defined as the ratio between species richness in a given location and the average richness in the regional context) for the common birds analysed demonstrated that the development of a HQI based on species richness needs to account for the regional species pool in order to make objective comparisons between regions. In this way, we proved that relative species richness compensated for the bias caused by the inherent heterogeneous patterns of the species distributions that was yielding larger local species richness in areas where most of the target species have the core of their distribution range. The method presented in this study provides a robust and innovative indicator of habitat quality which can be used to make comparisons between regions at the European scale, and therefore potentially applied to measure progress towards the EU Biodiversity Strategy targets. Finally, since species distribution models are based on breeding birds, the HQI can be also interpreted as a measure of the capacity of ecosystems to provide and maintain nursery/reproductive habitats for terrestrial species, a key maintenance and regulation ecosystem service.  相似文献   

19.
Georeferencing error is prevalent in datasets used to model species distributions, inducing uncertainty in covariate values associated with species occurrences that result in biased probability of occurrence estimates. Traditionally, this error has been dealt with at the data‐level by using only records with an acceptable level of error (filtering) or by summarizing covariates at sampling units by using measures of central tendency (averaging). Here we compare those previous approaches to a novel implementation of a Bayesian logistic regression with measurement error (ME), a seldom used method in species distribution modeling. We show that the ME model outperforms data‐level approaches on 1) specialist species and 2) when either sample sizes are small, the georeferencing error is large or when all georeferenced occurrences have a fixed level of error. Thus, for certain types of species and datasets the ME model is an effective method to reduce biases in probability of occurrence estimates and account for the uncertainty generated by georeferencing error. Our approach may be expanded for its use with presence‐only data as well as to include other sources of uncertainty in species distribution models.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号