共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Aims: The primary goal of this study was to characterize the existence of a functional c‐di‐GMP pathway in the bioleaching bacterium Acidithiobacillus ferrooxidans. Methods and Results: A bioinformatic search revealed that the genome sequence of At. ferrooxidans ATCC 23270 codes for several proteins involved in the c‐di‐GMP pathway, including diguanylate cyclases (DGC), phosphodiesterases and PilZ effector proteins. Overexpression in Escherichia coli demonstrated that four At. ferrooxidans genes code for proteins containing GGDEF/EAL domains with functional DGC activity. MS/MS analysis allowed the identification of c‐di‐GMP in nucleotide preparations obtained from At. ferrooxidans cells. In addition, c‐di‐GMP levels in cells grown on the surface of solid energetic substrates such as sulfur prills or pyrite were higher than those measured in ferrous iron planktonic cells. Conclusions: At. ferrooxidans possesses a functional c‐di‐GMP pathway that could play a key role in At. ferrooxidans biofilm formation during bioleaching processes. Significance and Impact of the Study: This is the first global study about the c‐di‐GMP pathway in an acidophilic bacterium of great interest for the biomining industry. It opens a new way to explore the regulation of biofilm formation by biomining micro‐organisms during the bioleaching process. 相似文献
3.
Kyoo Heo Jae-Woo Lee Yongdae Jang Sohee Kwon Jaehun Lee Chaok Seok Nam-Chul Ha Yeong-Jae Seok 《The Journal of biological chemistry》2022,298(3)
The bacterial second messenger bis-(3′-5′)-cyclic diguanylate monophosphate (c-di-GMP) controls various cellular processes, including motility, toxin production, and biofilm formation. c-di-GMP is enzymatically synthesized by GGDEF domain–containing diguanylate cyclases and degraded by HD-GYP domain–containing phosphodiesterases (PDEs) to 2 GMP or by EAL domain–containing PDE-As to 5ʹ-phosphoguanylyl-(3ʹ,5ʹ)-guanosine (pGpG). Since excess pGpG feedback inhibits PDE-A activity and thereby can lead to the uncontrolled accumulation of c-di-GMP, a PDE that degrades pGpG to 2 GMP (PDE-B) has been presumed to exist. To date, the only enzyme known to hydrolyze pGpG is oligoribonuclease Orn, which degrades all kinds of oligoribonucleotides. Here, we identified a pGpG-specific PDE, which we named PggH, using biochemical approaches in the gram-negative bacteria Vibrio cholerae. Biochemical experiments revealed that PggH exhibited specific PDE activity only toward pGpG, thus differing from the previously reported Orn. Furthermore, the high-resolution structure of PggH revealed the basis for its PDE activity and narrow substrate specificity. Finally, we propose that PggH could modulate the activities of PDE-As and the intracellular concentration of c-di-GMP, resulting in phenotypic changes including in biofilm formation. 相似文献
4.
5.
Tso‐Ning Li Ko‐Hsin Chin Jyung‐Hurng Liu Andrew H.‐J. Wang Shan‐Ho Chou 《Proteins》2009,75(2):282-288
The crystal structure of XC1028 from Xanthomonas campestris has been determined to a resolution of 2.15 Å using the multiple anomalous dispersion approach. It bears significant sequence identity and similarity values of 64.10% and 70.09%, respectively, with PA2960, a protein indispensable for type IV pilus‐mediated twitching motility, after which the PilZ motif was first named. However, both XC1028 and PA2960 lack detectable c‐di‐GMP binding capability. Although XC1028 adopts a structure comprising a five‐stranded β‐barrel core similar to other canonical PilZ domains with robust c‐di‐GMP binding ability, considerable differences are observed in the N‐terminal motif; XC1028 assumes a compact five‐stranded β‐barrel without an extra long N‐terminal motif, whereas other canonical PilZ domains contain a long N‐terminal sequence embedded with an essential “c‐di‐GMP switch” motif. In addition, a β‐strand (β1) in the N‐terminal motif, running in exactly opposite polarity to that of XC1028, is found inserted into the parallel β3/β1′ strands, forming a completely antiparallel β4↓β3↑β1↓β1′↑ sheet in the canonical PilZ domains. Such dramatic structural differences at the N‐terminus may account for the diminished c‐di‐GMP binding capability of XC1028, and suggest that interactions with additional proteins are necessary to bind c‐di‐GMP for type IV fimbriae assembly. Proteins 2009. © 2008 Wiley‐Liss, Inc. 相似文献
6.
Roman Bulgakov Peter J.M. Van Haastert 《Biochimica et Biophysica Acta (BBA)/General Subjects》1983,756(1):56-66
The cellular slime mold, Dictyostelium discoideum, contains at least two classes of phosphodiesterase activity. One class of enzymes hydrolyses cyclic AMP (cAMP) and cyclic GMP (cGMP) with approximately equal rates. Another enzyme, which is less than 5% of the total activity, specifically hydrolyses cGMP. The cGMP-specific enzyme does not bind to a Con A-Sepharose column, while all the cAMP-hydrolyzing activities are retarded by this column. The cGMP-specific enzyme is activated by low cGMP concentrations (10?8-10?6 M); the enzyme has normal Michaelis-Menten kinetics at high substrate concentrations with a Km of about 3–6 μM. The cGMP-binding sites for activation and for catalysis show different cyclic nucleotide specificity, but they are probably located on one protein with a molecular weight of about 70 000. The enzyme is stable only under specific conditions, and the activation property of the enzyme is lost relatively easy. Irreversible modifications occur at temperatures below 0° and above 30°C, and at pH below 6.0. Several other conditions such as high ion concentrations, temperatures just above 0°C and pH above 8.0 lead to reversibel modifications of enzyme activity. 相似文献
7.
In many bacterial pathogens, the second messenger c‐di‐GMP stimulates the production of an exopolysaccharide (EPS) matrix to shield bacteria from assaults of the immune system. How c‐di‐GMP induces EPS biogenesis is largely unknown. Here, we show that c‐di‐GMP allosterically activates the synthesis of poly‐β‐1,6‐N‐acetylglucosamine (poly‐GlcNAc), a major extracellular matrix component of Escherichia coli biofilms. C‐di‐GMP binds directly to both PgaC and PgaD, the two inner membrane components of the poly‐GlcNAc synthesis machinery to stimulate their glycosyltransferase activity. We demonstrate that the PgaCD machinery is a novel type c‐di‐GMP receptor, where ligand binding to two proteins stabilizes their interaction and promotes enzyme activity. This is the first example of a c‐di‐GMP‐mediated process that relies on protein–protein interaction. At low c‐di‐GMP concentrations, PgaD fails to interact with PgaC and is rapidly degraded. Thus, when cells experience a c‐di‐GMP trough, PgaD turnover facilitates the irreversible inactivation of the Pga machinery, thereby temporarily uncoupling it from c‐di‐GMP signalling. These data uncover a mechanism of c‐di‐GMP‐mediated EPS control and provide a frame for c‐di‐GMP signalling specificity in pathogenic bacteria. 相似文献
8.
Munhoz CD Kawamoto EM de Sá Lima L Lepsch LB Glezer I Marcourakis T Scavone C 《Cell biochemistry and function》2005,23(2):115-123
Excessive excitatory action of glutamate and nitric oxide (NO) has been implicated in degeneration of striatal neurons. Evidence had been provided that Na+K+-ATPase might be involved in this process. Here we investigated whether glutamate-regulated messengers, such as NO and cyclic GMP, could modulate the activity of membrane Na+K+-ATPase. Our results demonstrated that NO donors sodium nitroprusside (SNP at 30 and 300 microM) and S-nitroso-N-acetylpenicillamine (SNAP at 200 microM) increased alpha2,3Na+K+-ATPase activity which was blocked by the NO chelator, haemoglobin and was independent of [Na+]. This regulation was associated with cGMP synthesis and mimicked by glutamate (300 microM) and 8-Br-cyclic GMP (4 mM). 8-Br-cGMP-induced stimulation of Na+K+-ATPase activity could be blocked by KT5823 (an inhibitor of cGMP-dependent protein kinase, PKG), but not by KT5720 (an inhibitor of cAMP-dependent protein kinase, PKA). N-Methyl-D-aspartate (NMDA) receptors appeared to be involved in the effect of glutamate, since MK-801 (NMDA receptor antagonist) produced a partial reduction in glutamate-induced activation of the enzyme. MK-801 was not synergistic to L-NAME (NOS inhibitor), suggesting that glutamate stimulates the NMDA-NOS pathway to activate alpha2,3 Na+K+-ATPase in rat striatum. This regulation was associated with cyclic GMP (but not cyclic AMP) synthesis. These data indicate the existence, in vitro, of a regulatory pathway by which glutamate, acting through NO and cGMP, can cause alterations in striatal alpha2,3 Na+K+-ATPase activity. 相似文献
9.
Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen 总被引:16,自引:0,他引:16
O'Donnell PJ Jones JB Antoine FR Ciardi J Klee HJ 《The Plant journal : for cell and molecular biology》2001,25(3):315-323
The molecular events associated with susceptible plant responses to disease-causing organisms are not well understood. We have previously shown that ethylene-insensitive tomato plants infected with Xanthomonas campestris pv. vesicatoria have greatly reduced disease symptoms relative to wild-type cultivars. Here we show that salicylic acid (SA) is also an important component of the susceptible disease response. SA accumulates in infected wild-type tissues and is correlated with necrosis but does not accumulate in ethylene-insensitive plants. Exogenous feeding of SA to ethylene-deficient plants restores necrosis, indicating that reduced disease symptoms are associated with failure to accumulate SA. These results indicate a mechanism for co-ordination of phytohormone signals that together constitute a susceptible response to pathogens. 相似文献
10.
11.
Annikka Linnala-Kakkunen Pekka H. Mäenpää 《Biochimica et Biophysica Acta (BBA)/General Subjects》1979,587(3):324-332
A method of steady-state electrophoresis in polyacrylamide gels was used to analyze the presence of cyclic nucleotide binding components in cell extracts. Multiple cyclic AMP and cyclic GMP binding components were detected in soluble cytoplasmic and nuclear extracts derived from avian liver, but only a single cyclic GMP binding protein was found in the 0.3 M NaCl extract of liver nucleoli. In the presence of cyclic GMP, this protein phosphorylated efficiently a calf thymus histone mixture and an endogenous nucleolar protein which migrated identically with histone H4 in sodium dodecyl sulfate polyacrylamide gel electrophoresis. The isoelectric point of the cyclic GMP-binding protein was 4.8. Addition of cyclic GMP did not influence the activity of the endogenous nucleolar RNA polymerase. 相似文献
12.
Two-component signal transduction systems (TCSTSs), consisting of a histidine kinase and a response regulator, play a critical role in regulating virulence gene expression in Gram-negative phytopathogenic bacteria Xanthomonas spp.. To date, 12 TCSTS genes have been identified, accounting for approximately 10% of the TCSTS genes in each genome that have been experimentally identified to be related to pathogenesis. These TCSTSs modulate the expression of a number of virulence factors through diverse molecular mechanisms such as interacting with DNA, protein-binding and involvement in second messenger metabolism, which generates a high level of regulatory versatility. Here we summarize the current knowledge in this field and discuss the emerging themes and remaining questions that are important in deciphering the signaling network of TCSTSs in Xanthomonas. 相似文献
13.
Ivan Tattoli Andrzej Grajkowski Assaf Levi Beverly H Koller Irving C Allen Serge L Beaucage Katherine A Fitzgerald Jenny P ‐Y Ting John C Cambier Stephen E Girardin Christian Schindler 《EMBO reports》2013,14(10):900-906
The cyclic dinucleotides 3'‐5'diadenylate (c‐diAMP) and 3'‐5' diguanylate (c‐diGMP) are important bacterial second messengers that have recently been shown to stimulate the secretion of type I Interferons (IFN‐Is) through the c‐diGMP‐binding protein MPYS/STING. Here, we show that physiologically relevant levels of cyclic dinucleotides also stimulate a robust secretion of IL‐1β through the NLRP3 inflammasome. Intriguingly, this response is independent of MPYS/STING. Consistent with most NLRP3 inflammasome activators, the response to c‐diGMP is dependent on the mobilization of potassium and calcium ions. However, in contrast to other NLRP3 inflammasome activators, this response is not associated with significant changes in mitochondrial potential or the generation of mitochondrial reactive oxygen species. Thus, cyclic dinucleotides activate the NLRP3 inflammasome through a unique pathway that could have evolved to detect pervasive bacterial pathogen‐associated molecular patterns associated with intracellular infections. 相似文献
14.
15.
Mechanism of activation of cyclic GMP-dependent protein kinase from rat liver by multiple modulators
Charles W. Mackenzie III Thomas E. Donnelly Jr. 《Biochimica et Biophysica Acta (BBA)/General Subjects》1980,633(3):444-456
A number of polyanionic compounds, including DNA, RNA and polyglutamate, were shown to exhibit protein kinase stimulatory modulator activity as they were required for cyclic GMP to stimulate the phosphorylation of various cationic substrates by rat liver cyclic GMP-dependent protien kinase. Anionic proteins (casein, phosvitin) were phosphorylated poorly by the enzyme and their phosphorylation was not stimulated by the stimulatory modulators. Studies of the mechanism of action suggest that the modulators interact directly with the substrates to form a complex which is a better substrate than free histone. The observed effect of modulator is complex as it depends on the ratio of modulator to histone and the resultant state of the complex formed (better or poorer substrate than free histone). The observed effect is also dependent on the properties of the histone substrate as Michaelis-Menten kinetics are not observed in the phosphorylation of arginine-rich histone in the absence or presence of cyclic GMP. 相似文献
16.
Josef P. Skala Brian L. Knight 《Biochimica et Biophysica Acta (BBA)/General Subjects》1979,582(1):122-131
In order to ascertain the possible involvement of cyclic GMP in the physiological regulation of the function and development of brown fat of the rat, we have determined its tissue concentration in vivo under a variety of conditions. The steady-state concentration of cyclic GMP in interscapular brown adipose tissue of late foetus was about 80 pmol per g fresh weight. The concentration gradually declined during the first 2 weeks after birth to reach 40 pmol/g fresh weight and then remained constant into adulthood. The cyclic GMP content of brown fat was decreased by chemical sympathectomy and was increased after complete acclimatization of the animals to the cold. The activity of cyclic GMP-dependent protein kinase was also highest in tissue from newborn and cold-acclimatized rats.Both acute cold stress and injection of norepinephrine resulted in a significant but temporary increase in the concentration of cyclic GMP in brown fat, which was followed by a depression of the concentration below values in untreated animals. The concentration of cyclic AMP showed similar pattern of changes. Injection of phenylephrine was followed by a pronounced increase in the cyclic GMP content of brown fat, with little effect upon cyclic AMP. Injection of isoproterenol raised the content of cyclic AMP but not that of cyclic GMP. The ability of norepinephrine and phenylephrine to increase the concentration of cyclic GMP was abolished by pre-treatment of the animals with phenoxybenzamine, but not by pre-treatment with propranolol. Conversely, propranolol but not phenoxybenzamine abolished the effects of norepinephrine on the cyclic AMP content of the tissue.Thus we have established the responsiveness of the cyclic GMP content of brown fat to physiological and pharmacological stimuli and have evidence of the possible participation by cyclic GMP in the α-adrenergic stimulation and in the regulation of proliferative processes in the tissue. 相似文献
17.
Cellulose production,activated by cyclic di‐GMP through BcsA and BcsZ,is a virulence factor and an essential determinant of the three‐dimensional architectures of biofilms formed by Erwinia amylovora Ea1189 下载免费PDF全文
Bacterial biofilms are multicellular aggregates encased in an extracellular matrix mainly composed of exopolysaccharides (EPSs), protein and nucleic acids, which determines the architecture of the biofilm. Erwinia amylovora Ea1189 forms a biofilm inside the xylem of its host, which results in vessel plugging and water transport impairment. The production of the EPSs amylovoran and levan is critical for the formation of a mature biofilm. In addition, cyclic dimeric GMP (c‐di‐GMP) has been reported to positively regulate amylovoran biosynthesis and biofilm formation in E. amylovora Ea1189. In this study, we demonstrate that cellulose is synthesized by E. amylovora Ea1189 and is a major modulator of the three‐dimensional characteristics of biofilms formed by this bacterium, and also contributes to virulence during systemic host invasion. In addition, we demonstrate that the activation of cellulose biosynthesis in E. amylovora is a c‐di‐GMP‐dependent process, through allosteric binding to the cellulose catalytic subunit BcsA. We also report that the endoglucanase BcsZ is a key player in c‐di‐GMP activation of cellulose biosynthesis. Our results provide evidence of the complex composition of the extracellular matrix produced by E. amylovora and the implications of cellulose biosynthesis in shaping the architecture of the biofilm and in the expression of one of the main virulence phenotypes of this pathogen. 相似文献
18.
19.
Nitric oxide signalling in plants 总被引:13,自引:0,他引:13
20.
Krasteva PV Giglio KM Sondermann H 《Protein science : a publication of the Protein Society》2012,21(7):929-948
An intracellular second messenger unique to bacteria, c-di-GMP, has gained appreciation as a key player in adaptation and virulence strategies, such as biofilm formation, persistence, and cytotoxicity. Diguanylate cyclases containing GGDEF domains and phosphodiesterases containing either EAL or HD-GYP domains have been identified as the enzymes controlling intracellular c-di-GMP levels, yet little is known regarding signal transmission and the sensory targets for this signaling molecule. Although limited in number, identified c-di-GMP receptors in bacteria are characterized by prominent diversity and multilevel impact. In addition, c-di-GMP has been shown to have immunomodulatory effects in mammals and several eukaryotic c-di-GMP sensors have been proposed. The structural biology of c-di-GMP receptors is a rapidly developing field of research, which holds promise for the development of novel therapeutics against bacterial infections. In this review, we highlight recent advances in identifying bacterial and eukaryotic c-di-GMP signaling mechanisms and emphasize the need for mechanistic structure-function studies on confirmed signaling targets. 相似文献