首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

The 3-hydroxy-3-methylglutaryl CoA reductase inhibitors (also called statins) exert proven beneficial effects on cardiovascular diseases. Recent data suggest a protective role for Transforming Growth Factor-β (TGF-β) in atherosclerosis by regulating the balance between inflammation and extracellular matrix accumulation. However, there are no studies about the effect of statins on TGF-β/Smad pathway in atherosclerosis and vascular cells.

Methodology

In cultured vascular smooth muscle cells (VSMCs) statins enhanced Smad pathway activation caused by TGF-β. In addition, statins upregulated TGF-β receptor type II (TRII), and increased TGF-β synthesis and TGF-β/Smad-dependent actions. In this sense, statins, through Smad activation, render VSMCs more susceptible to TGF-β induced apoptosis and increased TGF-β-mediated ECM production. It is well documented that high doses of statins induce apoptosis in cultured VSMC in the presence of serum; however the precise mechanism of this effect remains to be elucidated. We have found that statins-induced apoptosis was mediated by TGF-β/Smad pathway. Finally, we have described that RhoA inhibition is a common intracellular mechanisms involved in statins effects. The in vivo relevance of these findings was assessed in an experimental model of atherosclerosis in apolipoprotein E deficient mice: Treatment with Atorvastatin increased Smad3 phosphorylation and TRII overexpression, associated to elevated ECM deposition in the VSMCs within atheroma plaques, while apoptosis was not detected.

Conclusions

Statins enhance TGF-β/Smad pathway, regulating ligand levels, receptor, main signaling pathway and cellular responses of VSMC, including apoptosis and ECM accumulation. Our findings show that TGF-β/Smad pathway is essential for statins-dependent actions in VSMCs.  相似文献   

3.
Invasion and metastasis are the major causes of death in patients with esophageal squamous cell carcinoma (ESCC). Epithelial-mesenchymal transition (EMT) is a critical step in tumor progression and transforming growth factor-β1 (TGF-β1) signaling has been shown to play an important role in EMT. In this study, we investigated how TGF-β1 signaling pathways contributed to EMT in three ESCC cell lines as well as 100 patients of nomadic ethnic Kazakhs residing in northwest Xinjiang Province of China. In vitro analyses included Western blotting to detect the expression of TGF-β1/Smad and EMT-associated proteins in Eca109, EC9706 and KYSE150 cell lines following stimulation with recombinant TGF-β1 and SB431542, a potent inhibitor of ALK5 that also inhibits TGF-β type II receptor. TGF-β-activated Smad2/3 signaling in EMT was significantly upregulated as indicated by mesenchymal markers of N-cadherin and Vimentin, and in the meantime, epithelial marker, E-cadherin, was markedly downregulated. In contrast, SB431542 addition downregulated the expression of N-cadherin and Vimentin, but upregulated the expression of E-cadherin. Moreover, the TGF-β1-induced EMT promoted invasion capability of Eca109 cells. Tumor cells undergoing EMT acquire fibroblastoid-like phenotype. Expressed levels of TGF-β1/Smad signaling molecules and EMT-associated proteins were examined using immunohistochemical analyses in 100 ESCC tissues of Kazakh patients and 58 matched noncancerous adjacent tissues. The results showed that ESCC tissues exhibited upregulated expression of TGF-β1/Smad. We also analyzed the relationship between the above proteins and the patients'' clinicopathological characteristics. The TGF-β1/Smad signaling pathway in human Eca109 ESCC cells may carry similar features as in Kazakh ESCC patients, suggesting that TGF-β1/Smad signaling pathway may be involved in the regulation of EMT in ethnic Kazakh patients with ESCC from Xinjiang, China.  相似文献   

4.
5.
In addition to being an important mediator of migration and invasion of tumor cells, β3 integrin can also enhance TGF-β1 signaling. However, it is not known whether β3 might influence the induction of metastatic phenotype of tumor cells, especially non-metastatic tumor cells which express low level of β3. Here we report that H2O2 and HOCl, the reactive oxygen species produced by neutrophils, could cooperate with TGF-β1 to induce metastatic phenotype of non-metastatic hepatocellular carcinoma (HCC) cells. TGF-β1/H2O2/HOCl, but not TGF-β1 or H2O2/HOCl, induced β3 expression by triggering the enhanced activation of p38 MAPK. Intriguingly, β3 in turn promoted TGF-β1/H2O2/HOCl-mediated induction of metastatic phenotype of HCC cells by enhancing TGF-β1 signaling. β3 promoted TGF-β1/H2O2/HOCl-induced expression of itself via positive feed-back effect on p38 MAPK activation, and also promoted TGF-β1/H2O2/HOCl-induced expression of α3 and SNAI2 by enhancing the activation of ERK pathway, thus resulting in higher invasive capacity of HCC cells. By enhancing MAPK activation, β3 enabled TGF-β1 to augment the promoting effect of H2O2/HOCl on anoikis-resistance of HCC cells. TGF-β1/H2O2/HOCl-induced metastatic phenotype was sufficient for HCC cells to extravasate from circulation and form metastatic foci in an experimental metastasis model in nude mice. Inhibiting the function of β3 could suppress or abrogate the promoting effects of TGF-β1/H2O2/HOCl on invasive capacity, anoikis-resistance, and extravasation of HCC cells. These results suggest that β3 could function as a modulator to promote TGF-β1/H2O2/HOCl-mediated induction of metastatic phenotype of non-metastatic tumor cells, and that targeting β3 might be a potential approach in preventing the induction of metastatic phenotype of non-metastatic tumor cells.  相似文献   

6.
7.
Zi Z  Chapnick DA  Liu X 《FEBS letters》2012,586(14):1921-1928
The physiological responses to TGF-β stimulation are diverse and vary amongst different cell types and environmental conditions. Even though the principal molecular components of the canonical and the non-canonical TGF-β signaling pathways have been largely identified, the mechanism that underlies the well-established context dependent physiological responses remains a mystery. Understanding how the components of TGF-β signaling function as a system and how this system functions in the context of the global cellular regulatory network requires a more quantitative and systematic approach. Here, we review the recent progress in understanding TGF-β biology using integration of mathematical modeling and quantitative experimental analysis. These studies reveal many interesting dynamics of TGF-β signaling and how cells quantitatively decode variable doses of TGF-β stimulation.  相似文献   

8.
9.
10.
11.
12.

Background

Immunosuppressant cyclosporine-A induces gingival hyperplasia, which is characterized by increased fibroblast proliferation and overproduction of extracellular matrix components and regulated by transforming growth factor-beta (TGF-β). The TGF-β and Sonic hedgehog (Shh) pathways both mediate cell proliferation. Crosstalk between these pathways in cancer has recently been proposed, but the hierarchical pattern of this crosstalk remains unclear. In normal fibroblasts, a TGF-β-stimulating Shh pattern was observed in induced fibrosis. However, Shh pathway involvement in cyclosporine-enhanced gingival proliferation and the existence of crosstalk with the TGF-β pathway remain unclear.

Methodology/Principal Findings

Cyclosporine enhanced mRNA and protein levels of TGF-β and Shh in human gingival fibroblasts (RT-PCR and western blotting). A TGF-β pathway inhibitor mitigated cyclosporine-enhanced cell proliferation and an Shh pathway inhibitor attenuated cyclosporine-enhanced proliferation in fibroblasts (MTS assay and/or RT-PCR of PCNA). Exogenous TGF-β increased Shh expression; however, exogenous Shh did not alter TGF-β expression. The TGF-β pathway inhibitor mitigated cyclosporine-upregulated Shh expression, but the Shh pathway inhibitor did not alter cyclosporine-upregulated TGF-β expression.

Conclusions/Significance

The TGF-β and Shh pathways mediate cyclosporine-enhanced gingival fibroblast proliferation. Exogenous TGF-β increased Shh expression, and inhibition of TGF-β signaling abrogated the cyclosporine-induced upregulation of Shh expression; however, TGF-β expression appeared unchanged by enhanced or inhibited Shh signaling. This is the first study demonstrating the role of Shh in cyclosporine-enhanced gingival cell proliferation; moreover, it defines a hierarchical crosstalk pattern in which TGF-β regulates Shh in gingival fibroblasts. Understanding the regulation of cyclosporine-related Shh and TGF-β signaling and crosstalk in gingival overgrowth will clarify the mechanism of cyclosporine-induced gingival enlargement and help develop targeted therapeutics for blocking these pathways, which can be applied in pre-clinical and clinical settings.  相似文献   

13.
βKlotho is a regulator in multiple metabolic processes, while its role in cancer remains unclear. We found the expression of βKlotho was down-regulated in human hepatocellular carcinoma tissues compared with that in paired adjacent non-tumourous liver tissues. Hepatoma cells also showed decreased expression of βKlotho compared with normal hepatocyte cells. Reintroduction of βKlotho into hepatoma cells inhibited their proliferation. The anti-proliferative effect of βKlotho might be linked with G1 to S phase arrest, which was mediated by Akt/GSK-3β/cyclin D1 signaling, since forced expression βKlotho reduced the phosphorylation level of Akt and GSK-3β and induced down-regulation of cyclin D1. Furthermore, βKlotho overexpression could inhibit tumorgenesis, while constitutively activated Akt could override the suppressive effects of βKlotho in vivo. These data suggest βKlotho suppresses tumor growth in hepatocellular carcinoma.  相似文献   

14.
15.
Distinguishing renal oncocytoma (RO) from the eosinophilic variant of chromophobe renal cell carcinoma (ChRCC) under the light microscope is a common diagnostic problem. Our recent research has shown significant difference between the presence of tumor fibrous capsule in ChRCCs and ROs. Transforming growth factor beta 1 (TGF-β1) is a potent cytokine involved in regulating a number of cellular processes. Two main purposes of this research were to investigate whether the TGF-β1 staining could be related to the presence of tumor fibrous capsule and if it could be used in the differential diagnosis between ChRCC and RO. We investigated 34 cases: 16 ChRCCs (8 eosinophilic and 8 classic) and 18 ROs. All available slides of each tumor, routinely stained with hematoxylin and eosin (H&E) were first analyzed to note the presence of tumor fibrous capsule. One paraffin embedded tissue block matching the representative H&E slide was selected for the immunohistochemical analysis. TGF-β1 expression was analyzed semiquantitatively in the tumor tissue, the tumor fibrous capsule, if present and the peritumoral renal parenchyma. Intensity of TGF-β1 expression was weaker in ChRCCs than the one observed in ROs (P<0.05). The type of reaction in ChRCCs was predominantly membranous unlike in ROs, which exhibited a predominantly cytoplasmic reaction (P<0.05). Moreover, none of the ROs showed membranous type of reaction for TGF-β1. In the group of ChRCCs, tumors with capsule had statistically significant higher quantity of TGF-β1 expression in tumor tissue and in peritumoral renal parenchyma compared to the tumors without capsule (P<0.05). Our results showed different types of TGF-β1 expression in ChRCCs and ROs: ChRCCs had predominantly membranous type of reaction, and ROs predominantly cytoplasmic. Furthermore, ChRCCs with capsule had statistically significant higher quantity of TGF-β1 expression in tumor tissue and in peritumoral renal parenchyma compared to the tumors without capsule. Based on these findings we can speculate that it could be possible that TGF-β1 plays a role in the formation of fibrous capsule in ChRCCs.Key words: capsule, chromophobe renal cell carcinoma, renal oncocytoma, TGF-β1  相似文献   

16.

Background

Hypertrophic scars are pathologic proliferations of the dermal skin layer resulting from excessive collagen deposition during the healing process of cutaneous wounds. Current research suggests that the TGF-β/Smad signaling pathway is closely associated with normal scar and hypertrophic scar formation. TRAP-1-like protein (TLP), a cytoplasmic protein, has been reported to efficiently regulate Smad2- and Smad3-dependent signal expression in the TGF-β pathway. The relationship between TLP and Type I/III collagen (Col I/III) synthesis explored in the present study provides an effective target for wound healing and gene therapy of hypertrophic scarring.

Objective

To investigate the effects of TLP on collagen synthesis in human dermal fibroblasts.

Methods

Lentiviral vectors encoding TLP was constructed to transfect fibroblasts derived from normal human skin. The expression of Col I/III and phosphorylation of Smad2 and Smad3 in fibroblasts were examined after TLP treatment. In addition, the comparison of TLP expression in normal skin tissues and in hypertrophic scar tissues was performed, and the effect of TLP on cell viability was analyzed by MTT assay.

Results

TLP expression in hypertrophic scar tissue was markedly higher than in normal skin tissue. The Real Time PCR and Western blot test results both revealed that the synthesis of Col I/III was positively correlated with the expression of TLP. TLP also facilitate Smad2 phosphorylation while, conversely, inhibiting Smad3 phosphorylation. TLP may play a cooperative role, along with the cytokine TGF-β1, in improving the overall cell viability of skin fibroblasts.

Conclusions

TLP likely acts as a molecular modulator capable of altering the balance of Smad3- and Smad2-dependent signaling through regulation of phosphorylation, thus facilitating collagen synthesis in fibroblasts. Based on genetic variation in TLP levels in different tissues, these results suggest that TLP plays a key role in the process of TGF-β1/Smad3 signaling that contributes to wound healing and genesis of pathologic scars.  相似文献   

17.
18.

Aim

This study is to explore the different expressions of serum N-glycoproteins and glycosylation sites between hepatocellular carcinoma (HCC) patients and healthy controls.

Method

We combined high abundant proteins depletion and hydrophilic affinity method to enrich the glycoproteins. Through liquid chromatography-tandem mass spectrometry (LC-MS/MS), we extensively surveyed different expressions of glycosylation sites and glycoproteins between the two groups.

Result

This approach identified 152 glycosylation sites and 54 glycoproteins expressed differently between HCC patients and healthy controls. With the absolute values of Pearson coefficients of at least 0.8, eight proteins were identified significantly up or down regulated in HCC serum. Those proteins are supposed to be involved in several biological processes, cellular components and molecular functions of hepatocarcinogenesis. Several of them had been reported abnormally regulated in several kinds of malignant tumors, and may be promising biomarkers of HCC.

Conclusion

Our work provides a systematic and quantitative method of glycoproteomics and demonstrates some key changes in clinical HCC serum. These proteomic signatures may help to unveil the underlying mechanisms of hepatocarcinogenesis and may be useful for the exploration of candidate biomarkers.  相似文献   

19.
Connective tissue growth factor (CTGF), which is also called CCN2, is a secreted matricellular protein. CTGF regulates various important cellular functions by interacting with multiple molecules in the microenvironment. In the ovary, CTGF is mainly expressed in granulosa cells and involved in the regulation of follicular development, ovulation and luteinization. TGF-β1 has been shown to up-regulate CTGF expression in rat and hen granulosa cells. However, the underlying molecular mechanisms of this up-regulation remain undefined. More importantly, whether the stimulatory effect of TGF-β1 on CTGF expression can be observed in human granulosa cells remains unknown. In the present study, our results demonstrated that TGF-β1 treatment up-regulates CTGF expression in both immortalized human granulosa cells and primary human granulosa cells. Using a siRNA-mediated knockdown approach and a pharmacological inhibitor, we demonstrated that the inhibition of Smad2, Smad3 or ERK1/2 attenuates the TGF-β1-induced up-regulation of CTGF. This study provides important insights into the molecular mechanisms that mediate TGF-β1-up-regulated CTGF expression in human granulosa cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号