首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
South America lost around 52 genera of mammals during a worldwide event known as the Late Quaternary Extinction episode. More than 80% of South American mammals weighing > 44 kg succumbed. Analysis of the megafaunal extinction chronology in relation to human arrival and major climate changes have revealed slightly different extinction patterns in different eco‐regions of the continent, highlighting the importance of detailed regional analysis in order to understand how the possible drivers of extinction operated. Here we present an analysis of the megafaunal extinction in the Última Esperanza (UE) area of southwestern Patagonia, Chile. We have compiled a comprehensive chronology of megafaunal extinctions and earliest human occupation between 18–7 cal ka BP, based on radiocarbon dates from published literature. We calculated confidence intervals using the GRIWM method to estimate the times of human arrival and megafaunal local extinctions, and then compared these events to the timing of major climate and vegetation changes, fire frequency increase, and the Reclús volcanic eruption. Our results suggest that a combination of human impacts and climate–vegetation change drove megafaunal extinctions in the UE area, with the balance of factors being taxon specific; the volcanic eruption does not seem to have exacerbated extinctions. Competition between humans and mega‐carnivores seems to be the most plausible cause for the extinction of the mega‐carnivores. Coexistence of humans with extinct horses, extinct camels, and mylodonts for several thousand years rules out a scenario of blitzkrieg overkill of megafauna by humans. The transition of vegetation from cold grasslands to Nothofagus forests corresponds with the disappearance of Hippidion saldiasi and Lama cf. owenii. The later full establishment of Nothofagus forests and an increasing fire frequency coincided with the disappearance of mylodonts. A climate‐driven reduction of open environments plausibly reduced herbivore's populations making them susceptible to local extinction.  相似文献   

2.
Debate continues to rage between enthusiasts for climate change versus humans as a cause of the catastrophic faunal extinctions that have occurred in the wake of human arrival in previously uninhabited regions of the world. A global pattern of human arrival to such landmasses, followed by faunal collapse and other ecological changes, appears without known exception. This strongly suggests to some investigators that a more interesting extinction debate lies within the realm of potential human-caused explanations and how climate might exacerbate human impacts. New observations emerging from refined dating techniques, paleoecology and modeling suggest that the megafaunal collapses of the Americas and Australia, as well as most prehistoric island biotic losses, trace to a variety of human impacts, including rapid overharvesting, biological invasions, habitat transformation and disease.  相似文献   

3.
The late Quaternary megafaunal extinction impacted ecological communities worldwide, and affected key ecological processes such as seed dispersal. The traits of several species of large-seeded plants are thought to have evolved in response to interactions with extinct megafauna, but how these extinctions affected the organization of interactions in seed-dispersal systems is poorly understood. Here, we combined ecological and paleontological data and network analyses to investigate how the structure of a species-rich seed-dispersal network could have changed from the Pleistocene to the present and examine the possible consequences of such changes. Our results indicate that the seed-dispersal network was organized into modules across the different time periods but has been reconfigured in different ways over time. The episode of megafaunal extinction and the arrival of humans changed how seed dispersers were distributed among network modules. However, the recent introduction of livestock into the seed-dispersal system partially restored the original network organization by strengthening the modular configuration. Moreover, after megafaunal extinctions, introduced species and some smaller native mammals became key components for the structure of the seed-dispersal network. We hypothesize that such changes in network structure affected both animal and plant assemblages, potentially contributing to the shaping of modern ecological communities. The ongoing extinction of key large vertebrates will lead to a variety of context-dependent rearranged ecological networks, most certainly affecting ecological and evolutionary processes.  相似文献   

4.
Late Pleistocene extinctions are of interest to paleontological and anthropological research. In North America and Australia, human occupation occurred during a short period of time and overexploitation may have led to the extinction of mammalian megafauna. In northern Eurasia megafaunal extinctions are believed to have occurred over a relatively longer period of time, perhaps as a result of changing environmental conditions, but the picture is much less clear. To consider megafaunal extinction in Eurasia, we compare differences in the geographical distribution and commonness of extinct and extant species between paleontological and archaeological localities from the late middle Pleistocene to Holocene. Purely paleontological localities, as well as most extinct species, were distributed north of archaeological sites and of the extant species, suggesting that apart from possible differences in adaptations between humans and other species, humans could also have a detrimental effect on large mammal distribution. However, evidence for human overexploitation applies only to the extinct steppe bison Bison priscus. Other human-preferred species survive into the Holocene, including Rangifer tarandus, Equus ferus, Capreolus capreolus, Cervus elaphus, Equus hemionus, Saiga tatarica, and Sus scrofa. Mammuthus primigenius and Megaloceros giganteus were rare in archaeological sites. Carnivores appear little influenced by human presence, although they become rarer in Holocene archaeological sites. Overall, the data are consistent with the conclusion that humans acted as efficient hunters selecting for the most abundant species. Our study supports the idea that the late Pleistocene extinctions were environmentally driven by climatic changes that triggered habitat fragmentation, species range reduction, and population decrease, after which human interference either by direct hunting or via indirect activities probably became critical.  相似文献   

5.
The uncertain blitzkrieg of Pleistocene megafauna   总被引:6,自引:1,他引:5  
We investigated, using meta‐analysis of empirical data and population modelling, plausible scenarios for the cause of late Pleistocene global mammal extinctions. We also considered the rate at which these extinctions may have occurred, providing a test of the so‐called ‘blitzkrieg’ hypothesis, which postulates a rapid, anthropogenically driven, extinction event. The empirical foundation for this work was a comprehensive data base of estimated body masses of mammals, comprising 198 extinct and 433 surviving species > 5 kg, which we compiled through an extensive literature search. We used mechanistic population modelling to simulate the role of human hunting efficiency, meat off‐take, relative naivety of prey to invading humans, variation in reproductive fitness of prey and deterioration of habitat quality (due to either anthropogenic landscape burning or climate change), and explored the capacity of different modelling scenarios to recover the observed empirical relationship between body mass and extinction proneness. For the best‐fitting scenarios, we calculated the rate at which the extinction event would have occurred. All of the modelling was based on sampling randomly from a plausible range of parameters (and their interactions), which affect human and animal population demographics. Our analyses of the empirical data base revealed that the relationship between body mass and extinction risk relationship increases continuously from small‐ to large‐sized animals, with no clear ‘megafaunal’ threshold. A logistic ancova model incorporating body mass and geography (continent) explains 92% of the variation in the observed extinctions. Population modelling demonstrates that there were many plausible mechanistic scenarios capable of reproducing the empirical body mass–extinction risk relationship, such as specific targeting of large animals by humans, or various combinations of habitat change and opportunistic hunting. Yet, given the current imperfect knowledge base, it is equally impossible to use modelling to isolate definitively any single scenario to explain the observed extinctions. However, one universal prediction, which applied in all scenarios in which the empirical distribution was correctly predicted, was for the extinctions to be rapid following human arrival and for surviving fauna to be suppressed below their pre‐‘blitzkrieg’ densities. In sum, human colonization in the late Pleistocene almost certainly triggered a ‘blitzkrieg’ of the ‘megafauna’, but the operational details remain elusive.  相似文献   

6.
Controversy persists about why so many large‐bodied mammal species went extinct around the end of the last ice age. Resolving this is important for understanding extinction processes in general, for assessing the ecological roles of humans, and for conserving remaining megafaunal species, many of which are endangered today. Here we explore an integrative hypothesis that asserts that an underlying cause of Late Quaternary megafaunal extinctions was a fundamental shift in the spatio‐temporal fabric of ecosystems worldwide. This shift was triggered by the loss of the millennial‐scale climate fluctuations that were characteristic of the ice age but ceased approximately 11700 years ago on most continents. Under ice‐age conditions, which prevailed for much of the preceding 2.6 Ma, these radical and rapid climate changes prevented many ecosystems from fully equilibrating with their contemporary climates. Instead of today's ‘striped’ world in which species' ranges have equilibrated with gradients of temperature, moisture, and seasonality, the ice‐age world was a disequilibrial ‘plaid’ in which species' ranges shifted rapidly and repeatedly over time and space, rarely catching up with contemporary climate. In the transient ecosystems that resulted, certain physiological, anatomical, and ecological attributes shared by megafaunal species pre‐adapted them for success. These traits included greater metabolic and locomotory efficiency, increased resistance to starvation, longer life spans, greater sensory ranges, and the ability to be nomadic or migratory. When the plaid world of the ice age ended, many of the advantages of being large were either lost or became disadvantages. For instance in a striped world, the low population densities and slow reproductive rates associated with large body size reduced the resiliency of megafaunal species to population bottlenecks. As the ice age ended, the downsides of being large in striped environments lowered the extinction thresholds of megafauna worldwide, which then increased the vulnerability of individual species to a variety of proximate threats they had previously tolerated, such as human predation, competition with other species, and habitat loss. For many megafaunal species, the plaid‐to‐stripes transition may have been near the base of a hierarchy of extinction causes whose relative importances varied geographically, temporally, and taxonomically.  相似文献   

7.
  1. Habitat modification and fragmentation are key factors responsible for fish population decline worldwide. Previous assessments documented a total of 72 species extinctions for the sole class of Actinopterygii. However, global extinctions are difficult to monitor or study based on fossil records. By contrast, local extinctions occurring at the population level are easier to study. Given this context, an important question relates to whether extinction dynamics studied at the local scale can provide useful information to understand extinctions occurring at larger scales. This would be the case if local extinctions were not balanced by recolonisation as in a classic metapopulation. Our aim is thus to explain the observed regional (per basin) persistence of 252 fish populations by testing contribution of local extinction rates and more generally metapopulation dynamics components.
  2. To address this aim, we used the annual extinction probability of 252 regional populations of up to 14 species inhabiting 18 coastal rivers, which became isolated c. 8,500 years ago. We specifically compared extinction probabilities obtained by seven theoretical models to investigate whether regional extinction rates (i.e. loss from a river system) were correlated to local extinction rates (i.e. loss from an occupied site) and the role of metapopulation dynamics to explain regional persistence.
  3. Using empirical data, we showed the importance of variables related to metapopulation dynamics to explain extinction rates across the 18 river systems. As expected, the regional extinction rate decreased with the colonisation rate, area, metapopulation size, and percentage of occupied localities. By contrast, an inconsistent relationship emerged between regional and local extinction rates, as species with high local extinction rates were not particularly prone to regional extinction.
  4. Our results provide strong support for the contribution of colonisation rates to explain persistence. Overall, our results show that the equilibrium number of occupied localities could be a good predictor of the long-term persistence of metapopulations in rivers. Finally, our results suggest the importance of connectivity to maintain sustainable populations within the river system.
  相似文献   

8.
Human settlement into new regions is typically accompanied by waves of animal extinctions, yet we have limited understanding of how human communities perceived and responded to such ecological crises. The first megafaunal extinctions in New Zealand began just 700 years ago, in contrast to the deep time of continental extinctions. Consequently, indigenous Māori oral tradition includes ancestral sayings that explicitly refer to extinct species. Our linguistic analysis of these sayings shows a strong bias towards critical food species such as moa, and emphasizes that Māori closely observed the fauna and environment. Temporal changes in form and content demonstrate that Māori recognized the loss of important animal resources, and that this loss reverberated culturally centuries later. The data provide evidence that extinction of keystone fauna was important for shaping ecological and social thought in Māori society, and suggest a similar role in other early societies that lived through megafaunal extinction events.  相似文献   

9.
Although the recent historical period is usually treated as a temporal base-line for understanding patterns of mammal extinction, mammalian biodiversity loss has also taken place throughout the Late Quaternary. We explore the spatial, taxonomic and phylogenetic patterns of 241 mammal species extinctions known to have occurred during the Holocene up to the present day. To assess whether our understanding of mammalian threat processes has been affected by excluding these taxa, we incorporate extinct species data into analyses of the impact of body mass on extinction risk. We find that Holocene extinctions have been phylogenetically and spatially concentrated in specific taxa and geographical regions, which are often not congruent with those disproportionately at risk today. Large-bodied mammals have also been more extinction-prone in most geographical regions across the Holocene. Our data support the extinction filter hypothesis, whereby regional faunas from which susceptible species have already become extinct now appear less threatened; they may also suggest that different processes are responsible for driving past and present extinctions. We also find overall incompleteness and inter-regional biases in extinction data from the recent fossil record. Although direct use of fossil data in future projections of extinction risk is therefore not straightforward, insights into extinction processes from the Holocene record are still useful in understanding mammalian threat.  相似文献   

10.
Bridging the gap between the fossil record and conservation biology has recently become of great interest. The enormous number of documented extinctions across different taxa can provide insights into the extinction risk of living species. However, few studies have explored this connection. We used generalised boosted modelling to analyse the impact of several traits that are assumed to influence extinction risk on the stratigraphic duration of amphibian species in the fossil record. We used this fossil‐calibrated model to predict the extinction risk for living species. We observed a high consensus between our predicted species durations and the current IUCN Red List status of living amphibian species. We also found that today's Data Deficient species are mainly predicted to experience short durations, hinting at their likely high threat status. Our study suggests that the fossil record can be a suitable tool for the evaluation of current taxa‐specific Red Listing status.  相似文献   

11.
Between 50,000 and 3,000 years before present (BP) 65% of mammal genera weighing over 44 kg went extinct, together with a lower proportion of small mammals. Why species went extinct in such large numbers is hotly debated. One of the arguments proposes that climate changes underlie Late Quaternary extinctions, but global quantitative evidence for this hypothesis is still lacking. We test the potential role of global climate change on the extinction of mammals during the Late Quaternary. Our results suggest that continents with the highest climate footprint values, in other words, with climate changes of greater magnitudes during the Late Quaternary, witnessed more extinctions than continents with lower climate footprint values, with the exception of South America. Our results are consistent across species with different body masses, reinforcing the view that past climate changes contributed to global extinctions. Our model outputs, the climate change footprint dataset, provide a new research venue to test hypotheses about biodiversity dynamics during the Late Quaternary from the genetic to the species richness level.  相似文献   

12.
Aim There remains some uncertainty concerning the causes of extinctions of Madagascar’s megafauna. One hypothesis is that they were caused by over‐hunting by humans. A second hypothesis is that their extinction was caused by both environmental change and hunting. This paper systematically addresses the second hypothesis through examination of two new pollen records from south‐eastern Madagascar alongside other published records across the island. Location South‐eastern Madagascar. Methods We reconstructed past vegetation and fire dynamics over the past 6000 years at two sites in south‐eastern Madagascar (Ste‐Luce) using fossil pollen and charcoal contained in sedimentary sequences. We investigated drivers of vegetation changes and how these, in turn, influenced faunal species in the south‐east, using published climatic, archaeological and faunal records. Further, we also used published records to provide a synthesis of environmental changes on the whole island. Results Vegetation reconstructions indicate that the mosaic vegetation in the region of Ste‐Luce was highly dynamic in response to climatic changes. The open woodland, surrounding the littoral forest, transformed into an ericoid grassland between c. 5800 and 5200 cal. yr bp , possibly in response to a moderate drought recorded during this period. The littoral forest was more stable between c. 5100 and 1000 cal. yr bp , with only some minor compositional changes c. 2800 cal. yr bp and between c. 1900 and 1000 cal. yr bp . Significant forest decline, however, is observed at c. 950 cal. yr bp , coinciding with a drought and a marine surge. A comparison of these results with a synthesis of published vegetation records across the island shows asynchronous vegetation changes in response to various droughts during the Holocene, except for the 950 cal. yr bp drought event, with evidence of widespread vegetation transformations and fires across the island. Main conclusions Pronounced climatic desiccation between 1200 and 700 cal. yr bp may have been the slow driver framing and triggering vegetation transformations and decline in megafaunal populations. In addition, hunting by drought‐impacted human inhabitants and competition with newly introduced cattle would have amplified the impacts on megafaunal populations, leading to numerous extinctions in this period.  相似文献   

13.
Five main drivers of population declines have been identified: climate change, habitat degradation, invasive alien species (IAS), overexploitation and pollution. Each of these drivers interacts with the others, and also with the intrinsic traits of individual species, to determine species’ distribution and range dynamics. We explored the relative importance of life-history and resource-use traits, climate, habitat, and the IAS Harmonia axyridis in driving local extinction and colonisation dynamics across 25 ladybird species (Coleoptera: Coccinellidae).Species were classified as continually present, continually absent, extinct, or colonising in each of 4,642 1-km2 grid squares. The spatial distribution of local extinction and colonisation events (in the grid squares) across all species’ ranges were related to ecological traits, overlap with H. axyridis, climate, and habitat factors within generalised linear models (GLMs). GLMs were also used to relate species’ traits, range characteristics, and niche overlap with H. axyridis to extinction and colonisation rates summarised at the species level. Bayesian model averaging was used to account for model uncertainty, and produce reduced sets of models which were well-supported by data. Species with a high degree of niche overlap with H. axyridis suffered higher extinction rates in both analyses, while at the spatial scale extinctions were more likely and colonisations less likely in areas with a high proportion of urban land cover. In the spatial analysis, polymorphic species with large range sizes were more likely to colonise and less likely to go extinct, and sunny grid squares were more likely to be colonised. Large, multivoltine species and rainy grid squares were less likely to colonise or be colonised. In conclusion for ladybirds, extinction and colonisation dynamics are influenced by several factors. The only factor that both increased the local extinction likelihood and reduced colonisation likelihood was urban land cover, while ecological overlap with H. axyridis greatly increased extinction rates. Continued spread of H. axyridis is likely to adversely affect native species and urban areas may be particularly vulnerable.  相似文献   

14.
There are two possible approaches to understanding natural and human-induced changes in the primate communities of Madagascar. One is to begin with present-day and recent historic interactions and work backwards. A second is to begin with paleoecological records of Malagasy primate communities before and immediately following human arrival, and the associated evidence of human and nonhuman primate interactions, and work forwards. On the basis of biological and climatic studies, as well as historic and ethnohistoric records, we are beginning to understand the abiotic and biotic characteristics of Madagascar's habitats, the lemurs' ecological adaptations to these unique habitats, the extent of forest loss, fragmentation and hunting, and the differential vulnerability of extant lemur species to these pressures. On the basis of integrated paleoecological, archaeological and paleontological research, we have begun to construct a detailed chronology for late prehistoric Madagascar. We are beginning to understand the complex sequence of events that led to one of the most dramatic recent megafaunal extinction/extirpation events. Combining the perspectives of the past and the present, we see a complex set of interactions affecting an initially rich but vulnerable fauna. The total evidence refutes any simple, unicausal (e.g. hunting/habitat destruction/climate change) explanation of megafaunal extinctions, yet unequivocally supports a major role--both direct and indirect--for humans as the trigger of the extinction process. It also supports a change over time in the relative importance of hunting versus habitat loss, and in the trophic characteristics of the primate communities in Madagascar.  相似文献   

15.
Numerous hypotheses have been proposed to explain the end Pleistocene extinction of large bodied mammals. The disease hypothesis attributes the extinction to the arrival of a novel ‘hyperdisease’ brought by immigrating aboriginal humans. However, until West Nile virus (WNV) invaded the United States, no known disease met the criteria of a hyperdisease. We evaluate the disease hypothesis using WNV in the United States as a model system. We show that WNV is size‐biased in its infection of North America birds, but is unlikely to result in an extinction similar to that of the end Pleistocene. WNV infects birds more uniformly across the body size spectrum than extinctions did across mammals and is not size‐biased within orders. Our study explores the potential impact of WNV on bird populations and provides no support for disease as a causal mechanism for the end Pleistocene megafaunal extinction.  相似文献   

16.
Considerable attention has focused on the climatic effects of global climate change on biodiversity, but few analyses and no broad assessments have evaluated effects of sea-level rise on biodiversity. Taking advantage of new maps of marine intrusion under scenarios of 1 and 6 m sea-level rise, we calculated areal losses for all terrestrial ecoregions globally, with areal losses for particular ecoregions ranging from nil to complete. Marine intrusion is a global phenomenon, but its effects are most prominent in Southeast Asia and nearby islands, eastern North America, northeastern South America, and western Alaska. Making assumptions regarding faunal responses to reduced distributional areas of species endemic to ecoregions, we estimated likely numbers of extinctions caused by sea-level rise, and found that marine-intrusion-caused extinctions of narrow endemics are likely to be most prominent in northeastern South America, although anticipated extinctions in smaller numbers are scattered worldwide. This assessment serves as a complement to recent estimates of losses owing to changing climatic conditions, considering a dimension of biodiversity consequences of climate change that has not previously been taken into account.  相似文献   

17.
Climate change may be a major threat to global biodiversity, especially to tropical species. Yet, why tropical species are more vulnerable to climate change remains unclear. Tropical species are thought to have narrower physiological tolerances to temperature, and they have already experienced a higher estimated frequency of climate-related local extinctions. These two patterns suggest that tropical species are more vulnerable to climate change because they have narrower thermal niche widths. However, no studies have tested whether species with narrower climatic niche widths for temperature have experienced more local extinctions, and if these narrower niche widths can explain the higher frequency of tropical local extinctions. Here, we test these ideas using resurvey data from 538 plant and animal species from 10 studies. We found that mean niche widths among species and the extent of climate change (increase in maximum annual temperatures) together explained most variation (>75%) in the frequency of local extinction among studies. Surprisingly, neither latitude nor occurrence in the tropics alone significantly predicted local extinction among studies, but latitude and niche widths were strongly inversely related. Niche width also significantly predicted local extinction among species, as well as among and (sometimes) within studies. Overall, niche width may offer a relatively simple and accessible predictor of the vulnerability of populations to climate change. Intriguingly, niche width has the best predictive power to explain extinction from global warming when it incorporates coldest yearly temperatures.  相似文献   

18.
Extinctions can dramatically reshape biological communities. As a case in point, ancient mass extinction events apparently facilitated dramatic new evolutionary radiations of surviving lineages. However, scientists have yet to fully understand the consequences of more recent biological upheaval, such as the megafaunal extinctions that occurred globally over the past 50 kyr. New Zealand was the world''s last large landmass to be colonized by humans, and its exceptional archaeological record documents a vast number of vertebrate extinctions in the immediate aftermath of Polynesian arrival approximately AD 1280. This recently colonized archipelago thus presents an outstanding opportunity to test for rapid biological responses to extinction. Here, we use ancient DNA (aDNA) analysis to show that extinction of an endemic sea lion lineage (Phocarctos spp.) apparently facilitated a subsequent northward range expansion of a previously subantarctic-limited lineage. This finding parallels a similar extinction–replacement event in penguins (Megadyptes spp.). In both cases, an endemic mainland clade was completely eliminated soon after human arrival, and then replaced by a genetically divergent clade from the remote subantarctic region, all within the space of a few centuries. These data suggest that ecological and demographic processes can play a role in constraining lineage distributions, even for highly dispersive species, and highlight the potential for dynamic biological responses to extinction.  相似文献   

19.
It has been difficult to access projections of global‐scale climate change with high temporal resolution spaning the late Pleistocene and Holocene. This has limited our ability to discern how climate fluctuations have affected species’ range dynamics and extinction processes, turn‐over in ecological communities and changes in genetic diversity. PaleoView is a new freeware tool, which provides a comprehensive but easy‐to‐use way to generate and view paleoclimate data at temporal and spatial resolutions suitable for detecting biotic responses to major climate shifts since the last glacial maximum. Regional to global scale simulations of temperature, precipitation, humidity and mean sea level pressure can be generated from PaleoView as gridded or time series data at time intervals as short as a decade for any period during the last 21 000 yr. They can be viewed using a built‐in geographical user interface or saved as data files. Modelled climate reconstructions are based on daily simulation output from the Community Climate System Model ver. 3 (CCSM3). This global coupled atmosphere–ocean–sea ice–land general circulation model accurately reproduces major climatic features associated with the most recent deglaciation event, and predicts present‐day patterns of climate conditions with verified hindcast skill. By providing a portal for readily accessing climate reconstructions at high temporal resolutions, PaleoView can help to better establish the consequences of past climate fluctuations on macro‐ecological patterns of biological and genetic diversity.  相似文献   

20.
While terrestrial megafaunal extinctions have been well characterized worldwide, our understanding of declines in marine megafauna remains limited. Here, we use ancient DNA analyses of prehistoric (<1450–1650 AD) sea lion specimens from New Zealand's isolated Chatham Islands to assess the demographic impacts of human settlement. These data suggest there was a large population of sea lions, unique to the Chatham Islands, at the time of Polynesian settlement. This distinct mitochondrial lineage became rapidly extinct within 200 years due to overhunting, paralleling the extirpation of a similarly large endemic mainland population. Whole mitogenomic analyses confirm substantial intraspecific diversity among prehistoric lineages. Demographic models suggest that even low harvest rates would likely have driven rapid extinction of these lineages. This study indicates that surviving Phocarctos populations are remnants of a once diverse and widespread sea lion assemblage, highlighting dramatic human impacts on endemic marine biodiversity. Our findings also suggest that Phocarctos bycatch in commercial fisheries may contribute to the ongoing population decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号