首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Real-time quantification of microRNAs by stem-loop RT-PCR   总被引:17,自引:0,他引:17       下载免费PDF全文
A novel microRNA (miRNA) quantification method has been developed using stem-loop RT followed by TaqMan PCR analysis. Stem-loop RT primers are better than conventional ones in terms of RT efficiency and specificity. TaqMan miRNA assays are specific for mature miRNAs and discriminate among related miRNAs that differ by as little as one nucleotide. Furthermore, they are not affected by genomic DNA contamination. Precise quantification is achieved routinely with as little as 25 pg of total RNA for most miRNAs. In fact, the high sensitivity, specificity and precision of this method allows for direct analysis of a single cell without nucleic acid purification. Like standard TaqMan gene expression assays, TaqMan miRNA assays exhibit a dynamic range of seven orders of magnitude. Quantification of five miRNAs in seven mouse tissues showed variation from less than 10 to more than 30,000 copies per cell. This method enables fast, accurate and sensitive miRNA expression profiling and can identify and monitor potential biomarkers specific to tissues or diseases. Stem-loop RT-PCR can be used for the quantification of other small RNA molecules such as short interfering RNAs (siRNAs). Furthermore, the concept of stem-loop RT primer design could be applied in small RNA cloning and multiplex assays for better specificity and efficiency.  相似文献   

2.
A novel microRNA (miRNA) quantification method has been developed using stem–loop RT followed by TaqMan PCR analysis. Stem–loop RT primers are better than conventional ones in terms of RT efficiency and specificity. TaqMan miRNA assays are specific for mature miRNAs and discriminate among related miRNAs that differ by as little as one nucleotide. Furthermore, they are not affected by genomic DNA contamination. Precise quantification is achieved routinely with as little as 25 pg of total RNA for most miRNAs. In fact, the high sensitivity, specificity and precision of this method allows for direct analysis of a single cell without nucleic acid purification. Like standard TaqMan gene expression assays, TaqMan miRNA assays exhibit a dynamic range of seven orders of magnitude. Quantification of five miRNAs in seven mouse tissues showed variation from less than 10 to more than 30000 copies per cell. This method enables fast, accurate and sensitive miRNA expression profiling and can identify and monitor potential biomarkers specific to tissues or diseases. Stem–loop RT–PCR can be used for the quantification of other small RNA molecules such as short interfering RNAs (siRNAs). Furthermore, the concept of stem–loop RT primer design could be applied in small RNA cloning and multiplex assays for better specificity and efficiency.  相似文献   

3.
The small size of miRNAs makes profiling of all the 462 known human miRNAs difficult using single cell samples. Recently, we showed that judicious sequence partitioning between RT primers and second strand synthesis primers permitted multiplexed RT-PCR amplification of miRNA in very small samples to allow individual real time PCR quantification. Here, we show that zip coding the primers and TaqMan probes with sequences specific to each miRNA greatly improves reaction specificity, which permits the profiling of all miRNAs in a single multiplexed RT-PCR reaction.  相似文献   

4.
In diagnosis of CMV infection various laboratory methods are used. The methods based on detection of viral nucleic acids have been introduced routinely in many laboratories. The aim of this study was to compare nucleic acid hybridisation method and various variants of PCR methods with respect to their ability to detect CMV DNA. The studied material comprised 60 blood samples from 19 patients including 13 renal transplant recipients and 6 with acute leukaemia. The samples were subjected to hybridisation (Murex Hybrid Capture System CMV DNA) and PCR carried out in 3 variants: with one pair of primers (single PCR), nested PCR and Digene SHARP System with detection of PCR product using a genetic probe in ELISA system. The sensitivity of the variants ranged from 10(0) particles of viral DNA in nested PCR to 10(2) in single PCR. The producer claimed the sensitivity of the hybridisation test to be 3 x 10(5) and it seems to be sufficient for detection of CMV infection. The obtained results show that sensitivity of hybridisation was comparable to that of single PCR and the possibility of obtaining quantitative results makes it superior, on efficacy of antiviral therapy, especially in monitoring CMV infection in immunossuppressed patients and in following the efficacy of antiviral treatment.  相似文献   

5.
癌症的早期诊断可提高患者生存率.微创采集人体体液的液体活检方法可避免传统肿瘤组织活检方法侵入性和异质性的问题,逐渐成为癌症诊断的新方式.另外,DNA甲基化作为预测癌症发生发展的标志物,引起了越来越多研究者的关注.但传统DNA甲基化的检测方法灵敏度不高,且容易出现假阳性.近年来,数字PCR技术因其超高的检测灵敏度和精确度、无需标准曲线即可进行核酸绝对定量检测的优势,被用于DNA甲基化的定量检测中.本文首先介绍了DNA甲基化与癌症发生发展的关系,总结了传统DNA甲基化检测方法及其在癌症临床诊断中的应用,阐述了基于不同核酸样本分散方法的数字PCR技术及其在微量DNA甲基化检测中的优势,总结了采用数字PCR技术检测癌症患者体液中DNA甲基化的具体步骤,列举了数字PCR技术在癌症DNA甲基化检测中的研究成果及应用进展,最后提出了数字PCR技术检测癌症DNA甲基化未来可能面临的挑战,并对数字PCR技术在癌症液体活检方面的应用前景进行了展望.  相似文献   

6.
MicroRNAs represent a class of short (approximately 22 nt), noncoding regulatory RNAs involved in development, differentiation, and metabolism. We describe a novel microarray platform for genome-wide profiling of mature miRNAs (miChip) using locked nucleic acid (LNA)-modified capture probes. The biophysical properties of LNA were exploited to design probe sets for uniform, high-affinity hybridizations yielding highly accurate signals able to discriminate between single nucleotide differences and, hence, between closely related miRNA family members. The superior detection sensitivity eliminates the need for RNA size selection and/or amplification. MiChip will greatly simplify miRNA expression profiling of biological and clinical samples.  相似文献   

7.
High-sensitivity quantitative PCR platform   总被引:1,自引:0,他引:1  
DeGraves FJ  Gao D  Kaltenboeck B 《BioTechniques》2003,34(1):106-10, 112-5
Real-time PCR methods have become widely used within the past few years. However, real-time PCR is rarely used to study chronic diseases with low pathogen loads, presumably because of insufficient sensitivity. In this report, we developed an integrated nucleic acid isolation and real-time PCR platform that vastly improved the sensitivity of the quantitative detection of the intracellular bacterium, Chlamydia spp., by fluorescence resonance energy transfer real-time PCR. Determinants of the overall detection sensitivity were analyzed by extracting nucleic acids from bovine milk specimens spiked with low amounts of chlamydial organisms. Nucleic acids were optimally preserved and recovered by collection in guanidinium stabilization buffer, binding to a matrix of glass fiber fleece, and elution in low volume. Step-down thermal cycling and an excess of hot-start Taq polymerase vastly improved the robustness and sensitivity of the real-time PCR while essentially maintaining 100% specificity. The amplification of Chlamydia 23S rRNA allowed for the differentiation of chlamydial species and was more robust at low target numbers than amplification of the omp1 gene. The best combined method detected single targets per a 100-microL specimen equivalent in a 5-microL real-time PCR input. In an initial application, this high-sensitivity real-time PCR platform demonstrated a high prevalence of chlamydial infection in cattle.  相似文献   

8.
9.
Displacement probes have recently been described as a novel probe-based detection system for use in both quantitative real-time polymerase chain reaction (PCR) and single nucleotide polymorphism genotyping analysis. Previous reports have shown that shorter probes (23 mer) had improved detection sensitivity relative to longer probes (29 mer), with the likely reason for this effect being the improved hybridization kinetics of shorter probes. Sterically modified locked nucleic acids (LNAs) have been used to improve the design of a range of real-time PCR probes by raising the melting temperature (Tm) of the probe and enabling shorter probe designs to be considered. A displacement probe for gapdh was designed and tested successfully, and this probe was then redesigned with LNAs to an 11 mer probe. This probe showed increased detection sensitivity compared with the original 26 mer probe. To detect the widest range of displacement probe designs at maximum sensitivity, we have also developed a novel fluorescence capture two-step PCR protocol. This method produces enhanced probe quenching with a single standardized protocol ideal for high-throughput applications. The displacement probes tested produced sensitive and efficient quantitative analyses of template serial dilutions when compared with a range of commercially available predesigned real-time PCR detection systems, including TaqMan MGB probes, QuantiTect MGB probes, and LUX primers.  相似文献   

10.
目的:建立用复合探针荧光定量PCR快速检测布鲁氏菌的方法。方法:研究根据BSCP31基因编码31KDa的布鲁氏杆菌表面蛋白的核苷酸序列设计特异引物,通过PCR法的特异性、灵敏度和重复性研究,建立了复合探针荧光定量PCR检测布鲁氏菌的方法,用于布鲁氏菌病的筛选和诊断。结果:结果表明该检测方法的特异性为100%,最低可检出10个拷贝的质粒DNA分子,可对1×101-1×106拷贝范围内的模板进行定量,最低可检测至1×102CFU/ml细菌。该方法的精密度好,阳性质控品和阴性质控品不同时间测定三次及同一时间五次重复实验结果CV值均小于5%。结论:本研究建立的复合探针实时荧光定量PCR检测布鲁氏杆菌的方法,可对布鲁氏病原菌进行快速检测,对布病的筛选和确诊具有重要意义。  相似文献   

11.
Real-time PCR quantification of precursor and mature microRNA   总被引:9,自引:0,他引:9  
microRNAs (miRNAs) are challenging molecules to amplify by PCR because the miRNA precursor consists of a stable hairpin and the mature miRNA is roughly the size of a standard PCR primer. Despite these difficulties, successful real-time RT-PCR technologies have been developed to amplify and quantify both the precursor and mature microRNA. An overview of real-time PCR technologies developed by us to detect precursor and mature microRNAs is presented here. Protocols describe presentation of the data using relative (comparative C(T)) and absolute (standard curve) quantification. Real-time PCR assays were used to measure the time course of precursor and mature miR-155 expression in monocytes stimulated by lipopolysaccharide. Protocols are provided to configure the assays as low density PCR arrays for high throughput gene expression profiling. By profiling over 200 precursor and mature miRNAs in HL60 cells induced to differentiate with 12-O-tetradecanoylphorbol-13-acetate, it was possible to identify miRNAs who's processing is regulated during differentiation. Real-time PCR has become the gold standard of nucleic acid quantification due to the specificity and sensitivity of the PCR. Technological advancements have allowed for quantification of miRNA that is of comparable quality to more traditional RNAs.  相似文献   

12.
Innovative tools for detection of plant pathogenic viruses and bacteria   总被引:8,自引:0,他引:8  
Detection of harmful viruses and bacteria in plant material, vectors or natural reservoirs is essential to ensure safe and sustainable agriculture. The techniques available have evolved significantly in the last few years to achieve rapid and reliable detection of pathogens, extraction of the target from the sample being important for optimising detection. For viruses, sample preparation has been simplified by imprinting or squashing plant material or insect vectors onto membranes. To improve the sensitivity of techniques for bacterial detection, a prior enrichment step in liquid or solid medium is advised. Serological and molecular techniques are currently the most appropriate when high numbers of samples need to be analysed. Specific monoclonal and/or recombinant antibodies are available for many plant pathogens and have contributed to the specificity of serological detection. Molecular detection can be optimised through the automatic purification of nucleic acids from pathogens by columns or robotics. New variants of PCR, such as simple or multiplex nested PCR in a single closed tube, co-operative-PCR and real-time monitoring of amplicons or quantitative PCR, allow high sensitivity in the detection of one or several pathogens in a single assay. The latest development in the analysis of nucleic acids is micro-array technology, but it requires generic DNA/RNA extraction and pre-amplification methods to increase detection sensitivity. The advances in research that will result from the sequencing of many plant pathogen genomes, especially now in the era of proteomics, represent a new source of information for the future development of sensitive and specific detection techniques for these microorganisms.  相似文献   

13.
AIMS: The aim of this work was to develop a highly selective method of detecting sulphate-reducing bacteria (SRB) in crude oil. METHODS: A pair of PCR primers was designed based on an alignment of the nucleotide sequence of the 16S rRNA genes from the Desulfovibrionaceae family. DNA extraction from crude oil was performed by the method using zirconia beads and a stool kit. RESULTS: The PCR specifically detected Desulfovibrio and Desulfomicrobium in a sediment sample. When nucleic acids extracted directly from crude oil were used for the PCR, 16S rRNA genes of Desulfovibrio and Thermodesulforhabdus norvegicus were detected. IMPACT OF STUDY: A simple direct method for detection of the SRB in crude oil using PCR was established.  相似文献   

14.
A procedure has been developed for the rapid detection of enteroviruses and adenoviruses in environmental samples. Several systems for virus concentration and extraction of nucleic acid were tested by adding adenovirus type 2 and poliovirus type 1 to different sewage samples. The most promising method for virus recovery involved the concentration of viruses by centrifugation and elution of the virus pellets by treatment with 0.25 N glycine buffer, pH 9.5. Nucleic acid extraction by adsorption of RNA and DNA to silica particles was the most efficient. One aliquot of the extracted nucleic acids was used for a nested two-step PCR, with specific primers for all adenoviruses; and another aliquot was used to synthesize cDNA for a nested two-step PCR with specific primers for further detection of seeded polioviruses or all enteroviruses in the river water and sewage samples. The specificity and sensitivity were evaluated, and 24 different enterovirus strains and the 47 human adenovirus serotypes were recognized by the primers used. The sensitivity was estimated to be between 1 and 10 virus particles for each of the species tested. Twenty-five samples of sewage and polluted river water were analyzed and showed a much higher number of positive isolates by nested PCR than by tissue culture analysis. The PCR-based detection of enteroviruses and adenoviruses shows good results as an indicator of possible viral contamination in environmental wastewater.  相似文献   

15.
【背景】抗除草剂转基因作物是全球种植面积最大的一类转基因植物,以除草剂抗性基因作为检测靶标的分子鉴定方法的研究与应用,对转基因生物安全的检测与监测有重要意义。【方法】根据除草剂抗性基因aad1和dmo的核苷酸序列设计PCR检测引物,并进行PCR反应体系优化、方法特异性、灵敏度、再现性等方面的测试,分别建立aad1基因和dmo基因的特异性PCR检测方法。【结果】建立的PCR检测方法在56~64℃的退火温度范围内均能获得一致性结果,具有良好的稳健性。该方法可将含有aad1基因和dmo基因的转基因作物与其他转基因作物区分开,其灵敏度可分别达到20个拷贝和40个拷贝。通过将aad1基因和dmo基因的检测引物放入同一管PCR反应体系中,还能在一次PCR中同时检测这2个靶标基因,双重PCR的检测灵敏度与单一PCR一致。【结论与意义】建立的分子方法可精准检测出含有aad1基因和dmo基因的转基因作物,具有特异性强、灵敏度高的特点,为抗除草剂转基因作物的筛选检测提供了可靠的技术支撑。  相似文献   

16.
The species Bifidobacterium lactis, with its main representative strain Bb12 (DSM 10140), is a yoghurt isolate used as a probiotic strain and is commercially applied in different types of yoghurts and infant formulas. In order to ensure the genetic identity and safety of this bacterial isolate, species- and strain-specific molecular tools for genetic fingerprinting must be available to identify isolated bifidobacteria or lactic acid bacteria from, e.g., various clinical environments of relevance in medical microbiology. Two opposing rRNA gene-targeted primers have been developed for specific detection of this microorganism by PCR. The specificity of this approach was evaluated and verified with DNA samples isolated from single and mixed cultures of bifidobacteria and lactobacilli (48 isolates, including the type strains of 29 Bifidobacterium and 9 Lactobacillus species). Furthermore, we performed a Multiplex-PCR using oligonucleotide primers targeting a specific region of the 16S rRNA gene for the genus Bifidobacterium and a conserved eubacterial 16S rDNA sequence. The specificity and sensitivity of this detection with a pure culture of B. lactis were, respectively, 100 bacteria/ml after 25 cycles of PCR and 1 to 10 bacteria/ml after a 50-cycle nested-PCR approach.  相似文献   

17.
Here we describe a protocol for the detection of the microRNA (miRNA) expression profile of a single cell by stem-looped real-time PCR, which is specific to mature miRNAs. A single cell is first lysed by heat treatment without further purification. Then, 220 known miRNAs are reverse transcribed into corresponding cDNAs by stem-looped primers. This is followed by an initial PCR step to amplify the cDNAs and generate enough material to permit separate multiplex detection. The diluted initial PCR product is used as a template to check individual miRNA expression by real-time PCR. This sensitive technique permits miRNA expression profiling from a single cell, and allows analysis of a few cells from early embryos as well as individual cells (such as stem cells). It can also be used when only nanogram amounts of rare samples are available. The protocol can be completed in 7 d.  相似文献   

18.
A multiplex PCR (m-PCR) method was developed for simultaneous detection of 3 important fish pathogens in warm water aquaculture. The m-PCR to amplify target DNA fragments from Flavobacterium columnare (504 bp), Edwardsiella ictaluri (407 bp) and Aeromonas hydrophila (209 bp) was optimized by adjustment of reaction buffers and a touchdown protocol. The lower detection limit for each of the 3 bacteria was 20 pg of nucleic acid template from each bacteria per m-PCR reaction mixture. The sensitivity threshold for detection of the 3 bacteria in tissues ranged between 3.4 x 10(2) and 2.5 x 10(5) cells g(-1) of tissue (channel catfish Ictalurus punctatus Rafinesque). The diagnostic sensitivity and specificity of the m-PCR was evaluated with 10 representative isolates of each of the 3 bacteria and 11 other Gram-negative and 2 Gram-positive bacteria that are taxonomically related or ubiquitous in the aquatic environment. Except for a single species (A. salmonicida subsp. salmonicida), each set of primers specifically amplified the target DNA of the cognate species of bacteria. m-PCR was compared with bacteriological culture for identification of bacteria in experimentally infected fish. The m-PCR appears promising for the rapid, sensitive and simultaneous detection of Flavobacterium columnare, E. ictaluri and A. hydrophila in infected fish compared to the time-consuming traditional bacteriological culture techniques.  相似文献   

19.
Four PCR primers that are useful to determine the nucleotide sequences of the rDNA of the powdery mildew fungi were newly designed. These primers provide both enough stability to work on a wide range of powdery mildews and enough specificity to eliminate contaminating DNA by PCR. DNA sequences of the rDNA ITS region were successfully obtained from specimens that were contaminated by other fungi. In addition, sequence results of the 18S and 28S rDNA were dramatically improved by using these primers in most of the specimens examined.  相似文献   

20.
PCR clamping     
An efficient, PCR based method for the selective amplification of DNA target sequences that differs by a single base pair is described. The method utilises the high affinity and specificity of PNA for their complementary nucleic acids and that PNA cannot function as primers for DNA polymerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号