首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
There has been growing interest for the therapeutic use of traditional herbs in the management of diabetes mellitus (DM) and its complications. Data shows the hypoglycemic activity of Azadiracta indica in diabetes. Therefore, it is of interest to document known data on the therapeutic use of Azadiracta indica (neem) for type 2 diabetes mellitus (T2DM).  相似文献   

2.
Callus and micropropagated shoots were initiated from leaf explants of the neem tree, Azadirachta indica A. Juss. A variety of whole plant and in vitro cell cultures from neem seedlings of Ghanian origin were tested for insect antifeedant compounds using the desert locust (Schistocerca gregaria (Forskål)). Feeding suppression occurred when whole extracts of seed, leaf, callus, suspension and shoot cultures were tested in no-choice feeding bioassays. Controls of sucrose, carrot callus and the plant growth medium showed no feeding deterrence. Azadirachtin, the main known antifeedant in neem seed kernels, was quantified from a seed extract by HPLC but was not detected in any of the other extracts. Antifeedancy was determined during batch growth of a suspension culture which had been in culture for 5 months; results indicated that antifeedants were still being formed and that levels increased after maximum biomass was attained.  相似文献   

3.

Background

Natural extracts play an important role in traditional medicines for the treatment of diabetes mellitus and are also an essential resource for new drug discovery. Dipeptidyl peptidase IV (DPP-IV) inhibitors are potential candidates for the treatment of type 2 diabetes mellitus, and the effectiveness of certain antidiabetic extracts of natural origin could be, at least partially, explained by the inhibition of DPP-IV.

Methodology/Principal Findings

Using an initial set of 29,779 natural products that are annotated with their natural source and an experimentally validated virtual screening procedure previously developed in our lab (Guasch et al.; 2012) [1], we have predicted 12 potential DPP-IV inhibitors from 12 different plant extracts that are known to have antidiabetic activity. Seven of these molecules are identical or similar to molecules with described antidiabetic activity (although their role as DPP-IV inhibitors has not been suggested as an explanation for their bioactivity). Therefore, it is plausible that these 12 molecules could be responsible, at least in part, for the antidiabetic activity of these extracts through their inhibitory effect on DPP-IV. In addition, we also identified as potential DPP-IV inhibitors 6 molecules from 6 different plants with no described antidiabetic activity but that share the same genus as plants with known antidiabetic properties. Moreover, none of the 18 molecules that we predicted as DPP-IV inhibitors exhibits chemical similarity with a group of 2,342 known DPP-IV inhibitors.

Conclusions/Significance

Our study identified 18 potential DPP-IV inhibitors in 18 different plant extracts (12 of these plants have known antidiabetic properties, whereas, for the remaining 6, antidiabetic activity has been reported for other plant species from the same genus). Moreover, none of the 18 molecules exhibits chemical similarity with a large group of known DPP-IV inhibitors.  相似文献   

4.
《Journal of Asia》2022,25(2):101904
The efficiency of pesticides is greatly affected by their ability to adhere and retain on foliage surface. Neem oil, though a very well-known source of many biologically active pesticidal compounds, is very sensitive to environmental parameters, such as UV light. Also, due to volatilization, it is lost in environment and hence fail to reach target and show activity. In this study we attempted to stabilize neem oil emulsion and increase its retention on foliage surface by adding varying concentration of gum cordia. Gum cordia is an anionic polysaccharide derived from Cordia myxa fruits with strong adhesion and emulsification properties. The lethal concentration (LC50) of the final formulations were also determined against aphid species Myzus persicae and Schizaphis graminum. Adhesion was found to be dependent on the concentration of gum cordia as well as type of crop. Increasing gum cordia in neem oil formulations resulted in increase in adhesion of the spray on the leaf surfaces and up to 6 times higher adhesion was observed with 0.5% gum cordia on mustard leaf compared to control. The LC50 decreased with increasing gum cordia concentration. The LC50 values of neem oil sprayed on mustard, spinach, and wheat leaves with 0.5% gum cordia were 0.205, 0.715, and 2.074% respectively while for neem oil control spray (with no gum cordia) LC50 values were 1.833, 2.112, and 4.992% respectively for the above tested leaves. Presence of greater than 0.125% gum cordia in neem formulations provided the barrier against UV irradiation.  相似文献   

5.
In vitro and animal model studies are of great interest for selecting new phytochemicals, including polyphenols with antioxidative properties, as candidates for antidiabetic drugs. This review provides evidence from a critical literature data analysis on the effects of plant extract supplementation in diabetes mellitus management. We considered and meta-analyzed the efficacy of oral supplementation of plant extracts in animal model studies and examined physiological and oxidative stress parameters. Finally, 23 articles were included in the meta-analysis, revealing three plants with experimentally confirmed in vivo and in vitro antidiabetic properties: Gymnema montanum, Momordica charantia and Moringa oleifera. The following parameter changes resulted from an investigation of the supplementation: reduced oxidative stress, decreased insulin resistance, increased insulin release, reduced adiposity, and a modulatory effect on glycolysis and gluconeogenesis, as well as attenuation of diabetes-associated weight loss, reduced fasting blood glucose and lowered oxidative status. A comparison of Gymnema montanum versus Glybenclamide revealed the superiority of extracts over drug administration in some aspects. Although the analyzed extracts are promising candidates for antidiabetic treatment, there is much inconsistent data in the literature. Therefore, ultimate references for using these compounds in the prevention of diabetes are currently not applicable.  相似文献   

6.
Diabetes mellitus is a disorder characterized by higher levels of blood glucose due to impaired insulin mechanisms. Alpha glucosidase is a critical drug target implicated in the mechanisms of diabetes mellitus and its inhibition controls hyperglycemia. Since the existing standard synthetic drugs have therapeutic limitations, it is imperative to identify new potent inhibitors of natural product origin which may slow carbohydrate digestion and absorption via alpha glucosidase. Since plant extracts from Calotropis procera have been extensively used in the treatment of diabetes mellitus, the present study used molecular docking and dynamics simulation techniques to screen its constituents against the receptor alpha glucosidase. Taraxasterol, syriogenin, isorhamnetin-3-O-robinobioside and calotoxin were identified as potential novel lead compounds with plausible binding energies of −40.2, −35.1, −34.3 and −34.3 kJ/mol against alpha glucosidase, respectively. The residues Trp481, Asp518, Leu677, Leu678 and Leu680 were identified as critical for binding and the compounds were predicted as alpha glucosidase inhibitors. Structurally similar compounds with Tanimoto coefficients greater than 0.7 were reported experimentally to be inhibitors of alpha glucosidase or antidiabetic. The structures of the molecules may serve as templates for the design of novel inhibitors and warrant in vitro assaying to corroborate their antidiabetic potential.  相似文献   

7.
Bitter melon (Momordica charantia) has been used to manage diabetes and related conditions in various parts of the world. In the present study, ten compounds were isolated from acetone and methanol extracts of bitter melon. The chemical structures of compounds were unambiguously elucidated by 1D, 2D NMR, and high-resolution mass spectra. Identified compounds 17 exhibited significant inhibition of α-amylase and moderate inhibition of α-glucosidase activities. Momordicoside G and gentisic acid 5-O-β-d-xyloside showed the highest inhibition of α-amylase (70.5%), and α-glucosidase (56.4%), respectively. Furthermore, molecular docking studies of isolated compounds 17 were able to bind to the active sites of both enzymes. Additionally, the isolated compounds 17 significantly attenuated lipopolysaccharide (LPS)-induced inflammation, downregulating the expression of pro-inflammatory markers NF-κB, INOS, IL-6, IL-1β, TNF-α, and Cox-2 in murine macrophage RAW 264.7 cells. One phenolic derivative, gentisic acid 5-O-β-d-xyloside, was isolated and identified for the first time from bitter melon, and significantly suppressed the expression of Cox-2 and IL-6 compared to the LPS-treated group. α-Amylase and α-glucosidase are targets of anti-diabetes drugs, our findings suggest that compounds purified from bitter melon may have potential to use as functional food ingredients for the prevention of type 2 diabetes and related inflammatory conditions.  相似文献   

8.
Several chemical compounds found in plant products have proven to possess beneficial properties, being currently pointed out due to their pharmacological potential in type 2 diabetes mellitus complications. In this context, we studied the effect of Geranium robertianum L. (herb Robert) leaf decoctions in Goto-Kakizaki (GK) rats, a model of type 2 diabetes. Our results showed that oral administration of G. robertianum leaf decoctions over a period of four weeks lowered the plasma glucose levels in diabetic rats. Furthermore, the treatment with G. robertianum extracts improved liver mitochondrial respiratory parameters (state 3, state 4 and FCCP-stimulated respiration) and increased oxidative phosphorylation efficiency.  相似文献   

9.
Chemical treatment of diabetes mellitus is widely studied and controlling of blood glucose level is the main course of therapy. In type 2 diabetes mellitus, insulin resistance is the major problem. An isoflavone C-glucoside, puerarin (1), is known to enhance glucose uptake into the insulin sensitive cell and is thought to be a candidate for treatment of diabetes mellitus. We synthesized 1 and several derivatives to apply for the structure–activity relationship study. The result against 3T3-L1 adipocyte indicated that the C-glucoside part of 1 is unconcerned in its activity when tested in vitro and the main structure responsible for its activity was the isoflavone moiety.  相似文献   

10.
Diabetes mellitus and neurodegeneration are common diseases for which shared genetic factors are still only partly known. Here, we show that loss of the BiP (immunoglobulin heavy-chain binding protein) co-chaperone DNAJC3 leads to diabetes mellitus and widespread neurodegeneration. We investigated three siblings with juvenile-onset diabetes and central and peripheral neurodegeneration, including ataxia, upper-motor-neuron damage, peripheral neuropathy, hearing loss, and cerebral atrophy. Exome sequencing identified a homozygous stop mutation in DNAJC3. Screening of a diabetes database with 226,194 individuals yielded eight phenotypically similar individuals and one family carrying a homozygous DNAJC3 deletion. DNAJC3 was absent in fibroblasts from all affected subjects in both families. To delineate the phenotypic and mutational spectrum and the genetic variability of DNAJC3, we analyzed 8,603 exomes, including 506 from families affected by diabetes, ataxia, upper-motor-neuron damage, peripheral neuropathy, or hearing loss. This analysis revealed only one further loss-of-function allele in DNAJC3 and no further associations in subjects with only a subset of the features of the main phenotype. Our findings demonstrate that loss-of-function DNAJC3 mutations lead to a monogenic, recessive form of diabetes mellitus in humans. Moreover, they present a common denominator for diabetes and widespread neurodegeneration. This complements findings from mice in which knockout of Dnajc3 leads to diabetes and modifies disease in a neurodegenerative model of Marinesco-Sjögren syndrome.  相似文献   

11.
Moringa oleifera is also known as “Miracle tree”, due to its multiple uses and adaptability. Because of nutritive and pharmacological values, it is widely cultivated across the world. M. oleifera leaves are rich source of minerals, vitamins and many health beneficial secondary metabolites, and possess significant anti-diabetic potential. Consequently, Insilco study could be noteworthy to expand effective anti-diabetic drugs from this plant. Present study was designed to find out the best bioactive compounds of M. oleifera as a potential therapeutic agent against diabetes mellitus through In-silico method. For this, structures of phytochemicals were extracted from PubChem and docked to mutated protein from PBD. Afterwards, datasets were prepared for ligand based pharmacophore and their pharmacophoric features were generated from LigandScout. Finally five phytochemicals viz. anthraquinone, 2-phenylchromenylium (Anthocyanins), hemlock tannin, sitogluside (glycoside) and A-phenolic steroid were selected, which exhibited effective binding within the active binding pocket of the targeted protein. Ligand based pharmacophore model showed the key features i.e. HBD, HBA, aromatic ring, hydrophobic, positively ionizable surface essential for receptor binding. Our findings suggest that screened phytochemicals present in M. oleifera can be used as potential therapeutic drug candidates to treat diabetes mellitus.  相似文献   

12.
The study reported here primarily focuses on whether fruit extracts of Azadirachta indica Juss. (Neem) can induce systemic acquired resistance (SAR) in Hordeum vulgare against Drechslera graminea. A single leaf from each of the 1-month-old seedlings grown in 50 pots was treated with neem extract. Seven samples were collected at 12-h intervals for estimation of salicylic acid (SA) content and activities of phenylalanine ammonia lyase (PAL) and peroxidase (PO). Disease incidence was recorded on uninoculated leaves after 2 weeks and on newly emerged leaves after 3 weeks of inoculation of spores of the pathogen. Treatment of single leaf of barley seedlings with aqueous fruit extract of neem could protect the untreated and later emerging leaves of these seedlings from infection by leaf stripe pathogen. The concentration of SA and activities of PAL and PO were significantly higher in untreated leaves of seedlings given a single leaf treatment with neem fruit extract. The results show that neem fruit extract induced SAR in barley seedlings against D. graminea. The results of the study are significant for developing an environment-friendly biocide, which could induce SAR in crop plants leading to efficient management of pathogens  相似文献   

13.
The present study was aimed to address the possible evaluation of Azadirachta indica (neem) leaf-supplemented diets on innate immune response in Asian seabass, Lates calcarifer fingerlings against Vibrio harveyi infection. Fish were fed for two weeks diets containing six graded levels of neem leaf at 0 g, 1 g, 2 g, 3 g, 4 g and 5 g per kg feed. Fish fed neem leaf-supplemented diet displayed significant differences (p < 0.05) in weight gain, specific growth rate (SGR) and feed conversion ratio (FCR) compared to the control group fed without neem leaf-supplemented diet. Various innate immune parameters were examined pre-challenge and post-challenge. Fish was injected intraperitoneally with a lethal dose of V. harveyi containing 108 cells mL?1. Supplementation of neem leaf diet significantly increased phagocytic activity, superoxide anion production, serum lysozyme, serum bactericidal activity, serum anti-protease activity throughout the experimental period when compared with the control group. Dietary doses of neem leaf diet significantly influenced the immune parameters, haematological parameters and blood biochemical indices of treated fish. The results suggested that fish fed neem leaf-supplemented diet improved the immune system and increased survival rate in L. calcarifer fingerlings against V. harveyi infection.  相似文献   

14.
In this study, we evaluated the pharmacological effects of Ganoderma lucidum (G. lucidum) (water-extract) (0.003, 0.03 and 0.3 g/kg, 4-week oral gavage) consumption using the lean (+db/+m) and the obese/diabetic (+db/+db) mice. Different physiological parameters (plasma glucose and insulin levels, lipoproteins-cholesterol levels, phosphoenolpyruvate carboxykinase (PEPCK), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase) and isolated aorta relaxation of both species were measured and compared. G. lucidum (0.03 and 0.3 g/kg) lowered the serum glucose level in +db/+db mice after the first week of treatment whereas a reduction was observed in +db/+m mice only fed with 0.3 g/kg of G. lucidum at the fourth week. A higher hepatic PEPCK gene expression was found in +db/+db mice. G. lucidum (0.03 and 0.3 g/kg) markedly reduced the PEPCK expression in +db/+db mice whereas the expression of PEPCK was attenuated in +db/+m mice (0.3 g/kg G. lucidum). HMG CoA reductase protein expression (in both hepatic and extra-hepatic organs) and the serum insulin level were not altered by G. lucidum. These data demonstrate that G. lucidum consumption can provide beneficial effects in treating type 2 diabetes mellitus (T2DM) by lowering the serum glucose levels through the suppression of the hepatic PEPCK gene expression.  相似文献   

15.
Phytochemical investigation of the stem bark of Myristica fatua Houtt. led to the isolation of a new compound 1 (3-tridecanoylbenzoic acid), along with six known acylphenols (27). All the compounds displayed moderate inhibitory activity on α-amylase and significant activity on α-glucosidase; however malabaricone B (6) and C (7) were identified as potent α-glucosidase inhibitors with IC50 values of 63.70?±?0.546, and 43.61?±?0.620?µM respectively. Acylphenols (compounds 37) also showed significant antiglycation property. The molecular docking and dynamics simulation studies confirmed the efficient binding of malabaricone C with C-terminus of human maltase-glucoamylase (2QMJ). Malabaricone B also enhanced the 2-NBDG [2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxy glucose] uptake in L6 myotubes. These findings demonstrate that acylphenols isolated from Myristica fatua Houtt. can be considered as a lead scaffold for the treatment of type II diabetes mellitus.  相似文献   

16.
Protein tyrosine phosphatase 1B (PTP1B) is an important factor in non-insulin-dependent diabetes mellitus (type-2 diabetes), and a promising target for treatment of diabetes and obesity. Therefore, the aim of this study is to investigate the inhibitory activities of constituents (three new together with twelve known triterpenes compounds) isolated from the hydrolyzate of total saponins from Gynostemma pentaphyllum. Their structures were accomplished mainly base on the spectroscopic methods, and then were further confirmed by X-ray crystal diffraction. All the compounds were evaluated for inhibitory activity against PTP1B. Current data suggested that the compounds 1, 3, 12, 13 and 14 were considered to be potential as antidiabetic agents, in which they could significantly inhibit the PTP1B enzyme activity in a dose-dependent manner.  相似文献   

17.
Ochratoxin A, a nephrotoxin produced as a secondary metabolite by A. ochraceus, is a potent inhibitor of renal PEPCK activity, in vivo. When fed orally to rats for 2 days, renal PEPCK activity is reduced 50% by a total dose of 0.3-0.5 mg toxin. Renal gluconeogenic capacity is reduced only after PEPCK activity is inhibited by 50%. Hepatic PEPCK activity is unaffected up to 1.5-2.0 mg ochratoxin A, which were the highest doses tested. Other enzymes located in proximal convoluted tubules, including phosphatedependent glutaminase, γ-glutamyl transpeptidase, pyruvate carboxylase, and Na,K-ATPase, are not affected. Renal protein synthesis from [3H]phenylalanine or [3H]leucine is inhibited 30–40% by ochratoxin A in vivo. By covalently coupling the toxin to albumin with carbodiimide or mixed anhydride, the inhibitory effect on renal PEPCK activity is retained, but protein synthesis is not affected and cytological evidence of nephrotoxicity is lost. Injection of the ochratoxin A-albumin carbodiimide complex results in a decrease of hepatic PEPCK activity as well. Removal of the phenylalanine group from the toxin prevents the in vivo inhibition of PEPCK activity, as well as protein synthesis. We conclude that the decrease in renal PEPCK activity, in vivo, requires the phenylalanine group of ochratoxin A, and occurs by a mechanism independent of the known nephrotoxicity effects.  相似文献   

18.
Aphanamixis polystachya may be a natural, renewable resource against antibiotic-resistant bacterial infections. The antibacterial activity of A. polystachya leaf and bark extracts was investigated against three antibiotic-resistant bacterial species and one fungus. Methanolic leaf extract showed only limited antibacterial activity but both methanolic and aqueous bark extract showed high antimicrobial activity. In an antioxidant activity test, leaf and bark extracts exhibited 50% free radical scavenging at a concentration of 107.14 ± 3.14 μg/mL and 97.13 ± 3.05 μg/mL, respectively, indicating that bark extracts offer more antioxidative activity than leaf extracts. Bark extracts also showed lower toxicity than leaf extracts. This suggests that bark extracts may offer greater development potential than leaf extracts. The molecular dynamics were also investigated through the simulated exploration of multiple potential interactions to understand the interaction dynamics (root-mean-square deviation, solvent-accessible surface area, radius of gyration, and the hydrogen bonding of chosen compounds to protein targets) and possible mechanisms of inhibition. This molecular modeling of compounds derived from A. polystachya revealed that inhibition may occur by binding to the active sites of the target proteins of the tested bacterial strains. A. polystachya bark extract may be used as a natural source of drugs to control antibiotic-resistant bacteria.  相似文献   

19.
Selective GLP-1 secretagogues represent a novel potential therapy for type 2 diabetes mellitus. This study examined the GLP-1 secretory activity of the ethnomedicinal plant, Fagonia cretica, which is postulated to possess anti-diabetic activity. After extraction and fractionation extracts and purified compounds were tested for GLP-1 and GIP secretory activity in pGIP/neo STC-1 cells. Intracellular levels of incretin hormones and their gene expression were also determined. Crude F. cretica extracts stimulated both GLP-1 and GIP secretion, increased cellular hormone content, and upregulated gene expression of proglucagon, GIP and prohormone convertase. However, ethyl acetate partitioning significantly enriched GLP-1 secretory activity and this fraction underwent bioactivity-guided fractionation. Three isolated compounds were potent and selective GLP-1 secretagogues: quinovic acid (QA) and two QA derivatives, QA-3β-O-β-d-glycopyranoside and QA-3β-O-β-d-glucopyranosyl-(28  1)-β-d-glucopyranosyl ester. All QA compounds activated the TGR5 receptor and increased intracellular incretin levels and gene expression. QA derivatives were more potent GLP-1 secretagogues than QA. This is the first time that QA and its naturally-occurring derivatives have been shown to activate TGR5 and stimulate GLP-1 secretion. These data provide a plausible mechanism for the ethnomedicinal use of F. cretica and may assist in the ongoing development of selective GLP-1 agonists.  相似文献   

20.
Chronic diseases including cardiovascular, diabetes and cancer persist for a long time in the course of treatment affecting health and are currently the cause of many deaths. In most cases, the treatment of chronic infectious diseases especially Tuberculosis relies on conventional drugs which are currently becoming fruitless due to drug resistance and unpredicted complications in course of treatment. However, herbal medicines have for a long time been used in prevention and treatment of chronic diseases including asthma and heart diseases in Africa. In this study, we extracted metabolites and screened for active compounds with potential free radical scavenging and pharmacological activities from Bersama abyssinica, the plant commonly used in traditional medicine in Tanzania. B. abyssinica root, stembark and leaf were air dried, sequentially extracted in various solvents including petroleum ether, dichloromethane, ethylacetate and methanol to yield extracts and fractions. The extracts and fractions were tested for the presence of several metabolites and antioxidant activity. The analysis of chemical compounds from resultant extracts was done by GC–MS for non-polar factions and LC-MS/MC for moderate polar extracts.High amount of phenolic acid, flavonoids and tannin were identified in ethylacetate fraction compared to ethanol, dichloromethane and petroleum ether. The GC–MS analysis of petroleum ether extract of B. abyssinica stem back yielded twelve (12) compounds with varying composition. The most abundant compounds were 2-Butenoic acid, 3-methyl-, ethyl ester comprising 33.8%, n-Hexadecanoic acid comprising 16.7% and Ethanolpentamethyl- yielded in 16.7%.The LC-MS/MS analysis of Ethyl acetate fractions yielded 20 compounds including; Mangiferin and Isoquercitin were abundant in leaves, stembark and roots. Lastly, ethyl vanillate was identified in both roots and leaves whereas Quercitrin and 7,8-Dimethoxycoumarin were found in stembark and root.These findings indicated that B. abyssinica is rich in phenolic compounds ranging from phenolic acids, flavonoids and coumarin that possess high antioxidant and pharmacological properties potential for treatment of chronic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号