首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathways to extinction start long before the death of the last individual. However, causes of early stage population declines and the susceptibility of small residual populations to extirpation are typically studied in isolation. Using validated process-explicit models, we disentangle the ecological mechanisms and threats that were integral in the initial decline and later extinction of the woolly mammoth. We show that reconciling ancient DNA data on woolly mammoth population decline with fossil evidence of location and timing of extinction requires process-explicit models with specific demographic and niche constraints, and a constrained synergy of climatic change and human impacts. Validated models needed humans to hasten climate-driven population declines by many millennia, and to allow woolly mammoths to persist in mainland Arctic refugia until the mid-Holocene. Our results show that the role of humans in the extinction dynamics of woolly mammoth began well before the Holocene, exerting lasting effects on the spatial pattern and timing of its range-wide extinction.  相似文献   

2.
Aim We examined the range contraction of 309 declining species of animals and plants to determine if the contraction dynamics better matched predictions based on the demographic characteristics of historical populations (demographic hypothesis) or based on the contagion‐like spread of extinction forces (contagion hypothesis). Location Species included in the analysis came from all biogeographic regions. Methods We obtained range maps for 309 species from literature or through personal correspondence with authorities. Hypotheses were contrasted by examining the sequence of changes in the proportion (C) of the remnant range that fell within the central region of the historical range. Monte Carlo simulations and polynomial regressions were employed to examine changes in C during the process of range contraction. Results The results of the Monte Carlo simulations indicated that more species had observed range contractions consistent with the contagion hypothesis than expected by chance (z‐score = 2.922, P = 0.002). The Monte Carlo analysis also indicated that the number of species whose observed range contractions were consistent with the demographic hypothesis was no greater than expected by chance (z‐score = 0.337, P = 0.367). The results of the polynomial regression analysis for the two most common taxonomic groups (mammals and birds) and for all geographical regions (Australia, Africa, Eurasia, and North America) we examined also supported the contagion hypothesis. Main conclusions Most of the examined range contractions are consistent with the contagion hypothesis and that the most likely contagion is human related disturbance. These results have important implications for the conservation of endangered species.  相似文献   

3.
Models that couple habitat suitability with demographic processes offer a potentially improved approach for estimating spatial distributional shifts and extinction risk under climate change. Applying such an approach to five species of Australian plants with contrasting demographic traits, we show that: (i) predicted climate‐driven changes in range area are sensitive to the underlying habitat model, regardless of whether demographic traits and their interaction with habitat patch configuration are modeled explicitly; and (ii) caution should be exercised when using predicted changes in total habitat suitability or geographic extent to infer extinction risk, because the relationship between these metrics is often weak. Measures of extinction risk, which quantify threats to population persistence, are particularly sensitive to life‐history traits, such as recruitment response to fire, which explained approximately 60% of the deviance in expected minimum abundance. Dispersal dynamics and habitat patch structure have the strongest influence on the amount of movement of the trailing and leading edge of the range margin, explaining roughly 40% of modeled structural deviance. These results underscore the need to consider direct measures of extinction risk (population declines and other measures of stochastic viability), as well as measures of change in habitat area, when assessing climate change impacts on biodiversity. Furthermore, direct estimation of extinction risk incorporates important demographic and ecosystem processes, which potentially influence species’ vulnerability to extinction due to climate change.  相似文献   

4.
Evidence is accumulating that species' responses to climate changes are best predicted by modelling the interaction of physiological limits, biotic processes and the effects of dispersal‐limitation. Using commercially harvested blacklip (Haliotis rubra) and greenlip abalone (Haliotis laevigata) as case studies, we determine the relative importance of accounting for interactions among physiology, metapopulation dynamics and exploitation in predictions of range (geographical occupancy) and abundance (spatially explicit density) under various climate change scenarios. Traditional correlative ecological niche models (ENM) predict that climate change will benefit the commercial exploitation of abalone by promoting increased abundances without any reduction in range size. However, models that account simultaneously for demographic processes and physiological responses to climate‐related factors result in future (and present) estimates of area of occupancy (AOO) and abundance that differ from those generated by ENMs alone. Range expansion and population growth are unlikely for blacklip abalone because of important interactions between climate‐dependent mortality and metapopulation processes; in contrast, greenlip abalone should increase in abundance despite a contraction in AOO. The strongly non‐linear relationship between abalone population size and AOO has important ramifications for the use of ENM predictions that rely on metrics describing change in habitat area as proxies for extinction risk. These results show that predicting species' responses to climate change often require physiological information to understand climatic range determinants, and a metapopulation model that can make full use of this data to more realistically account for processes such as local extirpation, demographic rescue, source‐sink dynamics and dispersal‐limitation.  相似文献   

5.
To investigate potential range shifts in a changing climate it is becoming increasingly common to develop models that account for demographic processes. Metapopulation models incorporate the spatial configuration of occupied habitat (i.e. arrangement, size and quality), population demographics, and inter‐patch dispersal making them suitable for investigating potential threats to small mammal range and abundance. However, the spatial scale (resolution) used to represent species–environment dynamics may affect estimates of range shift and population resilience by failing to realistically represent the spatial configuration of suitable habitat, including stepping stones and refugia. We aimed to determine whether relatively fine‐scale environmental information influenced predictions of metapopulation persistence and range shift. Species distribution models were constructed for four small terrestrial mammals from southern Australia using environmental predictors measured at 0.1 × 0.1 km (0.01 km2) or 1.0 × 1.0 km (1 km2) resolution, and combined with demographic information to parameterise coupled niche‐population models. These models were used to simulate population dynamics projected over 40‐yr under a stable and changing climate. Initial estimates of the area of available habitat were similar at both spatial scales. However, at the fine‐scale, habitat configuration comprised a greater number of patches (ca 12 times), that were more irregular in shape (ca 8 times the perimeter:area), and separated by a tenth of the distance than at the coarse‐scale. While small patches were not more prone to extinction, populations generally declined at a higher rate and were associated with a lower expected minimum abundance. Despite increased species vulnerability at the fine‐scale, greater range shifts were measured at the coarse‐scale (for species illustrating a shift at both scales). These results highlight the potential for range shifts and species vulnerability information to be misrepresented if advanced modelling techniques incorporating species demographics and dispersal inadequately represent the scale at which these processes occur.  相似文献   

6.
Population viability analysis, the use of ecological models to assess a population's risk of extinction, plays an important role in contemporary conservation biology. The premise of this review is that models, concepts, and data analyses that yield results on extinction risk of threatened and endangered species can also tell us about establishment risks of potentially invasive species. I briefly review important results for simple unstructured models, demographic models, and spatial models, giving examples of the application of each type of model to invasive species, and general conclusions about the applicability of each type of model to risk analysis for invasive species. The examples illustrate a portion of the range of potential applications of such models to invasive species, and some of the types of predictions that they can provide. They also highlight some of the limitations of such models. Finally, I present several conjectures and open research questions concerning the application of population viability analyses to risk analysis and control of invasive species.  相似文献   

7.
Aims To better understand how demographic processes shape the range dynamics of woody plants (in this case, Proteaceae), we introduce a likelihood framework for fitting process‐based models of range dynamics to spatial abundance data. Location The fire‐prone Fynbos biome (Cape Floristic Region, South Africa). Methods Our process‐based models have a spatially explicit demographic submodel (describing dispersal, reproduction, mortality and local extinction) as well as an observation submodel (describing imperfect detection of individuals), and are constrained by species‐specific predictions of habitat distribution models and process‐based models for seed dispersal by wind. Free model parameters were varied to find parameter sets with the highest likelihood. After testing this approach with simulated data, we applied it to eight Proteaceae species that differ in breeding system (monoecy versus dioecy) and adult fire survival. We assess the importance of Allee effects and negative density dependence for range dynamics, by using the Akaike information criterion to select between alternative models fitted for the same species. Results The best model for all dioecious study species included Allee effects, whereas this was true for only one of four monoecious species. As expected, sprouters (in which adults survive fire) were estimated to have lower rates of reproduction and catastrophic population extinction than related non‐sprouters. Overcompensatory population dynamics seem important for three of four non‐sprouters. We also found good quantitative agreement between independent data and most estimates of reproduction, carrying capacity and extinction probability. Main conclusions This study shows that process‐based models can quantitatively describe how large‐scale abundance distributions arise from the movement and interaction of individuals. It stresses links between the life history, demography and range dynamics of Proteaceae: dioecious species seem more susceptible to Allee effects which reduce migration ability and increase local extinction risk, and sprouters seem to have high persistence of established populations, but their low reproduction limits habitat colonization and migration.  相似文献   

8.
The distributional ranges of many species are contracting with habitat conversion and climate change. For vertebrates, informed strategies for translocations are an essential option for decisions about their conservation management. The pygmy bluetongue lizard, Tiliqua adelaidensis, is an endangered reptile with a highly restricted distribution, known from only a small number of natural grassland fragments in South Australia. Land‐use changes over the last century have converted perennial native grasslands into croplands, pastures and urban areas, causing substantial contraction of the species' range due to loss of essential habitat. Indeed, the species was thought to be extinct until its rediscovery in 1992. We develop coupled‐models that link habitat suitability with stochastic demographic processes to estimate extinction risk and to explore the efficacy of potential climate adaptation options. These coupled‐models offer improvements over simple bioclimatic envelope models for estimating the impacts of climate change on persistence probability. Applying this coupled‐model approach to T. adelaidensis, we show that: (i) climate‐driven changes will adversely impact the expected minimum abundance of populations and could cause extinction without management intervention, (ii) adding artificial burrows might enhance local population density, however, without targeted translocations this measure has a limited effect on extinction risk, (iii) managed relocations are critical for safeguarding lizard population persistence, as a sole or joint action and (iv) where to source and where to relocate animals in a program of translocations depends on the velocity, extent and nonlinearities in rates of climate‐induced habitat change. These results underscore the need to consider managed relocations as part of any multifaceted plan to compensate the effects of habitat loss or shifting environmental conditions on species with low dispersal capacity. More broadly, we provide the first step towards a more comprehensive framework for integrating extinction risk, managed relocations and climate change information into range‐wide conservation management.  相似文献   

9.
While terrestrial megafaunal extinctions have been well characterized worldwide, our understanding of declines in marine megafauna remains limited. Here, we use ancient DNA analyses of prehistoric (<1450–1650 AD) sea lion specimens from New Zealand's isolated Chatham Islands to assess the demographic impacts of human settlement. These data suggest there was a large population of sea lions, unique to the Chatham Islands, at the time of Polynesian settlement. This distinct mitochondrial lineage became rapidly extinct within 200 years due to overhunting, paralleling the extirpation of a similarly large endemic mainland population. Whole mitogenomic analyses confirm substantial intraspecific diversity among prehistoric lineages. Demographic models suggest that even low harvest rates would likely have driven rapid extinction of these lineages. This study indicates that surviving Phocarctos populations are remnants of a once diverse and widespread sea lion assemblage, highlighting dramatic human impacts on endemic marine biodiversity. Our findings also suggest that Phocarctos bycatch in commercial fisheries may contribute to the ongoing population decline.  相似文献   

10.
Extinction events typically represent extended processes of decline that cannot be reconstructed using short-term studies. Long-term archives are necessary to determine past baselines and the extent of human-caused biodiversity change, but the capacity of historical datasets to provide predictive power for conservation must be assessed within a robust analytical framework. Local Chinese gazetteers represent a more than 400-year country-level dataset containing abundant information on past environmental conditions and include extensive records of gibbons, which have a restricted present-day distribution but formerly occurred across much of China. Gibbons show pre-twentieth century range contraction, with significant fragmentation by the mid-eighteenth century and population loss escalating in the late nineteenth century. Isolated gibbon populations persisted for about 40 years before local extinction. Populations persisted for longer at higher elevations, and disappeared earlier from northern and eastern regions, with the biogeography of population loss consistent with the contagion model of range collapse in response to human demographic expansion spreading directionally across China. The long-term Chinese historical record can track extinction events and human interactions with the environment across much longer timescales than are usually addressed in ecology, contributing novel baselines for conservation and an increased understanding of extinction dynamics and species vulnerability or resilience to human pressures.  相似文献   

11.
Human impacts are blamed for range contraction in several animal species worldwide. Remarkably, carnivores and particularly top predators are threatened by humans despite their key role in maintaining ecosystem balance and functions. Conservation strategies to allow human-carnivore coexistence are urgently needed. These strategies must be built on evidence and driven by knowledge of population risk at a broad scale. However, knowledge on wide distributed species is often based on regional expert opinions in which uncertainty is not quantifiable, making data incomparable across regions. Here we develop a method to assess the endangerment status of a species based on its range contractions and the main threats using the jaguar Panthera onca as model. The use of GLM with the main intrinsic and extrinsic drivers of jaguar extinction allowed us to assess the endangerment status at continental and population scale. We found this method to be a valuable tool to obtain a broad picture of human-induced endangerment in animal species. Intrinsic traits (summarized in the demographic contraction theory) and anthropic traits (based on agriculture, cattle and human densities) explained jaguar extinction highlighting the particular importance of livestock activity. Our results suggest that livestock ranching has a pervasive effect on the species likely due to habitat loss combined with retaliatory hunting. We highlight the need to rethink policies, practice and law enforcement in relation to livestock and suggest the development of action plans based in local evidence in those countries where endangered populations have been detected. We also recommend involving and encouraging land owners and private companies in the conservation of private lands that comprise much of the endangered jaguar range.  相似文献   

12.
Irruptive population dynamics are characteristic of a wide range of fauna in the world's arid (dryland) regions. Recent evidence indicates that regional persistence of irruptive species, particularly small mammals, during the extensive dry periods of unpredictable length that occur between resource pulses in drylands occurs as a result of the presence of refuge habitats or refuge patches into which populations contract during dry (bust) periods. These small dry‐period populations act as a source of animals when recolonisation of the surrounding habitat occurs during and after subsequent resource pulses (booms). The refuges used by irruptive dryland fauna differ in temporal and spatial scale from the refugia to which species contract in response to changing climate. Refuges of dryland fauna operate over timescales of months and years, whereas refugia operate on timescales of millennia over which evolutionary divergence may occur. Protection and management of refuge patches and refuge habitats should be a priority for the conservation of dryland‐dwelling fauna. This urgency is driven by recognition that disturbance to refuges can lead to the extinction of local populations and, if disturbance is widespread, entire species. Despite the apparent significance of dryland refuges for conservation management, these sites remain poorly understood ecologically. Here, we synthesise available information on the refuges of dryland‐dwelling fauna, using Australian mammals as a case study to provide focus, and document a research agenda for increasing this knowledge base. We develop a typology of refuges that recognises two main types of refuge: fixed and shifting. We outline a suite of models of fixed refuges on the basis of stability in occupancy between and within successive bust phases of population cycles. To illustrate the breadth of refuge types we provide case studies of refuge use in three species of dryland mammal: plains mouse (Pseudomys australis), central rock‐rat (Zyzomys pedunculatus), and spinifex hopping‐mouse (Notomys alexis). We suggest that future research should focus on understanding the species‐specific nature of refuge use and the spatial ecology of refuges with a focus on connectivity and potential metapopulation dynamics. Assessing refuge quality and understanding the threats to high‐quality refuge patches and habitat should also be a priority. To facilitate this understanding we develop a three‐step methodology for determining species‐specific refuge location and habitat attributes. This review is necessarily focussed on dryland mammals in continental Australia where most refuge‐based research has been undertaken. The applicability of the refuge concept and the importance of refuges for dryland fauna conservation elsewhere in the world should be investigated. We predict that refuge‐using mammals will be widespread particularly among dryland areas with unpredictable rainfall patterns.  相似文献   

13.
Whereas previous studies have investigated correlates of extinction risk either at global or regional scales, our study explicitly models regional effects of anthropogenic threats and biological traits across the globe. Using phylogenetic comparative methods with a newly-updated supertree of 5020 extant mammals, we investigate the impact of species traits on extinction risk within each WWF ecoregion. Our analyses reveal strong geographical variation in the influence of traits on risk: notably, larger species are at higher risk only in tropical regions. We then relate these patterns to current and recent-historical human impacts across ecoregions using spatial modelling. The body–mass results apparently reflect historical declines of large species outside the tropics due to large-scale land conversion. Narrow-ranged and rare species tend to be at high risk in areas of high current human impacts. The interactions we describe between biological traits and anthropogenic threats increase understanding of the processes determining extinction risk.  相似文献   

14.
Aim  Recently, a flurry of studies have focused on the extent to which geographical patterns of diversity fit mid-domain effect (MDE) null models. While some studies find strong support for MDE null models, others find little. We test two hypotheses that might explain this variation among studies: small-ranged groups of species are less likely than large-ranged species to show mid-domain peaks in species richness, and mid-domain null model predictions are less robust for smaller spatial extents than for larger spatial extents.
Location  We analyse data sets from elevational, riverine, continental and other domains from around the world.
Methods  We use a combination of Spearman rank correlations and binomial tests to examine whether differences within and among studies and domains in the predictive power of MDE null models vary with spatial scale and range size.
Results  Small-ranged groups of species are less likely to fit mid-domain predictions than large-ranged groups of species. At large spatial extents, diversity patterns of taxonomic groups with large mean range sizes fit MDE null model predictions better than did diversity patterns of groups with small mean range sizes. MDE predictions were more explanatory at larger spatial extents than at smaller extents. Diversity patterns at smaller spatial extents fit MDE predictions poorly across all range sizes. Thus, MDE predictions should be expected to explain patterns of species richness when ranges and the scale of analysis are both large.
Main conclusions  Taken together, the support for these hypotheses offers a more sophisticated model of when MDE predictions should be expected to explain patterns of species richness, namely when ranges and the scale of analysis are both large. Thus the circumstances in which the MDE is important are finite and apparently predictable.  相似文献   

15.
Robust critical systems are characterized by power laws which occur over a broad range of conditions. Their robust behaviour has been explained by local interactions. While such systems could be widespread in nature, their properties are not well understood. Here, we study three robust critical ecosystem models and a null model that lacks spatial interactions. In all these models, individuals aggregate in patches whose size distributions follow power laws which melt down under increasing external stress. We propose that this power-law decay associated with the connectivity of the system can be used to evaluate the level of stress exerted on the ecosystem. We identify several indicators along the transition to extinction. These indicators give us a relative measure of the distance to extinction, and have therefore potential application to conservation biology, especially for ecosystems with self-organization and critical transitions.  相似文献   

16.
Concern over rapid global changes and the potential for interactions among multiple threats are prompting scientists to combine multiple modelling approaches to understand impacts on biodiversity. A relatively recent development is the combination of species distribution models, land‐use change predictions, and dynamic population models to predict the relative and combined impacts of climate change, land‐use change, and altered disturbance regimes on species' extinction risk. Each modelling component introduces its own source of uncertainty through different parameters and assumptions, which, when combined, can result in compounded uncertainty that can have major implications for management. Although some uncertainty analyses have been conducted separately on various model components – such as climate predictions, species distribution models, land‐use change predictions, and population models – a unified sensitivity analysis comparing various sources of uncertainty in combined modelling approaches is needed to identify the most influential and problematic assumptions. We estimated the sensitivities of long‐run population predictions to different ecological assumptions and parameter settings for a rare and endangered annual plant species (Acanthomintha ilicifolia, or San Diego thornmint). Uncertainty about habitat suitability predictions, due to the choice of species distribution model, contributed most to variation in predictions about long‐run populations.  相似文献   

17.
Population viability analyses are useful tools to predict abundance and extinction risk for imperiled species. In southeastern North America, the federally threatened gopher tortoise (Gopherus polyphemus) is a keystone species in the diverse and imperiled longleaf pine (Pinus palustris) ecosystem, and researchers have suggested that tortoise populations are declining and characterized by high extinction risk. We report results from a 30-year demographic study of gopher tortoises in southern Alabama (1991–2020), where 3 populations have been stable and 3 others have declined. To better understand the demographic vital rates associated with stable and declining tortoise populations, we used a multi-state hierarchical mark-recapture model to estimate sex- and stage-specific patterns of demographic vital rates at each population. We then built a predictive population model to project population dynamics and evaluate extinction risk in a population viability context. Population structure did not change significantly in stable populations, but juveniles became less abundant in declining populations over 30 years. Apparent survival varied by age, sex, and site; adults had higher survival than juveniles, but female survival was substantially lower in declining populations than in stable ones. Using simulations, we predicted that stable populations with high female survival would persist over the next 100 years but sites with lower female survival would decline, become male-biased, and be at high risk of extirpation. Stable populations were most sensitive to changes in apparent survival of adult females. Because local populations varied greatly in vital rates, our analysis improves upon previous demographic models for northern populations of gopher tortoises by accounting for population-level variation in demographic patterns and, counter to previous model predictions, suggests that small tortoise populations can persist when habitat is managed effectively. © 2021 The Wildlife Society.  相似文献   

18.
Spatial patterns of range contraction in British breeding birds   总被引:1,自引:0,他引:1  
We use ornithological atlas data to assess evidence for the existence of a number of spatial patterns of range contraction in British breeding birds. For 18 of the 25 species which suffered the greatest range contractions between 1968 and 1991, there wais a greater likelihood of local extinction in areas where the species was initially less widespread, so ranges tended to contract towards their cores. However there was evidence for a number of other patterns, with some species having a greater likelihood of local extinction in the centres of their ranges and others suffering random local extinctions throughout their range. The different spatial patterns identified were largely independent of the overall range contraction suffered by each species nationally. We suggest that range contractions in British birds can generally be explained better by a general decline in habitat quality or other factors than by contagious anthropogenic effects, as might be expected in a country with a long history of human environmental modification.  相似文献   

19.
Forecasts of range dynamics now incorporate many of the mechanisms and interactions that drive species distributions. However, connectivity continues to be simulated using overly simple distance-based dispersal models with little consideration of how the individual behaviour of dispersing organisms interacts with landscape structure (functional connectivity). Here, we link an individual-based model to a niche-population model to test the implications of this omission. We apply this novel approach to a turtle species inhabiting wetlands which are patchily distributed across a tropical savannah, and whose persistence is threatened by two important synergistic drivers of global change: predation by invasive species and overexploitation. We show that projections of local range dynamics in this study system change substantially when functional connectivity is modelled explicitly. Accounting for functional connectivity in model simulations causes the estimate of extinction risk to increase, and predictions of range contraction to slow. We conclude that models of range dynamics that simulate functional connectivity can reduce an important source of bias in predictions of shifts in species distributions and abundances, especially for organisms whose dispersal behaviours are strongly affected by landscape structure.  相似文献   

20.
Uncertainty in projections of global change impacts on biodiversity over the 21st century is high. Improved predictive accuracy is needed, highlighting the importance of using different types of models when predicting species range shifts. However, this is still rarely done. Our approach integrates the outputs of a spatially‐explicit physiologically inspired model of extinction and correlative species distribution models to assess climate‐change induced range shifts of three European reptile species (Lacerta lepida, Iberolacerta monticola, and Hemidactylus turcicus) in the coming decades. We integrated the two types of models by mapping and quantifying agreement and disagreement between their projections. We analyzed the relationships between climate change and projected range shifts. Agreement between model projections varied greatly between species and depended on whether or not they consider dispersal ability. Under our approach, the reliability of predictions is greatest where the predictions of these different types of models converge, and in this way uncertainty is reduced; sites where this convergence occurs are characterized by both current high temperatures and significant future temperature increase, suggesting they may become hotspots of local extinctions. Moreover, this approach can be readily implemented with other types of models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号