首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recent and rapid digitization of biodiversity data from natural history collection (NHC) archives has enriched collections based data repositories; this data continues to inform studies of species' geographic distributions. Here we investigate the relative impact of plant data from small natural history collections (collections with < 100,000 specimens) on species distributional models in an effort to document the potential of data from small NHCs to contribute to and inform biodiversity research. We modelled suitable habitat of five test case species from Fuireneae (Cyperaceae) in the United States using specimen records available via the Global Biodiversity Information Facility and that of data ready to mobilize from two regional small herbaria. Data were partitioned into three datasets based on their source: 1) collections-based records from large NHCs accessed GBIF, 2) collections-based records from small NHCs accessed from GBIF, and 3) collections-based records from two small regional herbaria not yet mobilized to GBIF. We extracted and evaluated the ecological niche represented for each of the three datasets by applying dataset occurrences to 14 environmental factors, and we modelled habitat suitability using Maxent to compare the represented distribution of the environmental values among the datasets. Our analyses indicate that the data from small NHCs contributed unique information in both geographic and environmental space. When data from small collections were combined with data from large collections, species models of the ecological niche resulted in more refined predictions of habitat suitability, indicating that small collections can contribute unique occurrence data which enhance species distribution models by bridging geographic collection gaps and shifting modelled predictions of suitable habitat. Inclusion of specimen records from small collections in ongoing digitization efforts is essential for generating informed models of a species' niche and distribution.  相似文献   

2.
One of the most intriguing questions in current ecology is the extent to which the ecological niches of species are conserved in space and time. Niche conservatism has mostly been studied using coarse‐scale data of species' distributions, although it is at the local habitat scales where species' responses to ecological variables primarily take place. We investigated the extent to which niches of aquatic macrophytes are conserved among four study regions (i.e. Finland, Sweden and the US states of Minnesota and Wisconsin) on two continents (i.e. Europe and North America) using data for 11 species common to all the four study areas. We studied how ecological variables (i.e. local, climate and spatial variables) explain variation in the distributions of these common species in the four areas using species distribution modelling. In addition, we examined whether species' niche parameters vary among the study regions. Our results revealed large variation in both species' responses to the studied ecological variables and in species' niche parameters among the areas. We found little evidence for niche conservatism in aquatic macrophytes, though local environmental conditions among the studied areas were largely similar. This suggests that niche shifts, rather than different environmental conditions, were responsible for variable responses of aquatic macrophytes to local ecological variables. Local habitat niches of aquatic macrophytes are mainly driven by variations in local environmental conditions, whereas their climate niches are more or less conserved among regions. This highlights the need to study niche conservatism using local‐scale data to better understand whether species' niches are conserved, because different niches (e.g. local versus climate) operating at various scales may show different degrees of conservatism. The extent to which species' niches are truly conserved has wide practical implications, including for instance, predicting changes in species' distributions in response to global change.  相似文献   

3.
Climate change poses a serious threat to biodiversity. Predicting the effects of climate change on the distribution of a species' habitat can help humans address the potential threats which may change the scope and distribution of species. Pterocarya stenoptera is a common fast‐growing tree species often used in the ecological restoration of riverbanks and alpine forests in central and eastern China. Until now, the characteristics of the distribution of this species' habitat are poorly known as are the environmental factors that influence its preferred habitat. In the present study, the Maximum Entropy Modeling (Maxent) algorithm and the Genetic Algorithm for Ruleset Production (GARP) were used to establish the models for the potential distribution of this species by selecting 236 sites with known occurrences and 14 environmental variables. The results indicate that both models have good predictive power. Minimum temperature of coldest month (Bio6), mean temperature of warmest quarter (Bio10), annual precipitation (Bio12), and precipitation of driest month (Bio14) were important environmental variables influencing the prediction of the Maxent model. According to the models, the temperate and subtropical regions of eastern China had high environmental suitability for this species, where the species had been recorded. Under each climate change scenario, climatic suitability of the existing range of this species increased, and its climatic niche expanded geographically to the north and higher elevation. GARP predicted a more conservative expansion. The projected spatial and temporal patterns of P. stenoptera can provide reference for the development of forest management and protection strategies.  相似文献   

4.
The potential for ecological niche models (ENMs) to accurately predict species' abundance and demographic performance throughout their geographic distributions remains a topic of substantial debate in ecology and biogeography. Few studies simultaneously examine the relationship between ENM predictions of environmental suitability and both a species' abundance and its demographic performance, particularly across its entire geographic distribution. Yet, studies of this type are essential for understanding the extent to which ENMs are a viable tool for identifying areas that may promote high abundance or performance of a species or how species might respond to future climate conditions. In this study, we used an ensemble ecological niche model to predict climatic suitability for the perennial forb Astragalus utahensis across its geographic distribution. We then examined relationships between projected climatic suitability and field‐based measures of abundance, demographic performance, and forecasted stochastic population growth (λs). Predicted climatic suitability showed a J‐shaped relationship with A. utahensis abundance, where low‐abundance populations were associated with low‐to‐intermediate suitability scores and abundance increased sharply in areas of high predicted climatic suitability. A similar relationship existed between climatic suitability and λs from the center to the northern edge of the latitudinal distribution. Patterns such as these, where density or demographic performance only increases appreciably beyond some threshold of climatic suitability, support the contention that ENM‐predicted climatic suitability does not necessarily represent a reliable predictor of abundance or performance across large geographic regions.  相似文献   

5.
Forecasting the effects of climate change on species and populations is a fundamental goal of conservation biology, especially for montane endemics which seemingly are under the greatest threat of extinction given their association with cool, high elevation habitats. Species distribution models (also known as niche models) predict where on the landscape there is suitable habitat for a species of interest. Correlative niche modeling, the most commonly employed approach to predict species' distributions, relies on correlations between species' localities and current environmental data. This type of model could spuriously forecast less future suitable habitat because species' current distributions may not adequately represent their thermal tolerance, and future climate conditions may not be analogous to current conditions. We compared the predicted distributions for three montane species of Plethodon salamanders in the southern Appalachian Mountains of North America using a correlative modeling approach and a mechanistic model. The mechanistic model incorporates species-specific physiology, morphology and behavior to predict an annual energy budget on the landscape. Both modeling approaches performed well at predicting the species' current distributions and predicted that all species could persist in habitats at higher elevation through 2085. The mechanistic model predicted more future suitable habitat than the correlative model. We attribute these differences to the mechanistic approach being able to model shifts in key range-limiting biological processes (changes in surface activity time and energy costs) that the correlative approach cannot. Choice of global circulation model (GCM) contributed significantly to distribution predictions, with a tenfold difference in future suitability based on GCM, indicating that GCM variability should be either directly included in models of species distributions or, indirectly, through the use of multi-model ensemble averages. Our results indicate that correlative models are over-predicting habitat loss for montane species, suggesting a critical need to incorporate mechanisms into forecasts of species' range dynamics.  相似文献   

6.
It is generally accepted that the spatial distribution of neutral genetic diversity within a species’ native range mostly depends on effective population size, demographic history, and geographic position. However, it is unclear how genetic diversity at adaptive loci correlates with geographic peripherality or with habitat suitability within the ecological niche. Using exome‐wide genomic data and distribution maps of the Alpine range, we first tested whether geographic peripherality correlates with four measures of population genetic diversity at > 17,000 SNP loci in 24 Alpine populations (480 individuals) of Swiss stone pine (Pinus cembra) from Switzerland. To distinguish between neutral and adaptive SNP sets, we used four approaches (two gene diversity estimates, FST outlier test, and environmental association analysis) that search for signatures of selection. Second, we established ecological niche models for P. cembra in the study range and investigated how habitat suitability correlates with genetic diversity at neutral and adaptive loci. All estimates of neutral genetic diversity decreased with geographic peripherality, but were uncorrelated with habitat suitability. However, heterozygosity (He) at adaptive loci based on Tajima's D declined significantly with increasingly suitable conditions. No other diversity estimates at adaptive loci were correlated with habitat suitability. Our findings suggest that populations at the edge of a species' geographic distribution harbour limited neutral genetic diversity due to demographic properties. Moreover, we argue that populations from suitable habitats went through strong selection processes, are thus well adapted to local conditions, and therefore exhibit reduced genetic diversity at adaptive loci compared to populations at niche margins.  相似文献   

7.
8.
The fit between life histories and ecological niche is a paradigm of phenotypic evolution, also widely used to explain patterns of species co-occurrence. By analysing the lifestyles of a sympatric avian assemblage, we show that species'' solutions to environmental problems are not unbound. We identify a life-history continuum structured on the cost of reproduction along a temperature gradient, as well as habitat-driven parental behaviour. However, environmental fit and trait convergence are limited by niche filling and by within-species variability of niche traits, which is greater than variability of life histories. Phylogeny, allometry and trade-offs are other important constraints: lifetime reproductive investment is tightly bound to body size, and the optimal allocation to reproduction for a given size is not established by niche characteristics but by trade-offs with survival. Life histories thus keep pace with habitat and climate, but under the limitations imposed by metabolism, trade-offs among traits and species'' realized niche.  相似文献   

9.
The central–marginal hypothesis (CMH) predicts that population size, genetic diversity and genetic connectivity are highest at the core and decrease near the edges of species' geographic distributions. We provide a test of the CMH using three replicated core‐to‐edge transects that encompass nearly the entire geographic range of the endemic streamside salamander (Ambystoma barbouri). We confirmed that the mapped core of the distribution was the most suitable habitat using ecological niche modelling (ENM) and via genetic estimates of effective population sizes. As predicted by the CMH, we found statistical support for decreased genetic diversity, effective population size and genetic connectivity from core to edge in western and northern transects, yet not along a southern transect. Based on our niche model, habitat suitability is lower towards the southern range edge, presumably leading to conflicting core‐to‐edge genetic patterns. These results suggest that multiple processes may influence a species' distribution based on the heterogeneity of habitat across a species' range and that replicated sampling may be needed to accurately test the CMH. Our work also emphasizes the importance of identifying the geographic range core with methods other than using the Euclidean centre on a map, which may help to explain discrepancies among other empirical tests of the CMH. Assessing core‐to‐edge population genetic patterns across an entire species' range accompanied with ENM can inform our general understanding of the mechanisms leading to species' geographic range limits.  相似文献   

10.
Climate change is causing range shifts in many marine species, with implications for biodiversity and fisheries. Previous research has mainly focused on how species' ranges will respond to changing ocean temperatures, without accounting for other environmental covariates that could affect future distribution patterns. Here, we integrate habitat suitability modeling approaches, a high‐resolution global climate model projection, and detailed fishery‐independent and ‐dependent faunal datasets from one of the most extensively monitored marine ecosystems—the U.S. Northeast Shelf. We project the responses of 125 species in this region to climate‐driven changes in multiple oceanographic factors (e.g., ocean temperature, salinity, sea surface height) and seabed characteristics (i.e., rugosity and depth). Comparing model outputs based on ocean temperature and seabed characteristics to those that also incorporated salinity and sea surface height (proxies for primary productivity and ocean circulation features), we explored how an emphasis on ocean temperature in projecting species' range shifts can impact assessments of species' climate vulnerability. We found that multifactor habitat suitability models performed better in explaining and predicting species historical distribution patterns than temperature‐based models. We also found that multifactor models provided more concerning assessments of species' future distribution patterns than temperature‐based models, projecting that species' ranges will largely shift northward and become more contracted and fragmented over time. Our results suggest that using ocean temperature as a primary determinant of range shifts can significantly alter projections, masking species' climate vulnerability, and potentially forestalling proactive management.  相似文献   

11.
12.
Predicting how and when adaptive evolution might rescue species from global change, and integrating this process into tools of biodiversity forecasting, has now become an urgent task. Here, we explored whether recent population trends of species can be explained by their past rate of niche evolution, which can be inferred from increasingly available phylogenetic and niche data. We examined the assemblage of 409 European bird species for which estimates of demographic trends between 1970 and 2000 are available, along with a species-level phylogeny and data on climatic, habitat and trophic niches. We found that species'' proneness to demographic decline is associated with slow evolution of the habitat niche in the past, in addition to certain current-day life-history and ecological traits. A similar result was found at a higher taxonomic level, where families prone to decline have had a history of slower evolution of climatic and habitat niches. Our results support the view that niche conservatism can prevent some species from coping with environmental change. Thus, linking patterns of past niche evolution and contemporary species dynamics for large species samples may provide insights into how niche evolution may rescue certain lineages in the face of global change.  相似文献   

13.
Interspecific competition is a dominant force in animal communities that induces niche shifts in ecological and evolutionary time. If competition occurs, niche expansion can be expected when the competitor disappears because resources previously inaccessible due to competitive constraints can then be exploited (i.e., ecological release). Here, we aimed to determine the potential effects of interspecific competition between the little bustard (Tetrax tetrax) and the great bustard (Otis tarda) using a multidimensional niche approach with habitat distribution data. We explored whether the degree of niche overlap between the species was a density‐dependent function of interspecific competition. We then looked for evidences of ecological release by comparing measures of niche breadth and position of the little bustard between allopatric and sympatric situations. Furthermore, we evaluated whether niche shifts could depend not only on the presence of great bustard but also on the density of little and great bustards. The habitat niches of these bustard species partially overlapped when co‐occurring, but we found no relationship between degree of overlap and great bustard density. In the presence of the competitor, little bustard's niche was displaced toward increased use of the species' primary habitat. Little bustard's niche breadth decreased proportionally with great bustard density in sympatric sites, in consistence with theory. Overall, our results suggest that density‐dependent variation in little bustard's niche is the outcome of interspecific competition with the great bustard. The use of computational tools like kernel density estimators to obtain multidimensional niches should bring novel insights on how species' ecological niches behave under the effects of interspecific competition in ecological communities.  相似文献   

14.

Background

Species Distribution Models (SDMs) aim on the characterization of a species'' ecological niche and project it into geographic space. The result is a map of the species'' potential distribution, which is, for instance, helpful to predict the capability of alien invasive species. With regard to alien invasive species, recently several authors observed a mismatch between potential distributions of native and invasive ranges derived from SDMs and, as an explanation, ecological niche shift during biological invasion has been suggested. We studied the physiologically well known Slider turtle from North America which today is widely distributed over the globe and address the issue of ecological niche shift versus choice of ecological predictors used for model building, i.e., by deriving SDMs using multiple sets of climatic predictor.

Principal Findings

In one SDM, predictors were used aiming to mirror the physiological limits of the Slider turtle. It was compared to numerous other models based on various sets of ecological predictors or predictors aiming at comprehensiveness. The SDM focusing on the study species'' physiological limits depicts the target species'' worldwide potential distribution better than any of the other approaches.

Conclusion

These results suggest that a natural history-driven understanding is crucial in developing statistical models of ecological niches (as SDMs) while “comprehensive” or “standard” sets of ecological predictors may be of limited use.  相似文献   

15.
We modelled the future distribution in 2050 of 975 endemic plant species in southern Africa distributed among seven life forms, including new methodological insights improving the accuracy and ecological realism of predictions of global changes studies by: (i) using only endemic species as a way to capture the full realized niche of species, (ii) considering the direct impact of human pressure on landscape and biodiversity jointly with climate, and (iii) taking species' migration into account. Our analysis shows important promises for predicting the impacts of climate change in conjunction with land transformation. We have shown that the endemic flora of Southern Africa on average decreases with 41% in species richness among habitats and with 39% on species distribution range for the most optimistic scenario. We also compared the patterns of species' sensitivity with global change across life forms, using ecological and geographic characteristics of species. We demonstrate here that species and life form vulnerability to global changes can be partly explained according to species' (i) geographical distribution along climatic and biogeographic gradients, like climate anomalies, (ii) niche breadth or (iii) proximity to barrier preventing migration. Our results confirm that the sensitivity of a given species to global environmental changes depends upon its geographical distribution and ecological proprieties, and makes it possible to estimate a priori its potential sensitivity to these changes.  相似文献   

16.
The study of ecological niche evolution is fundamental for understanding how the environment influences species' geographical distributions and their adaptation to divergent environments. Here, we present a study of the ecological niche, demographic history and thermal performance (locomotor activity, developmental time and fertility/viability) of the temperate species Drosophila americana and its two chromosomal forms. Temperature is the environmental factor that contributes most to the species' and chromosomal forms' ecological niches, although precipitation is also important in the model of the southern populations. The past distribution model of the species predicts a drastic reduction in the suitable area for the distribution of the species during the last glacial maximum (LGM), suggesting a strong bottleneck. However, DNA analyses did not detect a bottleneck signature during the LGM. These contrasting results could indicate that D. americana niche preference evolves with environmental change, and thus, there is no evidence to support niche conservatism in this species. Thermal performance experiments show no difference in the locomotor activity across a temperature range of 15 to 38 °C between flies from the north and the south of its distribution. However, we found significant differences in developmental time and fertility/viability between the two chromosomal forms at the model's optimal temperatures for the two forms. However, results do not indicate that they perform better for the traits studied here in their respective optimal niche temperatures. This suggests that behaviour plays an important role in thermoregulation, supporting the capacity of this species to adapt to different climatic conditions across its latitudinal distribution.  相似文献   

17.
陈俊达  姚志诚  石锐  高惠  刘振生 《生态学报》2022,42(10):4209-4216
贺兰山因其拥有独特的植物垂直分布带而十分适宜啮齿动物生存,但自保护区生态恢复以来并未见有研究评价啮齿动物在贺兰山的生境适宜性,使得其分布现状未知。使用GIS技术和MAXENT模型对内蒙古贺兰山国家级自然保护区6种主要啮齿动物进行生境适宜性状况评价及预测,探究啮齿动物在贺兰山的分布现状。结果表明:影响6种啮齿动物的主要环境因子为海拔、坡度和距矿区距离,海拔越高、坡度越大及距矿区距离越近均使啮齿动物生存适宜性降低;两两鼠种生境适宜面积叠加发现,大林姬鼠和阿拉善黄鼠适宜生境重叠面积最大(261.37 km~2),短尾仓鼠和子午沙鼠的适宜生境重叠面积最小(19.00 km~2);6种主要鼠种均适宜的生境面积交集仅有17.14 km~2,占贺兰山总面积的0.47%,6种主要鼠种均不适宜的生境面积有2985.23 km~2,占贺兰山总面积的81.21%。研究表明,啮齿动物栖息地距矿区距离仍是影响其适宜生境的重要因素之一,建议相关部门加强对废弃矿区采取措施,改善保护区啮齿动物生境质量。  相似文献   

18.
Environmental niche modeling outputs a biological species' potential distribution. Further work is needed to arrive at a species' realized distribution. The Biological Species Approximate Realized Niche (BioSARN) application provides the ecological modeler with a toolset to refine Environmental niche models (ENMs). These tools include soil and land class filtering, niche area quantification and novelties like enhanced temporal corridor definition, and output to a high spatial resolution land class model. BioSARN is exemplified with a study on Fraser fir, a tree species with strong land class and edaphic correlations. Soil and land class filtering caused the potential distribution area to decline 17%. Enhanced temporal corridor definition permitted distinction of current, continuing, and future niches, and thus niche change and movement. Tile quantification analysis provided further corroboration of these trends. BioSARN does not substitute other established ENM methods. Rather, it allows the experimenter to work with their preferred ENM, refining it using their knowledge and experience. Output from lower spatial resolution ENMs to a high spatial resolution land class model is a pseudo high‐resolution result. Still, it maybe the best that can be achieved until wide range high spatial resolution environmental data and accurate high precision species occurrence data become generally available.  相似文献   

19.
We modelled the ecoclimatic niche of Culicoides imicola, a major arthropod vector of midge-borne viral pathogens affecting ruminants and equids, at fine scale and on a global extent, so as to provide insight into current and future risks of disease epizootics, and increase current knowledge of the species'' ecology. Based on the known distribution and ecology of C. imicola, the species'' response to monthly climatic conditions was characterised using CLIMEX with 10′ spatial resolution climatic datasets. The species'' climatic niche was projected worldwide and under future climatic scenarios. The validated model highlights the role of irrigation in supporting the occurrence of C. imicola in arid regions. In Europe, the modelled potential distribution of C. imicola extended further West than its reported distribution, raising questions regarding ongoing process of colonization and non-climatic habitat factors. The CLIMEX model highlighted similar ecological niches for C. imicola and the Australasian C. brevitarsis raising questions on biogeography and biosecurity. Under the climate change scenarios considered, its'' modelled potential distribution could expand northward in the Northern hemisphere, whereas in Africa its range may contract in the future. The biosecurity risks from bluetongue and African horse sickness viruses need to be re-evaluated in regions where the vector''s niche is suitable. Under a warmer climate, the risk of vector-borne epizootic pathogens such as bluetongue and African horse sickness viruses are likely to increase as the climate suitability for C. imicola shifts poleward, especially in Western Europe.  相似文献   

20.
The hindcast of shifts in the geographical ranges of species as estimated by ecological niche modelling (ENM) has been coupled with phylogeographical patterns, allowing the inference of past processes that drove population differentiation and genetic variability. However, more recently, some studies have suggested that maps of environmental suitability estimated by ENM may be correlated to species' abundance, raising the possibility of using environmental suitability to infer processes related to population demographic dynamics and genetic variability. In both cases, one of the main problems is that there is a wide variation in ENM development methods and climatic models. In this study, we analyse the relationship between heterozygosity (He) and environmental suitability from multiple ENMs for 25 population estimates for Dipteryx alata, a widely distributed, endemic tree species of the Cerrado region of central Brazil. We propose a new approach for generating a statistical distribution of correlations under randomly generated ENM. The confidence intervals from these distributions indicate how model selection with different properties affects the ability to detect a correlation of interest (e.g. the correlation between He and suitability). Additionally, our approach allows us to explore which particular ensemble of ENMs produces the better result for finding an association between environmental suitability and He. Caution is necessary when choosing a method or a climatic data set for modelling geographical distributions, but the new approach proposed here provides a conservative way to evaluate the ability of ensembles to detect patterns of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号