首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ecologists have examined the synchronization of population dynamics across space as a means to understand how populations respond to climate variation. However, response diversity may reflect important variation among local population dynamics driven by population‐specific responses to regional environmental change. We used long‐term data on sockeye salmon Oncorhynchus nerka from pristine watersheds of southwestern Alaska to show that populations spawning in close proximity (<40 km) to one another have a limited degree of synchrony in their dynamics, even after accounting for density‐dependent processes. In fact, the dynamics of local populations of stream‐spawning sockeye salmon were no more coherent than those of stocks at a much coarser resolution across this region of Alaska. We examined four hypotheses to explain the observed patterns of asynchrony among stream‐spawning populations, and found that populations spawning in dissimilar habitats, and using different nursery lakes were less synchronized in their productivity. Similarity in the age structure of spawning adults was less correlated with synchrony in productivity. These results emphasize the importance of maintaining diverse spawning and rearing habitat for the conservation of Pacific salmon, and should guide conservation planning for Pacific salmon populations in regions where natural dynamics have been altered by habitat loss, hatchery practices, and over‐fishing.  相似文献   

2.
Life history variability includes phenotypic variation in morphology, age, and size at key stage transitions and arises from genotypic, environmental, and genotype-by-environment effects. Life history variation contributes to population abundance, productivity, and resilience, and management units often reflect life history classes. Recent evidence suggests that past Chinook salmon (Oncorhynchus tshawytscha) classifications (e.g., ‘stream’ and ‘ocean’ types) are not distinct evolutionary lineages, do not capture the phenotypic variation present within or among populations, and are poorly aligned with underlying ecological and developmental processes. Here we review recently reported variation in juvenile Chinook salmon life history traits and provide a refined conceptual framework for understanding the causes and consequences of the observed variability. The review reveals a broad continuum of individual juvenile life history pathways, defined primarily by transitions among developmental stages and habitat types used during freshwater rearing and emigration. Life history types emerge from discontinuities in expressed pathways when viewed at the population scale. We synthesize recent research that examines how genetic, conditional, and environmental mechanisms likely influence Chinook salmon life history pathways. We suggest that threshold models hold promise for understanding how genetic and environmental factors influence juvenile salmon life history transitions. Operational life history classifications will likely differ regionally, but should benefit from an expanded lexicon that captures the temporally variable, multi-stage life history pathways that occur in many Chinook salmon populations. An increased mechanistic awareness of life history diversity, and how it affects population fitness and resilience, should improve management, conservation, and restoration of this iconic species.  相似文献   

3.
Concurrent, distribution-wide abundance declines of some Pacific salmon species, including Chinook salmon (Oncorhynchus tshawytscha), highlights the need to understand how vulnerability at different life stages to climate stressors affects population dynamics and fisheries sustainability. Yukon River Chinook salmon stocks are among the largest subarctic populations, near the northernmost extent of the species range. Existing research suggests that Yukon River Chinook salmon population dynamics are largely driven by factors occurring between the adult spawner life stage and their offspring's first summer at sea (second year post-hatching). However, specific mechanisms sustaining chronic poor productivity are unknown, and there is a tremendous sense of urgency to understand causes, as declines of these stocks have taken a serious toll on commercial, recreational, and indigenous subsistence fisheries. Therefore, we leveraged multiple existing datasets spanning parent and juvenile stages of life history in freshwater and marine habitats. We analyzed environmental data in association with the production of offspring that survive to the marine juvenile stage (juveniles per spawner). These analyses suggest more than 45% of the variability in the production of juvenile Chinook salmon is associated with river temperatures or water discharge levels during the parent spawning migration. Over the past two decades, parents that experienced warmer water temperatures and lower discharge in the mainstem Yukon River produced fewer juveniles per spawning adult. We propose the adult spawner life stage as a critical period regulating population dynamics. We also propose a conceptual model that can explain associations between population dynamics and climate stressors using independent data focused on marine nutrition and freshwater heat stress. It is sobering to consider that some of the northernmost Pacific salmon habitats may already be unfavorable to these cold-water species. Our findings have immediate implications, given the common assumption that northern ranges of Pacific salmon offer refugia from climate stressors.  相似文献   

4.
The ecosystems supporting Pacific salmon (Oncorhynchus spp.) are changing rapidly as a result of climate change and habitat alteration. Understanding how—and how consistently—salmon populations respond to changes at regional and watershed scales has major implications for fisheries management and habitat conservation. Chinook salmon (O. tshawytscha) populations across Alaska have declined over the past decade, resulting in fisheries closures and prolonged impacts to local communities. These declines are associated with large‐scale climate drivers, but uncertainty remains about the role of local conditions (e.g., precipitation, streamflow, and stream temperature) that vary among the watersheds where salmon spawn and rear. We estimated the effects of these and other environmental indicators on the productivity of 15 Chinook salmon populations in the Cook Inlet basin, southcentral Alaska, using a hierarchical Bayesian stock‐recruitment model. Salmon spawning during 2003–2007 produced 57% fewer recruits than the previous long‐term average, leading to declines in adult returns beginning in 2008. These declines were explained in part by density dependence, with reduced population productivity following years of high spawning abundance. Across all populations, productivity declined with increased precipitation during the fall spawning and early incubation period and increased with above‐average precipitation during juvenile rearing. Above‐average stream temperatures during spawning and rearing had variable effects, with negative relationships in many warmer streams and positive relationships in some colder streams. Productivity was also associated with regional indices of streamflow and ocean conditions, with high variability among populations. The cumulative effects of adverse conditions in freshwater, including high spawning abundance, heavy fall rains, and hot, dry summers may have contributed to the recent population declines across the region. Identifying both coherent and differential responses to environmental change underscores the importance of targeted, watershed‐specific monitoring and conservation efforts for maintaining resilient salmon runs in a warming world.  相似文献   

5.
Understanding how species might respond to climate change involves disentangling the influence of co‐occurring environmental factors on population dynamics, and is especially problematic for migratory species like Pacific salmon that move between ecosystems. To date, debate surrounding the causes of recent declines in Yukon River Chinook salmon (Oncorhynchus tshawytscha) abundance has centered on whether factors in freshwater or marine environments control variation in survival, and how these populations at the northern extremity of the species range will respond to climate change. To estimate the effect of factors in marine and freshwater environments on Chinook salmon survival, we constructed a stage‐structured assessment model that incorporates the best available data, estimates incidental marine bycatch mortality in trawl fisheries, and uses Bayesian model selection methods to quantify support for alternative hypotheses. Models fitted to two index populations of Yukon River Chinook salmon indicate that processes in the nearshore and marine environments are the most important determinants of survival. Specifically, survival declines when ice leaves the Yukon River later in the spring, increases with wintertime temperature in the Bering Sea, and declines with the abundance of globally enhanced salmon species consistent with competition at sea. In addition, we found support for density‐dependent survival limitations in freshwater but not marine portions of the life cycle, increasing average survival with ocean age, and age‐specific selectivity of bycatch mortality in the Bering Sea. This study underscores the utility of flexible estimation models capable of fitting multiple data types and evaluating mortality from both natural and anthropogenic sources in multiple habitats. Overall, these analyses suggest that mortality at sea is the primary driver of population dynamics, yet under warming climate Chinook salmon populations at the northern extent of the species’ range may be expected to fare better than southern populations, but are influenced by foreign salmon production.  相似文献   

6.
Off-channel habitat has become increasingly recognized as key for migratory fishes such as juvenile Chinook salmon (Oncorhynchus tshawytscha). Hence, floodplain habitat has been identified as critical for the continued persistence of California’s Central Valley salmon, particularly the Yolo Bypass, the primary floodplain of the Sacramento River. To provide insight into factors supporting juvenile salmon use of this 240 km2, partially leveed floodplain, we examined inter- and intra-annual relationships between environmental correlates and residency time, apparent growth, emigration, migratory phenotype, and survival over more than a decade for natural-origin (“wild”) fish and experimentally-released hatchery fish. Flood duration was positively associated with hatchery juveniles residing longer and achieving larger size. Wild juveniles grew larger and emigrated later with cumulative temperature experience (accumulated thermal units) and warmer average annual temperatures during flood years. Within years, both wild and hatchery salmon departed the floodplain as flood waters receded. Parr-sized juveniles dominated outmigrant composition, though fry and smolt-sized juveniles were also consistently observed. Survival to the ocean fishery was not significantly different between hatchery fish that reared in the Yolo Bypass versus those that reared in the main stem Sacramento River. Our study indicates improved frequency and duration of connectivity between the Sacramento River and the Yolo Bypass could increase off-channel rearing opportunities that expand the life history diversity portfolio for Central Valley Chinook salmon.  相似文献   

7.
Evolutionary trade‐offs among demographic parameters are important determinants of life‐history evolution. Investigating such trade‐offs under natural conditions has been limited by inappropriate analytical methods that fail to address the bias in demographic estimates that can result when issues of detection (uncertain detection of individual) are ignored. We propose a new statistical approach to quantify evolutionary trade‐offs in wild populations. Our method is based on a state‐space modeling framework that focuses on both the demographic process of interest as well as the observation process. As a case study, we used individual mark–recapture data for stream‐dwelling Atlantic salmon juveniles in the Scorff River (Southern Brittany, France). In freshwater, juveniles face two life‐history choices: migration to the ocean and sexual maturation (for males). Trade‐offs may appear with these life‐history choices and survival, because all are energy dependent. We found a cost of reproduction on survival for fish staying in freshwater and a survival advantage associated with the “decision” to migrate. Our modeling framework opens up promising prospects for the study of evolutionary trade‐offs when some life‐history traits are not, or only partially, observable.  相似文献   

8.
The genetic diversity of anadromous and freshwater Atlantic salmon ( Salmo salar ) populations from north-west Russia and other north European locations was compared using microsatellite variation to evaluate the importance of anadromous migration, population size and population glacial history in determining population genetic diversity and divergence. In anadromous Atlantic salmon populations, the level of genetic diversity was significantly higher and the level of population divergence was significantly lower than among the freshwater Atlantic salmon populations, even after correcting for differences in stock size. The phylogeographic origin of the populations also had a significant effect on the genetic diversity characteristics of populations: anadromous populations from the basins of the Atlantic Ocean, White Sea and Barents Sea possessed higher levels of genetic diversity than anadromous populations from the Baltic Sea basin. Among the freshwater populations, the result was the opposite: the Baltic freshwater populations were more variable. The results of this study imply that differences in the level of long-term gene flow between freshwater populations and anadromous populations have led to different levels of genetic diversity, which was also evidenced by the hierarchical analysis of molecular variance. Furthermore, the results emphasize the importance of taking the life history of a population into consideration when developing conservation strategies: due to the limited possibilities for new genetic diversity to be generated via gene flow, it is expected that freshwater Atlantic salmon populations would be more vulnerable to extinction following a population crash. Hence, high conservation status is warranted in order to ensure the long-term survival of the limited number of European populations with this life-history strategy.  相似文献   

9.
In salmonids, the release of hatchery-reared fish has been shown to cause irreversible genetic impacts on wild populations. However, although responsible practices for producing and releasing genetically diverse, hatchery-reared juveniles have been published widely, they are rarely implemented. Here, we investigated genetic differences between wild and early-generation hatchery-reared populations of the purple sea urchin Paracentrotus lividus (a commercially important species in Europe) to assess whether hatcheries were able to maintain natural levels of genetic diversity. To test the hypothesis that hatchery rearing would cause bottleneck effects (that is, a substantial reduction in genetic diversity and differentiation from wild populations), we compared the levels and patterns of genetic variation between two hatcheries and four nearby wild populations, using samples from both Spain and Ireland. We found that hatchery-reared populations were less diverse and had diverged significantly from the wild populations, with a very small effective population size and a high degree of relatedness between individuals. These results raise a number of concerns about the genetic impacts of their release into wild populations, particularly when such a degree of differentiation can occur in a single generation of hatchery rearing. Consequently, we suggest that caution should be taken when using hatchery-reared individuals to augment fisheries, even for marine species with high dispersal capacity, and we provide some recommendations to improve hatchery rearing and release practices. Our results further highlight the need to consider the genetic risks of releasing hatchery-reared juveniles into the wild during the establishment of restocking, stock enhancement and sea ranching programs.  相似文献   

10.
Facing climate change (CC), species are prone to multiple modifications in their environment that can lead to extinction, migration or adaptation. Identifying the role and interplay of different potential stressors becomes a key question. Anadromous fishes will be exposed to both river and oceanic habitat changes. For Atlantic salmon, the river water temperature, river flow and oceanic growth conditions appear as three main stressing factors. They could act on population dynamics or as selective forces on life‐history pathways. Using an individual‐based demo‐genetic model, we assessed the effects of these factors (1) to compare risks of extinction resulting from CC in river and ocean, and (2) to assess CC effects on life‐history pathways including the evolution of underlying genetic control of phenotypic plasticity. We focused on Atlantic salmon populations from Southern Europe for a time horizon of three decades. We showed that CC in river alone should not lead to extinction of Southern European salmon populations. In contrast, the reduced oceanic growth appeared as a significant threat for population persistence. An increase in river flow amplitude increased the risk of local extinction in synergy with the oceanic effects, but river temperature rise reduced this risk. In terms of life‐history modifications, the reduced oceanic growth increased the age of return of individuals through plastic and genetic responses. The river temperature rise increased the proportion of sexually mature parr, but the genetic evolution of the maturation threshold lowered the maturation rate of male parr. This was identified as a case of environmentally driven plastic response that masked an underlying evolutionary response of plasticity going in the opposite direction. We concluded that to counteract oceanic effects, river flow management represented the sole potential force to reduce the extinction probability of Atlantic salmon populations in Southern Europe, although this might not impede changes in migration life history.  相似文献   

11.
This synthesis focuses on the estuarine and ocean ecology of Atlantic salmon (Salmo salar) and steelhead (Oncorhynchus mykiss) across their southern ranges in North America. General life history and ecology share many common traits including iteroparity, duration of freshwater (0–3 years) and marine (2–5 years) rearing, ocean emigration at relatively large sizes and strong surface orientation compared to other salmonids. Despite parallels in life history and anthropogenic pressures, several differences emerged for these species. First, steelhead have greater life history diversity and a broader geographic distribution. Generally, estuary habitats serve as short-term migration corridors for both species. However, some steelhead populations used lagoon habitat in south-coast watersheds. While both species are epipelagic, Atlantic salmon exhibit more vertical migration. Atlantic salmon tend to follow migratory highways—relatively narrow bands along the coastal shelf, then crossing the Atlantic to feed inshore and in fjords of West Greenland. Conversely, steelhead exit the coastal shelf quickly, dispersing across the Pacific, and rarely use coastal environments. Despite inhabiting rivers in warm dry Mediterranean climates, the extended range and stability of southern steelhead distribution is likely buffered by cool upwelled waters of the California Current. Whereas Atlantic salmon populations are restricted by warmer Northwest Atlantic circulation patterns lacking cool upwelling with greater susceptibility to warming associated with climate change. Determining the rate of marine habitat changes in the Atlantic and Pacific Oceans is important to the conservation of these species, including subtleties of temporal and spatial habitat use, and adaptability to ocean ecosystems under climate change.  相似文献   

12.
For Pacific salmon, the key fisheries management goal in British Columbia (BC) is to maintain and restore healthy and diverse Pacific salmon populations, making conservation of salmon biodiversity the highest priority for resource management decision‐making. Salmon status assessments are often conducted on coded‐wire‐tagged subsets of indicator populations based on assumptions of little differentiation within or among proximal populations. In the current study of southern BC coho salmon (Oncorhynchus kisutch) populations, parentage‐based tagging (PBT) analysis provided novel information on migration and life‐history patterns to test the assumptions of biological homogeneity over limited (generally < 100 km) geographic distances and, potentially, to inform management of fisheries and hatchery broodstocks. Heterogeneity for location and timing of fishery captures, family productivity, and exploitation rate was observed over small geographic scales, within regions that are, or might be expected to be, within the area encompassed by a single‐tagged indicator population. These results provide little support for the suggestion that information gained from tagged indicator populations is representative of marine distribution, productivity, and exploitation patterns of proximal populations.  相似文献   

13.
Local adaptation to heterogeneous environments generates population diversity within species, significantly increasing ecosystem stability and flows of ecosystem services. However, few studies have isolated the specific mechanisms that create and maintain this diversity. Here, we examined the relationship between water temperature in streams used for spawning and genetic diversity at a gene involved in immune function [the major histocompatibility complex (MHC)] in 14 populations of sockeye salmon (Oncorhynchus nerka) sampled across the Wood River basin in south‐western Alaska. The largest influence on MHC diversity was lake basin, but we also found a significant positive correlation between average water temperature and MHC diversity. This positive relationship between temperature and MHC diversity appears to have been produced by natural selection at very local scales rather than neutral processes, as no correlation was observed between temperature and genetic diversity at 90 neutral markers. Additionally, no significant relationship was observed between temperature variability and MHC diversity. Although lake basin was the largest driver of differences in MHC diversity, our results also demonstrate that fine‐scale differences in water temperature may generate variable selection regimes in populations that spawn in habitats separated by as little as 1 km. Additionally, our results indicated that some populations may be reaching a maximum level of MHC diversity. We postulate that salmon from populations in warm streams may delay spawning until late summer to avoid thermal stress as well as the elevated levels of pathogen prevalence and virulence associated with warm temperatures earlier in the summer.  相似文献   

14.
In salmonid parentage‐based tagging (PBT) applications, entire hatchery broodstocks are genotyped, and subsequently, progeny can be nonlethally sampled and assigned back to their parents using parentage analysis, thus identifying their hatchery of origin and brood year (i.e., age). Inter‐ and intrapopulation variability in migration patterns, life history traits, and fishery contributions can be determined from PBT analysis of samples derived from both fisheries and escapements (portion of a salmon population that does not get caught in fisheries and returns to its natal river to spawn). In the current study of southern British Columbia coho salmon (Oncorhynchus kisutch) populations, PBT analysis provided novel information on intrapopulation heterogeneity among males in the total number of progeny identified in fisheries and escapements, the proportion of progeny sampled from fisheries versus escapement, the proportion of two‐year‐old progeny (jacks) produced, and the within‐season return time of progeny. Fishery recoveries of coho salmon revealed heterogeneity in migration patterns among and within populations, with recoveries from north and central coast fisheries distinguishing “northern migrating” from “resident” populations. In northern migrating populations, the mean distance between fishery captures of sibs (brothers and sisters) was significantly less than the mean distance between nonsibs, indicating the possible presence of intrapopulation genetic heterogeneity for migration pattern. Variation among populations in productivity and within populations in fish catchability indicated that population selection and broodstock management can be implemented to optimize harvest benefits from hatcheries. Application of PBT provided valuable information for assessment and management of hatchery‐origin coho salmon in British Columbia.  相似文献   

15.
Altered river flows and fragmented habitats often simplify riverine communities and favor non‐native fishes, but their influence on life‐history expression and survival is less clear. Here, we quantified the expression and ultimate success of diverse salmon emigration behaviors in an anthropogenically altered California river system. We analyzed two decades of Chinook salmon monitoring data to explore the influence of regulated flows on juvenile emigration phenology, abundance, and recruitment. We then followed seven cohorts into adulthood using otolith (ear stone) chemical archives to identify patterns in time‐ and size‐selective mortality along the migratory corridor. Suppressed winter flow cues were associated with delayed emigration timing, particularly in warm, dry years, which was also when selection against late migrants was the most extreme. Lower, less variable flows were also associated with reduced juvenile and adult production, highlighting the importance of streamflow for cohort success in these southernmost populations. While most juveniles emigrated from the natal stream as fry or smolts, the survivors were dominated by the rare few that left at intermediate sizes and times, coinciding with managed flows released before extreme summer temperatures. The consistent selection against early (small) and late (large) migrants counters prevailing ecological theory that predicts different traits to be favored under varying environmental conditions. Yet, even with this weakened portfolio, maintaining a broad distribution in migration traits still increased adult production and reduced variance. In years exhibiting large fry pulses, even marginal increases in their survival would have significantly boosted recruitment. However, management actions favoring any single phenotype could have negative evolutionary and demographic consequences, potentially reducing adaptability and population stability. To recover fish populations and support viable fisheries in a warming and increasingly unpredictable climate, coordinating flow and habitat management within and among watersheds will be critical to balance trait optimization versus diversification.  相似文献   

16.
Population-specific assessment and management of anadromous fish at sea requires detailed information about the distribution at sea over ontogeny for each population. However, despite a long history of mixed-stock sea fisheries on Atlantic salmon, Salmo salar, migration studies showing that some salmon populations feed in different regions of the Baltic Sea and variation in dynamics occurs among populations feeding in the Baltic Sea, such information is often lacking. Also, current assessment of Baltic salmon assumes equal distribution at sea and therefore equal responses to changes in off-shore sea fisheries. Here, we test for differences in distribution at sea among and within ten Atlantic salmon Salmo salar populations originating from ten river-specific hatcheries along the Swedish Baltic Sea coast, using individual data from >125,000 tagged salmon, recaptured over five decades. We show strong population and size-specific differences in distribution at sea, varying between year classes and between individuals within year classes. This suggests that Atlantic salmon in the Baltic Sea experience great variation in environmental conditions and exploitation rates over ontogeny depending on origin and that current assessment assumptions about equal exploitation rates in the offshore fisheries and a shared environment at sea are not valid. Thus, our results provide additional arguments and necessary information for implementing population-specific management of salmon, also when targeting life stages at sea.  相似文献   

17.
Prominent and persistent cyclic fluctuations in the abundance of consecutive year-classes occur in some sockeye salmon populations throughout the species' range. We review and test a number of explanations for the existence of these cycles using qualitative biological arguments, including a consideration of the synchrony of cycles among populations. Most of the hypotheses involve mechanisms that would reinforce synchronous population fluctuations within watersheds. However, the 4-year cycles characteristic of many Fraser River sockeye populations are sometimes out of phase with each other, both among populations which migrate together as mixed stocks while vulnerable to commerical fisheries, and among populations whose juveniles share the same nursery lake habitat (Shuswap Lake). Such asynchrony suggests that the mechanism(s) causing population cycles can operate independently within reproductively isolated populations. Of the mechanisms reviewed here, only those involving genetic effects on age at maturation, or on resistance to disease or parasites, or those involving depensatory predation soon after fry emergence, appear to offer satisfactory explanations.  相似文献   

18.
The amount of intraindividual genetic variation has often been found to have profound effects on life history traits. However, studies concerning the relationship between behaviour and genetic diversity are scarce. Aggressiveness is an important component of competitive ability in juvenile salmonids affecting their later performance and survival. In this study, we used an experimental approach to test the prediction that juveniles with low estimated genetic diversity should be less aggressive than juveniles with high estimated genetic diversity in fry from a highly endangered population of land-locked salmon (Salmo salar). This was achieved by using a method enabling the accurate estimation of offspring genetic diversity based on parental microsatellite genotype data. This allowed us to create two groups of offspring expected to have high or low genetic diversity in which aggressive behaviour could be compared. Salmon fry with low estimated genetic diversity were significantly less aggressive than fry with high estimated genetic diversity. Closer analysis of the data suggested that this difference was due to differences in more costly acts of aggression. Our result may reflect a direct effect of genetic variation on a fitness-related trait; however, we cannot rule out an alternative explanation of allele-specific phenotype matching, where lowered aggression is expressed towards genetically more similar individuals.  相似文献   

19.
Time series on juvenile life‐history traits obtained from sockeye salmon Oncorhynchus nerka were analysed to assess lake‐specific environmental influences on juvenile migration timing, size and survival of fish from a common gene pool. Every year for the past two decades, O. nerka have been spawned at a hatchery facility, and the progeny released into two lakes that differ in average summer temperatures, limnological attributes and growth opportunities. Juveniles reared in the warmer, more productive Crosswind Lake were larger and heavier as smolts compared to those from the cooler, less productive Summit Lake and had higher in‐lake and subsequent marine survival. Crosswind Lake smolts migrated from the lake to sea slightly earlier in the season but the migration timing distributions overlapped considerably across years. Fry stocking density had a negative effect on smolt length for both lakes, and a negative effect on in‐lake survival in Summit Lake. Taken together, the results revealed a strong effect of lake‐rearing environment on the expression of life‐history variation in O. nerka. The stocking of these lakes each year with juveniles from a single mixed‐source population provided a large‐scale reverse common‐garden experiment, where the same gene pool was exposed to different environments, rather than the different gene pools in the same environment approach typical of evolutionary ecology studies. Other researchers are encouraged to seek and exploit similar serendipitous situations, which might allow environmental and genetic influences on ecologically important traits to be distinguished in natural or semi‐natural settings.  相似文献   

20.
With the current trends in climate and fisheries, well-designed mitigative strategies for conserving fish stocks may become increasingly necessary. The poor post-release survival of hatchery-reared Pacific salmon indicates that salmon enhancement programs require assessment. The objective of this study was to determine the relative roles that genotype and rearing environment play in the phenotypic expression of young salmon, including their survival, growth, physiology, swimming endurance, predator avoidance and migratory behaviour. Wild- and hatchery-born coho salmon adults (Oncorhynchus kisutch) returning to the Chehalis River in British Columbia, Canada, were crossed to create pure hatchery, pure wild, and hybrid offspring. A proportion of the progeny from each cross was reared in a traditional hatchery environment, whereas the remaining fry were reared naturally in a contained side channel. The resulting phenotypic differences between replicates, between rearing environments, and between cross types were compared. While there were few phenotypic differences noted between genetic groups reared in the same habitat, rearing environment played a significant role in smolt size, survival, swimming endurance, predator avoidance and migratory behaviour. The lack of any observed genetic differences between wild- and hatchery-born salmon may be due to the long-term mixing of these genotypes from hatchery introgression into wild populations, or conversely, due to strong selection in nature—capable of maintaining highly fit genotypes whether or not fish have experienced part of their life history under cultured conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号