首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Razgour O  Korine C  Saltz D 《Oecologia》2011,167(2):493-502
Bodies of water are a key foraging habitat for insectivorous bats. Since water is a scarce and limiting resource in arid environments, bodies of open water may have a structuring effect on desert bat communities, resulting in temporal or spatial partitioning of bat activity. Using acoustic monitoring, we studied the spatial and temporal activity patterns of insectivorous bats over desert ponds, and hypothesised that sympatric bat species partition the foraging space above ponds based on interspecific competitive interactions. We used indirect measures of competition (niche overlap and competition coefficients from the regression method) and tested for differences in pond habitat selection and peak activity time over ponds. We examined the effect of changes in the activity of bat species on their potential competitors. We found that interspecific competition affects bat community structure and activity patterns. Competing species partitioned their use of ponds spatially, whereby each species was associated with different pond size and hydroperiod (the number of months a pond holds water) categories, as well as temporally, whereby their activity peaked at different hours of the night. The drying out of temporary ponds increased temporal partitioning over permanent ponds. Differences in the activity of species over ponds in response to the presence or absence of their competitors lend further support to the role of interspecific competition in structuring desert bat communities. We suggest that habitat use and night activity pattern of insectivorous bats in arid environments reflect the trade-offs between selection of preferred pond type or activity time and constraints posed by competitive interactions.  相似文献   

3.
The study of animal–habitat interactions is of primary importance for the formulation of conservation recommendations. Flying, gliding, and climbing animals have the ability to exploit their habitat in a three‐dimensional way, and the vertical canopy structure in forests plays an essential role for habitat suitability. Forest bats as flying mammals may seasonally shift their microhabitat use due to differing energy demands or changing prey availability, but the patterns are not well understood. We investigated three‐dimensional and seasonal habitat use by insectivorous bats in a temperate lowland old‐growth forest, the Belovezhskaya Pushcha in Belarus. We acoustically sampled broadleaved and mixed coniferous plots in the forest interior and in gaps in three heights during two reproductive periods (pregnancy/lactation vs. postlactation). In canopy gaps, vertical stratification in bat activity was less pronounced than in the forest interior. Vertical activity patterns differed among species. The upper canopy levels were important foraging habitats for the open‐space forager guild and for some edge‐space foragers like the Barbastelle bat Barbastella barbastellus and the soprano pipistrelle Pipistrellus pygmaeus. Myotis species had highest activity levels near the ground in forest gaps. Moreover, we found species‐dependent seasonal microhabitat shifts. Generally, all species and species groups considered except Myotis species showed higher activity levels during postlactation. Myotis species tended toward higher activity in the forest interior during postlactation. Ppygmaeus switched from high activity levels in the upper canopy during pregnancy and lactation to high activity levels near the ground during postlactation. We conclude that a full comprehension of forest bat habitat use is only possible when height in canopy and seasonal patterns are considered.  相似文献   

4.
Artificial light at night is a pervasive anthropogenic stressor for biodiversity. Many fast‐flying insectivorous bat species feed on insects that are attracted to light‐emitting ultraviolet radiation (10–400 nm). Several countries are currently focused on replacing mercury vapour lamps, which emit ultraviolet light, with more cost‐efficient light‐emitting diode (LED) lights, which emit less ultraviolet radiation. This reduction in ultraviolet light may cause declines in insect densities in cities, predatory fast‐flying bats, and some edge‐foraging and slow‐flying bats. Capitalising on a scheme to update streetlights from high ultraviolet mercury vapour to low ultraviolet LED in Sydney, Australia, we measured the activity of individual bat species, the activity of different functional groups and the bat and insect communities, before and after the change in technology. We also surveyed sites with already LED lights, sites with mercury vapour lights and unlit bushland remnants. Species adapted to foraging in cluttered vegetation, and some edge‐space foraging species, were more active in unlit bushland sites than in all lit sites and decreased in activity at lit sites after the change to LED lights. The change to LED streetlights caused a decrease in the fast‐flying Chalinolobus gouldii but not Miniopterus schreibersii oceanensis, the latter being more influenced by seasonal and environmental variables. Insect biomass was not affected by changing light types, but instead was negatively correlated with the moon's percentage illuminance. Changing streetlights to LEDs could result in a decline in some insectivorous bats in cities. This study confirms that unlit urban bushland remnants are important refuges for high bat diversity, particularly for more clutter‐adapted species and some edge‐space foraging species. Preventing light penetration into unlit bushland patches and corridors remains essential to protect the urban bat community.  相似文献   

5.
Microbats perform important ecological services in agro‐ecosystems, but several species are globally threatened by loss of roosting and breeding habitats. The successful conservation of bats in agricultural land requires adequate knowledge of their ecology. Using ultrasonic recorders, we studied the activity of insectivorous bats in areas of macadamia production in eastern Australia at two spatial scales: across woodland‐orchard transects at the local scale and across three levels of fragmentation at the landscape scale. At the local scale, activity patterns of ‘clutter’ and ‘edge’ specialists were consistently higher in woodland patches, gradually decreasing towards isolated orchards, where only a few ‘open’ specialists were active. At the landscape scale, bat community activity was affected by the level of fragmentation, partly because three of the most recorded taxa (Austronomus australis, Saccolaimus flaviventris and Miniopterus australis) had their highest activity in less‐fragmented areas. A distance‐based model explained 24% of the bat community activity based on a combination of six environmental variables. Canonical correspondence analysis showed that a number of bat taxa were associated with open areas of macadamia, whereas other taxa were associated with increasing values of landscape composition, and arthropod and water availability. In addition, total bat activity was highly correlated with foraging rate. These results suggest that most bat taxa were influenced by proximity to woodland and the degree of fragmentation, and only few taxa were able to exploit isolated orchards. Environmental factors that promote bat activity could be exploited to strengthen conservation efforts. Preserving remnant woodland and promoting habitat heterogeneity will benefit several bat species. In particular, the foraging activity of ‘edge’ specialists could be fostered by increasing landscape connectivity and maintaining unobstructed water bodies near macadamia orchards. Considering that bats forage as they navigate these areas, conservation efforts could also bring benefits to farmers through pest‐reduction services.  相似文献   

6.
We studied the vertical distribution of Lepidoptera from a canopy walkway within a dipterocarp rain forest at Kinabalu Park (Borneo) using three different methods: (1) Bait traps to survey fruit-feeding nymphalid butterflies, (2) standardized counts for predominantly flower-visiting butterflies and their potential predators, aerial-hawking birds, and (3) attraction by blacklight for hawk- and tiger moths. There was a distinct decrease in the abundance of fruit-feeding nymphalids towards the canopy, probably due to a reduced and less predictable availability of rotting fruits in higher strata. These constraints might also be responsible for a higher abundance variation in the canopy, and a significant shift in size from larger species in the understorey to smaller ones in the canopy. Changes of microclimate and the conspicuous increase of insectivorous aerial-hawking birds from ground to canopy layer may be responsible for the prominent change in species composition of fruit-feeding nymphalids between 20 and 30 m. Nectar-feeding Lepidoptera showed a reversed abundance pattern. One main factor contributing to the much higher abundance of flower-visiting butterflies and moth taxa in the canopy, such as Sphingidae and some Arctiinae, might be the increase of nectar resources available in upper vegetation layers. A distinctly higher diversity in hawkmoths was also found in the canopy. A higher abundance of insectivorous aerial-hawking birds in the canopy might contribute to the shift in body design of fruit-feeding nymphalids from more slender bodies at lower vegetation layers to stouter ones (i.e. species which are stronger on the wing) in the canopy. Larval resources could play an additional role in specialisation on but a small part of the vertical gradient. This may explain stratification pattern of the nymphalid subfamilies Morphinae and Satyrinae. Monocotyledoneous larval food plants of both taxa, whose flight activity is largely restricted to the understorey, occur mostly in lower vegetation layers. Our observations on a wide taxonomic and ecological range of butterflies and moths indicate that tropical forest canopies hold a distinct and unique Lepidoptera fauna, whose species richness and abundance patterns differ from lower strata. However, the notion of tropical forest canopies as peaks of terrestrial diversity does not hold uniformly for all taxa or guilds.  相似文献   

7.
Aim  The influence of landscape structure on the distribution patterns of bats remains poorly understood for many species. This study investigates the relationship between area and isolation of islands and the probability of occurrence of six bat species to determine whether persistence and immigration abilities vary among bat species and foraging guilds.
Location  Thirty-two islands in the Gulf of California near the Baja California peninsula in north-west Mexico.
Methods  Using logistic regression and Akaike information criterion (AIC) model selection, we compared five a priori models for each of six bat species to explain patterns of island occupancy, including random patterns, minimum area effects, maximum isolation effects, additive area and isolation effects and compensatory area and isolation effects.
Results  Five species of insectivorous bats ( Pipistrellus hesperus , Myotis californicus , Macrotus californicus , Antrozous pallidus and Mormoops megalophylla ) displayed minimum area thresholds on incidence. The probability of occurrence tended to decrease at moderate distances of isolation ( c . 10–15 km) for these species (excepting A. pallidus ). The distributions of two non-insectivorous species ( Leptonycteris curasoae and Myotis vivesi ) were not influenced by island size and isolation.
Main conclusions  Minimum area thresholds on incidence suggest that island occupancy by insectivorous bats may be limited by resource requirements. Islands smaller than 100 ha typically did not support occupancy or use by insectivorous bats, except at minimal isolation distances. Insectivorous bat species may also be more sensitive to moderate levels of habitat isolation in some landscape contexts than previously expected. Our results suggest that differences in foraging habits may have important implications for understanding the distribution patterns of bats.  相似文献   

8.
Tropical forests accommodate rich species diversity, particularly among insects. Habitat heterogeneity along the vertical gradient extending from the forest understorey to the tree canopy influences diversity. The vertical distribution of forest insects is poorly understood across Africa, most especially eastern Africa. Food‐baited traps were used to study the vertical stratification of adult fruit‐feeding nymphalid butterflies in Mtai Forest Reserve, north‐eastern Tanzania. Traps were located in the forest canopy and understorey. A total of 277 individuals of 24 species were captured. Species composition differed by trap locations: 33% of the species captured were found in both the canopy and understorey strata; however, significantly more species were captured in the understorey (54%) than canopy (13%). Males were significantly more abundant than females and captured in both strata. A greater proportion of females were captured in the understorey than the canopy. The time of day affected capture rates, with more individuals caught in the afternoon; however, there was no association between the time period and the sex of individuals captured in canopy versus understorey locations. Understanding how the sexes of butterflies vary in understorey versus canopy offers new biological insights into the vertical stratification of insects.  相似文献   

9.
Discussion of the vertical stratification of organisms in tropical forests has traditionally focused on species distribution. Most studies have shown that, due to differences in abiotic conditions and resource distribution, species can be distributed along the vertical gradient according to their ecophysiological needs. However, the network structure between distinct vertical strata remains little-explored. To fill this gap in knowledge, we used baits to sample ants in the canopy and understorey trees of a Mexican tropical rain forest to record the ant–tree co-occurrences. We examined the ant–tree co-occurrences in the canopy and understorey using complementary network metrics (i.e., specialization, interaction diversity, modularity, and nestedness). In addition, we evaluated co-occurrence patterns between ant species on trees, using C-score analysis. In general, we found no differences in the network structure, although the interaction diversity was greater in the understorey than in the canopy networks. We also observed that co-occurrence networks of each vertical stratum featured four ant species in the central core of highly co-occurring species, with three species unique to each stratum. Moreover, we found a similar trend toward ant species segregation in the both strata. These findings reveal a similar pattern of ant–ant co-occurrences in both vertical strata, probably due to the presence of arboreal-nesting ants in the understorey. Overall, we showed that despite the marked differences in species composition and environmental conditions between understorey and canopy strata, ant–tree co-occurrences in these habitats could be governed by similar mechanisms, related to dominance and resource monopolization by ants.  相似文献   

10.
Vertical stratification is a key feature of tropical forests and structures plant–frugivore interactions. However, it is unclear whether vertical differences in plant-frugivore interactions are due to differences among strata in plant community composition or inherent preferences of frugivores for specific strata. To test this, we observed fruit removal of a diverse frugivore community on the liana Marcgravia longifolia in a Peruvian rain forest. Unlike most other plants, Marcgravia longifolia produces fruits across forest strata. This enabled us to study effects of vertical stratification on fruit removal without confounding effects of plant species and stratum. We found a high number of visits of a few frugivore species in the understorey and a low number of visits of many different frugivores in the canopy and midstorey. Whereas partial and opportunistic frugivores foraged across strata with differing frequencies, obligate frugivores were only found eating fruits in the higher strata. Avian frugivores foraging in the canopy were mainly large species with pointed wings, whereas under- and midstorey avian foragers were smaller with rounded wings. Our findings suggest a continuous shift in the frugivore community composition along the vertical gradient, from a few generalized frugivores in the understorey to a diverse set of specialized frugivores in the canopy. This shift in the frugivore community leads to correlated, reciprocal changes from specialized to generalized plant-frugivore interactions. Thus, we conclude that vertical niche differentiation between species in tropical forests persists even when food resources are available across strata. This highlights its role for promoting biodiversity and ecosystem functioning.  相似文献   

11.
We compared the assemblages of phyllostomid bats in three Neotropical rainforests with respect to species richness and assemblage structure and suggested a method to validate estimates of species richness for Neotropical bat assemblages based on mist-netting data. The fully inventoried bat assemblage at La Selva Biological Station (LS, 100 m elevation) in Costa Rica was used as a reference site to evaluate seven estimators of species richness. The Jackknife 2 method agreed best with the known bat species richness and thus was used to extrapolate species richness for an Amazonian bat assemblage (Tiputini Biodiversity Station; TBS, 200 m elevation) and an Andean premontane bat assemblage (Podocarpus National Park; BOM, 1000 m elevation) in Ecuador. Our results suggest that more than 100 bat species occur sympatrically at TBS and about 50 bat species coexist at BOM. TBS harbours one of the most species-rich bat assemblages known, including a highly diverse phyllostomid assemblage. Furthermore, we related assemblage structure to large-scale geographical patterns in floral diversity obtained from botanical literature. Assemblage structure of these three phyllostomid assemblages was influenced by differences in floral diversity at the three sites. At the Andean site, where understorey shrubs and epiphytes exhibit the highest diversity, the phyllostomid assemblage is mainly composed of understorey frugivores and nectarivorous species. By contrast, canopy frugivores are most abundant at the Amazonian site, coinciding with the high abundance of canopy fruiting trees. Assemblage patterns of other taxonomic groups also may reflect the geographical distribution patterns of floral elements in the Andean and Amazonian regions.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 617–629.  相似文献   

12.
13.
Echolocating bats cry out loud to detect their prey   总被引:1,自引:0,他引:1  
Surlykke A  Kalko EK 《PloS one》2008,3(4):e2036
Echolocating bats have successfully exploited a broad range of habitats and prey. Much research has demonstrated how time-frequency structure of echolocation calls of different species is adapted to acoustic constraints of habitats and foraging behaviors. However, the intensity of bat calls has been largely neglected although intensity is a key factor determining echolocation range and interactions with other bats and prey. Differences in detection range, in turn, are thought to constitute a mechanism promoting resource partitioning among bats, which might be particularly important for the species-rich bat assemblages in the tropics. Here we present data on emitted intensities for 11 species from 5 families of insectivorous bats from Panamá hunting in open or background cluttered space or over water. We recorded all bats in their natural habitat in the field using a multi-microphone array coupled with photographic methods to assess the bats' position in space to estimate emitted call intensities. All species emitted intense search signals. Output intensity was reduced when closing in on background by 4-7 dB per halving of distance. Source levels of open space and edge space foragers (Emballonuridae, Mormoopidae, Molossidae, and Vespertilionidae) ranged between 122-134 dB SPL. The two Noctilionidae species hunting over water emitted the loudest signals recorded so far for any bat with average source levels of ca. 137 dB SPL and maximum levels above 140 dB SPL. In spite of this ten-fold variation in emitted intensity, estimates indicated, surprisingly, that detection distances for prey varied far less; bats emitting the highest intensities also emitted the highest frequencies, which are severely attenuated in air. Thus, our results suggest that bats within a local assemblage compensate for frequency dependent attenuation by adjusting the emitted intensity to achieve comparable detection distances for prey across species. We conclude that for bats with similar hunting habits, prey detection range represents a unifying constraint on the emitted intensity largely independent of call shape, body size, and close phylogenetic relationships.  相似文献   

14.
ABSTRACT Forest edges often have increased species richness and abundance (edge effect) and affect spatial behaviors of species and dynamics of species interactions. Landscapes of intensively managed pine (Pinus spp.) stands are characterized by a mosaic of patches and linear forest edges. Managed pine forests are a primary landscape feature of the southeastern United States, but the effects of intensive management on bat communities are poorly understood. Insectivorous bats are important top predators in nocturnal forest food webs. We examined bat foraging behavior along forest edges and in 4 structurally distinct stand types (open-canopy pine, prethinned pine, thinned pine, and unmanaged forest) within a managed pine forest in the coastal plain of North Carolina, USA. During May-August, 2006 and 2007, we recorded echolocation calls using Pettersson D240X bat detectors linked to digital recorders at 156 sites. We also sampled nocturnal flying insects at each site using Malaise insect traps. We used negative binomial count regression models to describe bat foraging behavior relative to forest edges, stand types, and prey availability. Although some species showed affinities for certain stand types and prey items, bat activity patterns were most strongly related to forest edges. Edges were used extensively by 6 aerial-hunting bat species, but avoided by Myotis species. Forest edges function similarly to natural forest gaps, by providing foraging opportunities for aerial-hunting bat species. Therefore, the maintenance of forest edges in managed pine landscapes may enhance foraging habitat for aerial-hunting bat species.  相似文献   

15.
Echolocating insectivorous bats consummate prey captures using a distinct vocal motor pattern commonly known as the terminal or feeding buzz, which is widely considered a fixed motor pattern executed independently of auditory feedback influences. The Mexican free-tailed bat, Tadarida brasiliensis, offers an opportunity to explore the role of sensory feedback in buzzing because they emit similar buzzes both in flight during foraging and while stationary as communication sounds. Here we compared the spectral and temporal patterns of foraging and communication buzzes to address whether or not auditory feedback may influence buzz patterns. We found that while foraging buzzes uttered in open space were composed of generic FM calls, communication buzzes were composed of an adapted CF–FM call similar to the call type used by T. brasiliensis when navigating in confined spaces. This provides the first evidence that some bats can make significant context-dependent changes in the spectral parameters of calls within their buzz. We also found that inter-pulse intervals, but not call durations, were different within the two buzz types. These observations indicate that though a common pattern generator hierarchically organizes all buzzes, T. brasiliensis retains a significant capacity to adapt the spectral and temporal patterns of elements within its buzzes.  相似文献   

16.
We analysed movement parameters and vertical stratification in fruit-feeding butterflies between a control, a thinned and a plantation site within a West African rainforest. Overall, distances moved between traps were largest in the plantation. Movement parameters were generally largest in species feeding on early successional hostplants of gap and margin habitats. In these species, distances between recaptures were significantly shorter in the thinned compared to the control forest. Conversely, forest floor species feeding on climbers and understorey shrubs showed significantly larger movement in the thinned forest. Higher strata species also flew larger distances in the thinned understorey. Including higher strata samples, they were significantly less abundant in the thinned plot, although understorey sampling alone indicated the contrary. Comparing vertical distribution patterns between thinned and control sites indicated a disruption of vertical stratification after thinning. Canopy species seem to fly in the upper strata of the more closed-canopy control forest, whereas they descend more frequently in the forest opened by the thinning management. Understorey sampling might therefore lead to biased conclusions due to differences in vertical distribution between forest plots. This study showed that thinning can affect the restricted-range forest floor butterflies as well as the more widespread canopy butterfly fauna.  相似文献   

17.
Abstract: We compared bat activity levels in the Coastal Plain of South Carolina among 5 habitat types: forested riparian areas, clearcuts, young pine plantations, mature pine plantations, and pine savannas. We used time-expansion radio-microphones and integrated detectors to simultaneously monitor bat activity at 3 heights (30, 10, 2 m) in each habitat type. Variation in vegetative clutter among sampling heights and among habitat types allowed us to examine the differential effect of forest vegetation on the spatial activity patterns of clutter-adapted and open-adapted bat species. Moreover, monitoring activity at 30, 10, and 2 m permitted us to also compare bat activity above and below the forest canopy. We detected calls of 5 species or species groups: eastern red/Seminole bats (Lasiurus borealis/L. seminolus), eastern pipistrelles (Pipistrellus subflavus), evening bats (Nycticeius humeralis), big brown bats (Eptesicus fuscus), and hoary bats (Lasiurus cinerius). At 2 and 10 m, bat activity was concentrated in riparian areas, whereas we detected relatively low levels of bat activity in upland habitats at those heights. Activity was more evenly distributed across the landscape at 30 m. Bat activity levels above the forest canopy were almost 3 times greater than within or below the canopy. We detected significantly greater activity levels of 2 open-adapted species (hoary and big brown bats) above rather than within or below the forest canopy. However, activity levels of 2 clutter-adapted species (eastern red/Seminole bats and eastern pipistrelles) did not differ above, within, or below the forest canopy. Despite classification as a clutter-adapted species, evening bat activity was greater above rather than within or below the forest canopy. We believe our results highlight the importance of riparian areas as foraging habitat for bats in pine-dominated landscapes in the southeastern United States. Although acoustical surveys conducted below forest canopies can provide useful information about species composition and relative activity levels of bats that forage in cluttered environments, our results showing activity above canopy suggest that such data may not accurately reflect relative activity of bats adapted to forage in more open conditions, and therefore may provide an inaccurate picture of bat community assemblage and foraging habitat use.  相似文献   

18.
Threlfall CG  Law B  Banks PB 《PloS one》2012,7(6):e38800
Urban landscapes are often located in biologically diverse, productive regions. As such, urbanization may have dramatic consequences for this diversity, largely due to changes in the structure and function of urban communities. We examined the influence of landscape productivity (indexed by geology), housing density and vegetation clearing on the spatial distribution of nocturnal insect biomass and the foraging activity of insectivorous bats in the urban landscape of Sydney, Australia. Nocturnal insect biomass (g) and bat foraging activity were sampled from 113 sites representing backyard, open space, bushland and riparian landscape elements, across urban, suburban and vegetated landscapes within 60 km of Sydney's Central Business District. We found that insect biomass was at least an order of magnitude greater within suburban landscapes in bushland and backyard elements located on the most fertile shale influenced geologies (both p<0.001) compared to nutrient poor sandstone landscapes. Similarly, the feeding activity of bats was greatest in bushland, and riparian elements within suburbs on fertile geologies (p?=?0.039). Regression tree analysis indicated that the same three variables explained the major proportion of the variation in insect biomass and bat foraging activity. These were ambient temperature (positive), housing density (negative) and the percent of fertile shale geologies (positive) in the landscape; however variation in insect biomass did not directly explain bat foraging activity. We suggest that prey may be unavailable to bats in highly urbanized areas if these areas are avoided by many species, suggesting that reduced feeding activity may reflect under-use of urban habitats by bats. Restoration activities to improve ecological function and maintain the activity of a diversity of bat species should focus on maintaining and restoring bushland and riparian habitat, particularly in areas with fertile geology as these were key bat foraging habitats.  相似文献   

19.
Bats are known to forage and commute close to vegetation structures when moving across the agricultural matrix, but the role of isolated landscape elements in arable fields for bat activity is unknown. Therefore, we investigated the influence of small isolated ponds which lie within arable fields close to vegetation structures on the flight and foraging activity of bats. Additionally, we compared species-specific activity measures between forest edges and linear structures such as hedgerows. We repeatedly recorded bat activity using passive acoustic monitoring along 20 transects extending from the vegetation edge up to 200 m into the arable field (hereafter: edge-field interface) with a small pond present at five transects per edge type (linear vs. forest). Using generalized linear mixed effect models, we analyzed the effects of edge type, pond presence and the season on species-specific flight and foraging activity within the edge-field interface. We found a higher flight activity of Nyctalus noctula and Pipistrellus pygmaeus above the arable field when a pond was present. Furthermore, Pipistrellus nathusii and Pipistrellus pipistrellus foraged more frequently at forest edges than at linear structures (e.g. hedgerows). Additionally, we found three major patterns of seasonal variation in the activity of bats along the edge-field interface. This study highlights the species-specific and dynamic use of forest and hedgerow or tree line edges by bats and their importance for different bat species in the agricultural landscape. Further, additional landscape elements such as small isolated ponds within arable fields might support the activity of bats above the open agricultural landscape, thereby facilitating agroecosystem functioning. Therefore, additional landscape elements within managed areas should be restored and protected against the conversion into arable land and better linked to surrounding landscape elements in order to efficiently support bats within the agroecosystem.  相似文献   

20.
Bats have important ecological roles in ecosystems, but many species are threatened because of anthropogenic impacts. Tanzania has limited information on how bats respond to habitat modification. This makes it difficult to anticipate which bat species are at risk. Bat activity and species richness were assessed in five land‐use types: forest and banana–coffee (upland habitats), rice paddy, riverine and sisal estate (lowland habitats). Mist nets, harp traps and bat detectors were used to sample bats. Species richness differed between habitats. Bat activity levels were higher in lowland habitats than upland habitats. Riverine and rice paddy habitats were shown to have an important role as foraging sites for many insectivorous bats as bat species richness and activity were generally higher than other habitats. Fruit‐eating bats preferred riverine and banana–coffee habitats. We recommend using organic manure as alternatives to chemical fertilisers, and pesticide use should be avoided in rice paddies. Riparian vegetation along rivers and water bodies should be maintained as important faunal nesting, roosting and/or foraging grounds. The requirement that farming practices be at least 60 m from the river should be strictly enforced. These recommendations will help in the conservation of bats and their habitats in modified agricultural landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号