首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The existence of cancer stem cells (CSCs) or stem-like cancer cells (SLCCs) is regarded as the cause of tumor formation and recurrence. However, the origin of such cells remains controversial with two competing hypotheses: CSCs are either transformed from tissue adult stem cells or dedifferentiated from transformed progenitor cells. Compelling evidence has determined the chromosomal aneuploidy to be one of the hallmarks of cancer cells, indicating genome instability plays an important role in tumorigenesis, for which CSCs are believed to be the initiator. To gain direct evidence that genomic instability is involved in the induction of SLCCs, we utilized multiple approaches to enhance genomic instability and monitored the percentage of SLCC in cultured cancer cells. Using side population (SP) cells as a marker for SLCC in human nasopharyngeal carcinoma (NPC) and CD133 for human neuroblastoma cells, we found that DNA damage inducers, UV and mitomycin C were capable of increasing SP cells in NPC CNE-2 and neuroblastoma SKN-SH cells. Likewise, either overexpression of a key regulator of cell cycle, Mad2, or knock down of Aurora B, an important kinase in mitosis, or Cdh1, a key E3 ligase in cell cycle, resulted in a significant increase of SP cells in CNE-2. More interestingly, enrichment of SP cells was observed in recurrent tumor tissues as compared with the primary tumor in the same NPC patients. Our study thus suggested that, beside transformation of tissue stem cells leading to CSC generation, genomic instability could be another potential mechanism resulting in SLCC formation, especially at tumor recurrence stage.  相似文献   

2.
Glioblastomas show heterogeneous histological features, and tumor cells show distinct phenotypic states that confer different functional attributes and an aggressive character. However, the molecular mechanisms underlying the heterogeneity in this disease are poorly understood. Glioma stem-like cells (GSCs) are considered able to aberrantly differentiate into diverse cell types and may contribute to the establishment of tumor heterogeneity. Using a GSC model, we investigated differentially expressed microRNAs (miRNAs) and associated epigenetic mechanisms that regulate the differentiation of GSCs. miRNA profiling using microarray technology showed that 13 and 34 miRNAs were commonly up-regulated and down-regulated in two independent GSC lines during differentiation, respectively. Among this set of miRNAs, quantitative PCR analysis showed that miRNA-1275 (miR-1275) was consistently down-regulated during GSC differentiation, along with the up-regulation of its target, CLDN11, an important protein during oligodendroglial lineage differentiation. Inhibition of miR-1275 with a specific antisense oligonucleotide (anti-miR-1275) in GSCs increased the expression of CLDN11, together with significant growth suppression. Epigenetic analysis revealed that gain of histone H3 lysine 27 trimethylation (H3K27me3) in the primary microRNA-1275 promoter was closely associated with miR-1275 expression. Treatment with 3-deazaneplanocin A, an inhibitor of H3K27 methyltransferase, attenuated CLDN11 induction by serum stimulation in parallel with sustained miR-1275 expression. Our results have illuminated the epigenetic regulatory pathways of miR-1275 that are closely associated with oligodendroglial differentiation, which may contribute to the tissue heterogeneity seen in the formation of glioblastomas. Given that inhibition of miR-1275 induces expression of oligodendroglial lineage proteins and suppresses tumor cell proliferation, this may be a potential therapeutic target for glioblastomas.  相似文献   

3.
Previously, we found that basal-like ductal carcinoma in situ (DCIS) contains cancer stem-like cells. Here, we characterize stem-like subpopulations in a model of basal-like DCIS and identify subpopulations of CD49f+/CD24− stem-like cells that possess aldehyde dehydrogenase 1 activity. We found that these cells show enhanced migration potential compared with non-stem DCIS cells. We also found that the chemopreventive agent sulforaphane can target these DCIS stem-like cells, reduce aldehyde dehydrogenase 1 (ALDH1) expression, and decrease mammosphere and progenitor colony formation. Furthermore, we characterized exosomal trafficking of microRNAs in DCIS and found that several microRNAs (miRs) including miR-140, miR-29a, and miR-21 are differentially expressed in exosomes from DCIS stem-like cells. We found that SFN treatment could reprogram DCIS stem-like cells as evidenced by significant changes in exosomal secretion more closely resembling that of non-stem cancer cells. Finally, we demonstrated that exosomal secretion of miR-140 might impact signaling in nearby breast cancer cells.  相似文献   

4.
Valproic acid (VPA), an histone deacetylase inhibitor, is emerging as a promising therapeutic agent for the treatments of gliomas by virtue of its ability to reactivate the expression of epigenetically silenced genes. VPA induces the unfolded protein response (UPR), an adaptive pathway displaying a dichotomic yin yang characteristic; it initially contributes in safeguarding the malignant cell survival, whereas long-lasting activation favors a proapoptotic response. By triggering UPR, VPA might tip the balance between cellular adaptation and programmed cell death via the deregulation of protein homeostasis and induction of proteotoxicity. Here we aimed to investigate the impact of proteostasis on glioma stem cells (GSC) using VPA treatment combined with subversion of SEL1L, a crucial protein involved in homeostatic pathways, cancer aggressiveness, and stem cell state maintenance. We investigated the global expression of GSC lines untreated and treated with VPA, SEL1L interference, and GSC line response to VPA treatment by analyzing cell viability via MTT assay, neurosphere formation, and endoplasmic reticulum stress/UPR-responsive proteins. Moreover, SEL1L immunohistochemistry was performed on primary glial tumors. The results show that (i) VPA affects GSC lines viability and anchorage-dependent growth by inducing differentiative programs and cell cycle progression, (ii) SEL1L down-modulation synergy enhances VPA cytotoxic effects by influencing GSCs proliferation and self-renewal properties, and (iii) SEL1L expression is indicative of glioma proliferation rate, malignancy, and endoplasmic reticulum stress statuses. Targeting the proteostasis network in association to VPA treatment may provide an alternative approach to deplete GSC and improve glioma treatments.  相似文献   

5.
6.
Pluripotent stem cells have potential applications in regenerative medicine for diabetes. Differentiation of stem cells into insulin-producing cells has been achieved using various protocols. However, both the efficiency of the method and potency of differentiated cells are insufficient. Oxygen tension, the partial pressure of oxygen, has been shown to regulate the embryonic development of several organs, including pancreatic β-cells. In this study, we tried to establish an effective method for the differentiation of induced pluripotent stem cells (iPSCs) into insulin-producing cells by culturing under high oxygen (O2) conditions. Treatment with a high O2 condition in the early stage of differentiation increased insulin-positive cells at the terminus of differentiation. We found that a high O2 condition repressed Notch-dependent gene Hes1 expression and increased Ngn3 expression at the stage of pancreatic progenitors. This effect was caused by inhibition of hypoxia-inducible factor-1α protein level. Moreover, a high O2 condition activated Wnt signaling. Optimal stage-specific treatment with a high O2 condition resulted in a significant increase in insulin production in both mouse embryonic stem cells and human iPSCs and yielded populations containing up to 10% C-peptide-positive cells in human iPSCs. These results suggest that culturing in a high O2 condition at a specific stage is useful for the efficient generation of insulin-producing cells.  相似文献   

7.
To investigate the effect of uric acid on the osteogenic and adipogenic differentiation of human bone mesenchymal stem cells (hBMSCs). The hBMSCs were isolated from bone marrow of six healthy donors. Cell morphology was observed by microscopy and cell surface markers (CD44 and CD34) of hBMSCs were analyzed by immunofluorescence. Cell morphology and immunofluorescence analysis showed that hBMSCs were successfully isolated from bone marrow. The number of hBMSCs in uric acid groups was higher than that in the control group on day 3, 4, and 5. Alizarin red staining showed that number of calcium nodules in uric acid groups was more than that of the control group. Oil red‐O staining showed that the number of red fat vacuoles decreased with the increased concentration of uric acid. In summary, uric acid could promote the proliferation and osteogenic differentiation of hBMSCs while inhibit adipogenic differentiation of hBMSCs.  相似文献   

8.
Subpopulations of cancer stem cells (CSCs) or cancer stem-like cells (CSLCs) have been identified from most tumors, including pancreatic cancer (PC), and the existence of these cells is clinically relevant. Emerging evidence suggests that CSLCs participate in cell growth/proliferation, migration/invasion, metastasis, and chemo-radiotherapy resistance, ultimately contributing to poor clinical outcome. However, the pathogenesis and biological significance of CSLCs in PC has not been well characterized. In the present study, we found that isolated triple-marker-positive (CD44+/CD133+/EpCAM+) cells of human PC MiaPaCa-2 and L3.6pl cells behave as CSLCs. These CSLCs exhibit aggressive behavior, such as increased cell growth, migration, clonogenicity, and self-renewal capacity. The mRNA expression profiling analysis showed that CSLCs (CD44+/CD133+/EpCAM+) exhibit differential expression of more than 1,600 mRNAs, including FoxQ1, compared with the triple-marker-negative (CD44/CD133/EpCAM) cells. The knockdown of FoxQ1 by its siRNA in CSLCs resulted in the inhibition of aggressive behavior, consistent with the inhibition of EpCAM and Snail expression. Mouse xenograft tumor studies showed that CSLCs have a 100-fold higher potential for tumor formation and rapid tumor growth, consistent with overexpression of CSC-associated markers/mediators, including FoxQ1, compared with its parental MiaPaCa-2 cells. The inhibition of FoxQ1 attenuated tumor formation and growth, and expression of CSC markers in the xenograft tumor derived from CSLCs of MiaPaCa-2 cells. These data clearly suggest the role of differentially expressed genes in the regulation of CSLC characteristics, further suggesting that targeting some of these genes could be important for the development of novel therapies for achieving better treatment outcome of PC.  相似文献   

9.
Making the decision between self-renewal and differentiation of adult stem cells is critical for tissue repair and homeostasis. Here we show that the apoptotic adaptor Fas-associated death domain (FADD) regulates the fate decisions of muscle satellite cells (SCs). FADD phosphorylation was specifically induced in cycling SCs, which was high in metaphase and declined in later anaphase. Furthermore, phosphorylated FADD at Ser-191 accumulated in the uncommitted cycling SCs and was asymmetrically localized in the self-renewing daughter SCs. SCs containing a phosphoryl-mimicking mutation at Ser-191 of FADD (FADD-D) expressed higher levels of stem-like markers and reduced commitment-associated markers. Moreover, a phosphoryl-mimicking mutation at Ser-191 of FADD suppressed SC activation and differentiation, which promoted the cycling SCs into a reversible quiescent state. Therefore, these data indicate that FADD regulates the fate determination of cycling SCs.  相似文献   

10.
11.
Abstract: Phospholipase C γ1 (PLC-γ1) is phosphorylated on treatment of cells with nerve growth factor (NGF). To assess the role of PLC-γ1 in mediating the neuronal differentiation induced by NGF treatment, we established PC12 cells that overexpress whole PLC-γ1 (PLC-γ1PC12), the SH2-SH2-SH3 domain (PLC-γ1SH223PC12), SH2-SH2-deleted mutants (PLC-γ1ΔSH22PC12), and SH3-deleted mutants (PLC-γ1ΔSH3PC12). Overexpressed whole PLC-γ1 or the SH2-SH2-SH3 domain of PLC-γ1 stimulated cell growth and inhibited NGF-induced neurite outgrowth of PC12 cells. However, cells expressing PLC-γ1 lacking the SH2-SH2 domain or the SH3 domain had no effect on NGF-induced neuronal differentiation. Overexpression of intact PLC-γ1 resulted in a threefold increase in total inositol phosphate accumulation on treatment with NGF. However, overexpression of the SH2-SH2-SH3 domain of PLC-γ1 did not alter total inositol phosphate accumulation. To investigate whether the SH2-SH2-SH3 domain of PLC-γ1 can mediate the NGF-induced signal, tyrosine phosphorylation of the SH2-SH2-SH3 domain of PLC-γ1 on NGF treatment was examined. The SH2-SH2-SH3 domain of PLC-γ1 as well as intact PLC-γ1 could be tyrosine-phosphorylated on NGF treatment. These results indicate that the overexpressed SH2-SH2-SH3 domain of PLC-γ1 can block the differentiation of PC12 cells induced by NGF and that the inhibition appears not to be related to the lipase activity of PLC-γ1 but to the SH2-SH2-SH3 domain of PLC-γ1.  相似文献   

12.
The future clinical use of embryonic stem cell (ESC)-based hepatocyte replacement therapy depends on the development of an efficient procedure for differentiation of hepatocytes from ESCs. Here we report that a high density of human ESC-derived fibroblast-like cells (hESdFs) supported the efficient generation of hepatocyte-like cells with functional and mature hepatic phenotypes from primate ESCs and human induced pluripotent stem cells. Molecular and immunocytochemistry analyses revealed that hESdFs caused a rapid loss of pluripotency and induced a sequential endoderm-to-hepatocyte differentiation in the central area of ESC colonies. Knockdown experiments demonstrated that pluripotent stem cells were directed toward endodermal and hepatic lineages by FGF2 and activin A secreted from hESdFs. Furthermore, we found that the central region of ESC colonies was essential for the hepatic endoderm-specific differentiation, because its removal caused a complete disruption of endodermal differentiation. In conclusion, we describe a novel in vitro differentiation model and show that hESdF-secreted factors act in concert with regional features of ESC colonies to induce robust hepatic endoderm differentiation in primate pluripotent stem cells.  相似文献   

13.
We have previously shown that macro histone variants (macroH2A) are expressed at low levels in stem cells and are up-regulated during differentiation. Here we show that the knockdown of macro histone variants impaired the in vitro and in vivo differentiation of human pluripotent cells, likely through defects in the silencing of pluripotency-related genes. ChIP experiments showed that during differentiation macro histone variants are recruited to the regulatory regions of pluripotency and developmental genes marked with H3K27me3 contributing to the silencing of these genes.  相似文献   

14.
Cancer stem cells (CSCs) are thought to be partially responsible for cancer resistance to current therapies and tumor recurrence. Dichloroacetate (DCA), a compound capable of shifting metabolism from glycolysis to glucose oxidation, via an inhibition of pyruvate dehydrogenase kinase was used. We show that DCA is able to shift the pyruvate metabolism in rat glioma CSCs but has no effect in rat neural stem cells. DCA forces CSCs into oxidative phosphorylation but does not trigger the production of reactive oxygen species and consecutive anti-cancer apoptosis. However, DCA, associated with etoposide or irradiation, induced a Bax-dependent apoptosis in CSCs in vitro and decreased their proliferation in vivo. The former phenomenon is related to DCA-induced Foxo3 and p53 expression, resulting in the overexpression of BH3-only proteins (Bad, Noxa, and Puma), which in turn facilitates Bax-dependent apoptosis. Our results demonstrate that a small drug available for clinical studies potentiates the induction of apoptosis in glioma CSCs.  相似文献   

15.
Tumor heterogeneity represents a fundamental feature supporting tumor robustness and presents a central obstacle to the development of therapeutic strategies1. To overcome the issue of tumor heterogeneity, it is essential to develop assays and tools enabling phenotypic, (epi)genetic and functional identification and characterization of tumor subpopulations that drive specific disease pathologies and represent clinically relevant targets. It is now well established that tumors exhibit distinct sub-fractions of cells with different frequencies of cell division, and that the functional criteria of being slow cycling is positively associated with tumor formation ability in several cancers including those of the brain, breast, skin and pancreas as well as leukemia2-8. The fluorescent dye carboxyfluorescein succinimidyl ester (CFSE) has been used for tracking the division frequency of cells in vitro and in vivo in blood-borne tumors and solid tumors such as glioblastoma2,7,8. The cell-permeant non-fluorescent pro-drug of CFSE is converted by intracellular esterases into a fluorescent compound, which is retained within cells by covalently binding to proteins through reaction of its succinimidyl moiety with intracellular amine groups to form stable amide bonds9. The fluorescent dye is equally distributed between daughter cells upon divisions, leading to the halving of the fluorescence intensity with every cell division. This enables tracking of cell cycle frequency up to eight to ten rounds of division10. CFSE retention capacity was used with brain tumor cells to identify and isolate a slow cycling subpopulation (top 5% dye-retaining cells) demonstrated to be enriched in cancer stem cell activity2. This protocol describes the technique of staining cells with CFSE and the isolation of individual populations within a culture of human glioblastoma (GBM)-derived cells possessing differing division rates using flow cytometry2. The technique has served to identify and isolate a brain tumor slow-cycling population of cells by virtue of their ability to retain the CFSE labeling.  相似文献   

16.
17.
Autologous c-kit+ cardiac progenitor cells (CPCs) are currently used in the clinic to treat heart disease. CPC-based regeneration may be further augmented by better understanding molecular mechanisms of endogenous cardiac repair and enhancement of pro-survival signaling pathways that antagonize senescence while also increasing differentiation. The prolyl isomerase Pin1 regulates multiple signaling cascades by modulating protein folding and thereby activity and stability of phosphoproteins. In this study, we examine the heretofore unexplored role of Pin1 in CPCs. Pin1 is expressed in CPCs in vitro and in vivo and is associated with increased proliferation. Pin1 is required for cell cycle progression and loss of Pin1 causes cell cycle arrest in the G1 phase in CPCs, concomitantly associated with decreased expression of Cyclins D and B and increased expression of cell cycle inhibitors p53 and retinoblastoma (Rb). Pin1 deletion increases cellular senescence but not differentiation or cell death of CPCs. Pin1 is required for endogenous CPC response as Pin1 knock-out mice have a reduced number of proliferating CPCs after ischemic challenge. Pin1 overexpression also impairs proliferation and causes G2/M phase cell cycle arrest with concurrent down-regulation of Cyclin B, p53, and Rb. Additionally, Pin1 overexpression inhibits replicative senescence, increases differentiation, and inhibits cell death of CPCs, indicating that cell cycle arrest caused by Pin1 overexpression is a consequence of differentiation and not senescence or cell death. In conclusion, Pin1 has pleiotropic roles in CPCs and may be a molecular target to promote survival, enhance repair, improve differentiation, and antagonize senescence.  相似文献   

18.
The objective of this study was to employ genetically engineered IGF-II analogs to establish which receptor(s) mediate the stemness promoting actions of IGF-II on mouse subventricular zone neural precursors. Neural precursors from the subventricular zone were propagated in vitro in culture medium supplemented with IGF-II analogs. Cell growth and identity were analyzed using sphere generation and further analyzed by flow cytometry. F19A, an analog of IGF-II that does not bind the IGF-2R, stimulated an increase in the proportion of neural stem cells (NSCs) while decreasing the proportion of the later stage progenitors at a lower concentration than IGF-II. V43M, which binds to the IGF-2R with high affinity but which has low binding affinity to the IGF-1R and to the A isoform of the insulin receptor (IR-A) failed to promote NSC growth. The positive effects of F19A on NSC growth were unaltered by the addition of a functional blocking antibody to the IGF-1R. Altogether, these data lead to the conclusion that IGF-II promotes stemness of NSCs via the IR-A and not through activation of either the IGF-1R or the IGF-2R.  相似文献   

19.
Abstract: N -Acetylaspartylglutamate (NAAG), a prevalent peptide in the vertebrate nervous system, may be hydrolyzed by extracellular peptidase activity to produce glutamate and N -acetylaspartate. Hydrolysis can be viewed as both inactivating the peptide after synaptic release and increasing synaptic levels of ambient glutamate. To test the hypothesis that NAAG and the peptidase activity that hydrolyzes it coexist as a unique, two-stage system of chemical neurotransmission, 50 discrete regions of the rat CNS were microdissected for assay. In each microregion, the concentration of NAAG was determined by radioimmunoassay and the peptidase activity was assayed using tritiated peptide as substrate. The NAAG concentration ranged from 2.4 nmol/mg of soluble protein in median eminence to 64 in thoracic spinal cord. Peptidase activity against NAAG ranged from 54 pmol of glutamate produced per milligram of membrane protein per minute in median eminence to 148 in superior colliculus. A linear relationship was observed between NAAG peptidase and NAAG concentration in 46 of the 50 areas, with a slope of 2.26 and a correlation coefficient of 0.45. These data support the hypothesis that hydrolysis of NAAG to glutamate and N -acetylaspartate is a consistent aspect of the physiology and metabolism of this peptide after synaptic release. The ratio of peptide concentration to peptidase activity was >0.3 in the following four areas: ventrolateral medulla and reticular formation where the peptide is concentrated in axons of passage, thoracic spinal cord, where NAAG is concentrated in ascending sensory tracts as well as motoneuron cell bodies, and ventroposterior thalamic nucleus.  相似文献   

20.
赵迪诚  杜鹃  陈红  卢连梅  苏江 《生物磁学》2011,(24):4837-4840
目的:研究脐血间充质干细胞生物学特性及向神经元样细胞分化的潜能。方法:采用密度梯度离心结合贴壁培养法自脐血中分离间充质干细胞,观察细胞生长情况,描绘生长曲线,流式细胞仪检测细胞表面标志物,分别向成骨细胞、脂肪细胞、神经元样细胞进行诱导分化,通过茜素红染色、油红O染色检测脐血间充质干细胞成骨、成脂肪细胞诱导分化能力,而以免疫组织化学检测诱导后细胞表面神经标志物的表达。结果:纯化的脐血间充质干细胞贴壁生长,呈均一梭形,生长曲线呈S型,并以P3代增殖能力最强,细胞表面不表达或弱表达CD34、CD35、CD106,高表达CD29、CD44、CD105。成骨诱导2周后,可检测到钙化基质的形成,成脂肪诱导3周后,可检测到脂滴的形成。向神经元样细胞诱导分化后,可观察到典型的神经元样形态改变,且NSE、NF、GFAP阳性表达。结论:分离纯化的脐血间充质干细胞具有较强的增殖能力与分化潜能,并在体外诱导条件下可以向神经元样细胞定向分化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号